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Simple Summary: Governments worldwide have prioritized multicancer early detection (MCED) for
the better management of cancers. Artificial intelligence (AI) is a promising technology to enhance
the performance of MCED. In this review, key components of MCED AI are explored. We focus
on detection targets such as serum protein biomarkers and cell-free DNA. Based on the serum
biomarkers, various AI model training methods and validation techniques are investigated. The
emphasis is on understanding how these approaches influence predictive efficacy. We demonstrate
the importance of real-world data rather than case-control data for trustworthy implementation and
the potential benefits of AI integration in MCED. Moreover, challenges in deploying MCED AIs in
clinical settings are highlighted, including issues such as presenting predictive reports and addressing
cancer-related information.

Abstract: The concept and policies of multicancer early detection (MCED) have gained significant
attention from governments worldwide in recent years. In the era of burgeoning artificial intelligence
(AI) technology, the integration of MCED with AI has become a prevailing trend, giving rise to a
plethora of MCED AI products. However, due to the heterogeneity of both the detection targets
and the AI technologies, the overall diversity of MCED AI products remains considerable. The
types of detection targets encompass protein biomarkers, cell-free DNA, or combinations of these
biomarkers. In the development of AI models, different model training approaches are employed,
including datasets of case-control studies or real-world cancer screening datasets. Various validation
techniques, such as cross-validation, location-wise validation, and time-wise validation, are used.
All of the factors show significant impacts on the predictive efficacy of MCED AIs. After the
completion of AI model development, deploying the MCED AIs in clinical practice presents numerous
challenges, including presenting the predictive reports, identifying the potential locations and types
of tumors, and addressing cancer-related information, such as clinical follow-up and treatment. This
study reviews several mature MCED AI products currently available in the market, detecting their
composing factors from serum biomarker detection, MCED AI training/validation, and the clinical
application. This review illuminates the challenges encountered by existing MCED AI products
across these stages, offering insights into the continued development and obstacles within the field of
MCED AI.

Keywords: AI; multi-cancer early detection (MCED); serum biomarkers

1. Introduction
1.1. Background and Motivation

Historically, cancer early detection has revolved around procedures like the Pap test
introduced around 100 years ago [1]. Early cancer detection is a pivotal factor in improving
patient survival rates, as it allows for earlier intervention, including the surgical removal
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of localized solid tumors, thus avoiding the critical metastatic stage where survival rates
sharply decline to less than 50%, even with the most advanced systemic therapies [2].
In many instances, cancer progresses over the course of years from its initial site to the
point of metastasis, presenting a window of opportunity for early detection [3]. The
COVID-19 pandemic disrupted healthcare systems globally, leading to the postponement or
cancelation of nonessential medical services, including cancer screenings. Recent increases
in cancer-related mortality rates observed might partly be attributed to delays in cancer
detection due to disrupted screening services [4].

Early cancer detection would improve prognosis; however, this conventional approach
faces notable challenges. In fact, a substantial proportion (~57%) of cancer-related deaths
in the United States are attributed to cancers that currently lack effective screening pro-
tocols [5]. For decades, cancer early detection has focused on the detection of individual
cancer types. These methods include low-dose chest computed tomography (CT) for lung
cancer, mammography for breast cancer, Pap smear for cervical cancer, and fecal occult
blood tests for colorectal cancer [6]. Although these screening methods have contributed
significantly to the early detection of cancer, the cancer types that the methods screen
represent only a fraction of the overall cancer landscape [7]. Only 14% of cancer cases in
the US are diagnosed through recommended screening tests, highlighting the limitations of
traditional screening methods. The majority of cancer diagnoses occur after symptoms have
manifested or during unrelated medical visits [8]. Moreover, cancer screening by the indi-
vidual cancer-type manner is inconvenient and individuals may find themselves required
to visit multiple healthcare providers to undergo various screening tests. These drawbacks
contribute to a reduced adherence to cancer screening through these methods [9].

The inadequacy of current cancer screening strategies can be attributed to several
factors. These include (1) suboptimal adherence to screening guidelines, (2) disparities in
access to screening, (3) limitations in existing screening technologies, (4) and the occurrence
of cancers between recommended testing windows [10]. Consequently, a significant portion
of cancer cases in the United States are detected at advanced stages, where treatment
becomes substantially more challenging. For instance, among cancers with established
screening protocols, the proportion of late-stage diagnoses ranges from 20.9% for prostate
cancer to a staggering 64.7% for lung cancer.

This introduction sets the foundation for exploring the promise of multicancer early
detection (MCED) strategies, which aim to revolutionize cancer screening by addressing
these challenges. Subsequent sections will delve into advances in MCED approaches and
the pivotal role played by artificial intelligence (AI) in enhancing the early detection of a
broad spectrum of cancers, ultimately improving survival rates and treatment outcomes.

1.2. Role of Artificial Intelligence in MCED

MCED involves detecting different cancer types. Some of the cancer types share
the same molecular behaviors, while some of them do not. To address a complicated
task like MCED, massive data would be necessary to provide sufficient information for
good discrimination. In analyzing massive data, AI is good at detecting hidden patterns
within complicated datasets. Typically, supervised machine-learning algorithms are the
workable AI approach in the biomedical field. Because of its outstanding performance in
classification or prediction, AI has been widely applied across multiple biomedical fields in
recent years. The applications include correlating genetic data to obesity [11], liquid biopsies
for predicting cancer metastasis [12], clinicopathological data for the risk stratification of
cancer [13], genetic data for MCED [14], and protein biomarkers for MCED [15].

In the field of MCED, applying AI has also proven to be efficient in improving diag-
nostic performance [16]. Harnessing AI has become a must-use technology in analyzing
MCED data because MCED tools typically target tens of analytical targets. Interpretation
of the complicated patterns that are composed of tens of components would be difficult
without AI approaches. Even when some biomarker experts are good at interpreting com-
plicated data patterns, the interpretation job is still time-consuming and labor-intensive.
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The integration of AI algorithms can significantly enhance the MCED tools of liquid biopsy
or genetic data analysis because the data generated in the tests are massive, complicated,
and possibly contain multiomic data. AI facilitates multimodal analysis by integrating
genomic, proteomic, and metabolomic data from liquid biopsies, providing a holistic view
for the improved accuracy of MCED. In the genetic data analysis of MCED, the number of
analytic targets is typically large. To improve the analysis of the massive data, AI excels
in recognizing intricate patterns and associations, offering valuable insights into cancer
detection, mutation profiles, and hereditary factors. Besides binding multiomic data, AI
is also good at the seamless integration of analytical data with clinical information as the
clinicopathological data, providing more comprehensive health profiles. Moreover, MCED
powered by AI can learn and become updated by new data. The continuous learning
of AI would mean the continuous improvement of MCED. While the specific patterns of
MCED are learned by AI, the learned knowledge of the AI models would be describable
and comparable. In short, applying AI in MCED would render MCED more accurate and
objective. The concept of MCED AI is illustrated in Figure 1.
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However, the diagnostic performance of using AI in MCED is still discrepant between
different studies. There are many possible reasons for the inconsistent results. One signifi-
cant factor is the variation in study designs. Most related studies use data from case-control
studies for the training and validation of AI models [15,17]. Only a few research labs use
data from cancer screening for the development and validation of related AI models [6,18].
Using real-world cancer screening data can be quite important because it is the only way
to align with the real-world application of these models. AI models are data-driven and
would be heavily influenced by the composition of training data. If the data used for
training the model differ from the data of the intended-use scenarios, then the use of AI
models in real-world healthcare would be significantly limited. Analytical variation be-
tween different ethnic groups is also another factor that must be considered. Only when the
factors that affect the AI, such as the input analytical data and model training/validation,
are well-optimized and standardized can the clinical field fully leverage the capabilities
and advantages of AI in cancer screening.
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2. Trajectory of Early Cancer Detection Methods
2.1. Evolutionary Overview of Multiple-Cancer Early Detection

In recent years, significant progress has been made in the realm of cancer screening,
especially in the domain of cancer early detection [19]. Several single-cancer screening
tools, such as the low-dose chest CT, mammography, Pap smear, and colonoscopy, are
currently applied for individual cancers. The evolution of MCED has been driven by
the recognition of the limitations inherent in traditional single-screening approaches [19].
In contrast to multimodal single-cancer screening methods, MCED tests aggregate the
prevalence of various cancer types within a given population [20]. This approach provides
a single, all-encompassing evaluation while maintaining a relatively low false-positive
rate [20]. Moreover, the challenge of varying levels of adherence to current screening proto-
cols has complicated cancer detection [21], necessitating the development of noninvasive
multicancer screening methods to reduce the morbidity and mortality from cancers.

Historically, the exploration of whole-body imaging and endoscopic techniques has
been considered a route to achieving universal cancer screening [19]. Nevertheless, per-
sistent issues, such as high false-positive rates [22] and potential complications arising
from radiation exposure [22,23] or invasive procedures [23], still require resolution [24].
In recent times, a revolutionary breakthrough has emerged in the form of liquid biopsies,
which analyze cancer-related biomarkers present in body fluids [24]. This development
has introduced a transformative dimension to the field, offering a less invasive and more
accessible means of early cancer detection. Additionally, AI has been recruited to analyze
large amounts of data, including medical images and genetic data, to identify patterns
and anomalies indicative of cancer [24]. The incorporation of AI into the screening process
increases the accuracy and efficiency of cancer detection. Of note in the current clinical
workflow, MCEDs can serve as a precursor to more specific cancer diagnoses. Specifically,
MCEDs should not be viewed as diagnostic, but rather as predictive for risk, and these
approaches inherently alter the acceptable level of specificity.

2.2. Advancements in Imaging and Endoscopic Tools

Imaging techniques, such as CT, magnetic resonance imaging (MRI), and positron
emission tomography (PET), have potential in MCED by providing noninvasive methods
to identify tumors in asymptomatic patients. However, these techniques have limitations
and challenges. Imaging will always be limited to a minimal size of a lesion that is
noticeable (even by AI) on a scan. False positives occur when imaging identifies benign
abnormalities as suspicious, leading to unnecessary tests, interventions, and mental stress
for the patient [22,25]. For example, previous studies about whole-body MRI showed that
abnormal findings were expected in about 95% of screened subjects; about 30% of subjects
would require further investigations, but less than 2% would be reported as suspicious for
malignant cancers [22]. Moreover, there is a carcinogenic risk associated with radiation
exposure from these examinations [26]. Annual CT scans from ages 45 to 75 years could
result in an increased risk of cancer mortality of 1.9%, or approximately 1 in 50 people [23].

Endoscopic techniques, on the other hand, allow the direct visualization and biopsy of
suspicious lesions. The development of novel endoscopic technologies, such as narrow-
band imaging (NBI) and confocal laser endomicroscopy (CLE), has enhanced the ability to
detect lesions in the gastrointestinal tract and other organs [27]. However, these invasive
procedures lack cost-effectiveness and may carry risks such as bleeding and bowel perfora-
tion. While the reported post colonoscopy perforation rate is less than 0.1%, it remains a
significant concern due to its status as a severe complication associated with high mortality
rates [28].

2.3. Emergence of Liquid Biopsy-Based Approaches

Liquid biopsy has emerged as a revolutionary technique for MCED. This innovative
method through phlebotomy greatly reduces the possible harm associated with more
invasive screening methods. Liquid biopsy involves the analysis of disease-related markers
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found in bodily fluids, encompassing a diverse range of analytes, such as circulating tumor
DNA (ctDNA), circulating tumor RNA (ctRNA), circulating tumor cells (CTCs), proteins,
and metabolites [24].

Over the past decade, there has been a rapid development and adoption of next-
generation-sequencing (NGS)-based methods in cancer research [29]. These methods
allowed us to capture tumor-specific genomic aberrations in circulation [29]. There are two
primary sources of tumor DNA that can be noninvasively assessed within the circulatory
system: ctDNA and CTCs [30]. CtDNA consists of small nucleic acid fragments shed from
necrotic or apoptotic tumor cells [31]. In contrast, CTCs represent intact and often viable
cells, which may originate from active cell invasion or the passive shedding of tumor cell
clusters [30]. Genomic biomarkers hold the potential to provide a more representative
‘summary’ of tumor heterogeneity within a patient, and also open up the possibility of
detecting cancer at an early stage [29]. Several commercial products, such as GRAIL, have
demonstrated impressive performance in detecting multiple cancer types and identifying
their origin within asymptomatic patients [32].

On the other hand, serum protein tumor markers, like CEA, AFP, CA-125, CA-19.9,
PSA, and others, have been used for decades to aid in diagnosing and managing various
cancers [33]. However, due to their relatively low sensitivity and specificity for early cancer
detection, most international guidelines recommend their use primarily for monitoring
cancer recurrence or assessing therapy response rather than as screening tools for early
detection [6]. One potential strategy to address this limitation involves combining multiple
serum markers into diagnostic biomarker panels [15,33,34]. Previous research has shown
that, when AI algorithms are employed to train these serum marker panels, the resulting
algorithms become effective tools for cancer screening [16]. These AI algorithms consis-
tently exhibit high levels of accuracy, generalizability, and cost-effectiveness, making them
promising candidates for improving early cancer detection [6,35].

While imaging or endoscopic tools can be accurate and would provide additional
treatments besides diagnosis, some drawbacks, including being labor-intensive, high
technique-requiring, and the risks of complications, still hamper the tools for MCED at a
large scale. By contrast, liquid biopsy-based approaches hold promise in dealing with the
aforementioned drawbacks so as to reach the screening purpose. To depict the pictures of
different cancer types, the following section will introduce various serum biomarkers to
realize MCED through liquid biopsy-based approaches.

3. Serum Biomarkers as Critical Indicators
3.1. Protein Biomarkers: Unveiling Diagnostic Potential

Cancer cells or other cell types in the tumor microenvironment release soluble molecules
that are identified as serum tumor markers by noninvasive diagnostic assays. These
molecules ideally detect disease early, predict the response, and aid in monitoring therapies.
For example, in breast cancer, different serum markers are carcinoembryonic antigen (CEA),
the soluble form of the MUC-1 protein (CA15-3), circulating cytokeratins, such as tissue
polypeptide antigen (TPA), tissue polypeptide-specific antigen (TPS) and cytokeratin 19
fragment (CYFRA 21-1), and the proteolytically cleaved ectodomain of the human epider-
mal growth factor receptor 2 (s-HER2). These markers are used majorly in follow-up [12],
but are not used in screening breast cancer [36].

Protein tumor markers have not been fully exploited clinically both diagnostically
and prognostically. Therefore, the expansion from individual protein biomarker analysis
to protein panels or proteomes develops a comprehensive prognostic analysis to predict
disease onset and progression [37,38]. The protein panel analysis far exceeds the single-
biomarker analysis in facilitating specific intervention or guiding treatment, especially in
drug resistance. Challenges prevail in the transition from single biomarkers to proteomic
panels, both on the basis of process development and technicality. However, recent ad-
vancements in the proteomic techniques have fortified that analysis of multiple proteins
simultaneously in the blood, urine, cerebrospinal fluid, or any other biological sample [38].
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The technical difficulties in tumor marker measurement include errors due to the
difference between labs and also within batches. These variation combinations to form a
panel result in low robustness and reproducibility. Hence, in the development of a robust
panel assay over time and across laboratories, a single analytical parameter determined
by a single method permits the quantification of errors and batch variability. Further,
results are compared by absolute quantitative technologies rather than relative quantitative
techniques. Absolute quantification requires the lack of dependency on affinity reagents,
which are instead directed by mass spectrometry-based proteomics [39]. The US FDA has
approved 15 protein biomarker assays in serum and/or plasma. Of the 15 FDA-approved
protein biomarkers for cancer proteins, 9 are applicable for serum and 6 for serum/plasma.
Although both plasma and serum are identical in protein composition, the expression or
recovery of individual proteins vary greatly. For instance, the free PSA concentration differs
in serum and plasma [40]. The HUman Proteome Organization recommends plasma for
proteomics studies [41].

The idea of panel testing for proteomic profiling has emerged as an effective method
in the diagnostics of cancer; particularly, cancer proteomics is clinically feasible. The
enzyme-linked immunosorbent assay, immunohistochemistry, and flow cytometry system
are reliable, sensitive, and widely used in the clinical diagnosis, prognosis, and treatment
monitoring of cancer [42]. Alternative techniques, like mass spectrometry, protein arrays,
and microfluidics, are extensively used and are being developed for clinical application [43].
On top of the massive data created by panel testing, proteomic workflows for the targeted
analysis of protein panels have improved with highly standardized sample-preparation
protocols [44], data-independent acquisition techniques [38], sensitivity, and faster mass
spectrometers conjoined with micro- and analytical flow rate chromatography [45]. The ab-
solute quantification has improved the statistical analysis, cross-study, and cross-laboratory
comparability, simplifying the accreditation of analytical tests [46].

In 2009, OVA1 was approved for the evaluation of ovarian tumors in combination with
the measurement of five serum proteins: apolipoprotein A1, β-2 microglobulin, CA -125,
transferrin, and transthyretin [47]. In 2011, ROMA was approved for the prediction of ovar-
ian malignancy along with two proteins—human epididymis protein 4 and CA-125 [48].
For the early detection of cancer, a total of 1261 proteins were identified that were involved
in oncogenesis, in tumor angiogenesis, differentiation, proliferation, and apoptosis, in the
cell cycle, and in signaling. In as many as 1261 proteins, 9 protein biomarkers have been
approved as “tumor-associated antigens” by the USFDA. Although these protein biomark-
ers have not yet been approved for MCED, in many Asian regions, such as China [35],
Taiwan [33], the Republic of Korea [49], etc., the use of protein biomarkers for MCED has
been put into practice for more than 10 years. The popularity of this approach lies in its
convenience, as cancer screening for many different cancer types can be conducted with a
simple blood test. This includes many cancer types for which there is no preferred screening
method [18]. Additionally, the cost of protein tumor marker tests is relatively low; the cost
of one marker test may be around USD 10 or even lower, making it financially feasible
for widespread use. In terms of the diagnostic performance, using protein biomarker
panels can achieve approximately 40% sensitivity and 90% specificity [33]. In regions with
a high accessibility of follow-up diagnostic approaches (e.g., endoscope, CT, and MRI),
this is a convenient and competitive approach. The diagnostic performance of the protein
biomarkers is summarized in the supplementary materials (Table S1).

In the post human genome project era, the cost of detecting genes or even genomics has
kept dropping, making genetic testing approachable and offering promising biomarkers,
like protein biomarkers, for MCED. Additionally, genetic biomarkers provide the possibility
to detect cancer-driving mechanisms. Testing genes as the biomarkers for MCED will be
addressed in the following section.
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3.2. Cell-Free DNA Biomarkers: Unleashing Genomic Clues

Cell-free DNA (cfDNA) are noninvasive markers detected in serum, plasma, urine, and
CSF [50], and a more favored biomarker for cancer, surpassing the gold-standard approach
of biopsy sampling, which is invasive with a restricted frequency of usage and site. It
depicts tumor heterogeneity with a comprehensive representation, allowing multiple sam-
plings from a single blood draw and represents various tumor clones and sites, providing a
comprehensive representation [51]. All cells release cfDNA that may be necrotic or apop-
totic. The cfDNA reveals mutations, methylation, and copy number variations that may
be related to cancer [52]. Hence, its molecular profiling has a potential role in noninvasive
cancer management with the advent of ultrasensitive technologies (e.g., NGS, BEAMing
(beads, emulsions, amplification, and magnetics), and droplet digital PCR (ddPCR)). It
has evolved as a considerable surrogate marker in tumor detection, staging, prognosis,
localization, and in the identification of acquired drug resistance mechanisms [53].

The sensitivity to detect tumor-derived cfDNA is expressed in terms of the mutant
allele fraction (MAF), which is the ratio between the amounts of mutant alleles and wild-
type alleles in a sample. The MAF detection limits of quantitative PCR ranges between
10 and 20%. However, variations in PCR techniques, like allele-specific amplification [54],
allele-specific nonextendable primer blocker PCR [55], and peptide nucleic acid-locked
nucleic acid PCR clamp [56], increase the sensitivity. Several genome-wide sequencing
methods have been developed in the last decade. The methods include plasma-Seq [57],
Parallel Analysis of RNA Ends sequencing [58], and modified fast aneuploidy screening
test-sequencing [59] for cfDNA detection at 5–10% MAF. Targeted sequencing approaches
include the exome sequencing [60], CAncer Personalized Profiling by deep Sequencing
(CAPP-Seq) [61], and digital sequencing [62]. Targeted sequencing approaches are of high
coverage, whereas whole-genome sequencing (WGS) approaches are of low coverage.
Targeted approaches detect mutations even at a low ctDNA, whereas WGS assess copy
number alteration in ctDNA. A lower MAF is obtained with the digital PCR (dPCR) method,
including microfluidic-based ddPCR and BEAMing [63] quantified with extreme sensitivity
(0.001–0.05% MAF). The multiplexing capabilities are limited, as the primers or probes
target specific mutations or loci.

For the purpose of MCED, cfDNA detects a tumor at an asymptomatic stage with
a diameter of 5 mm. The ratio of tumor-derived cfDNA to normal cfDNA < 1–100,000
copies (MAF of 0.001%) corresponds to a tumor of 5 mm in diameter [64]. In blood, 1 mL
of plasma contains approximately 3000 whole-genome equivalents [65], and in the total
3 L, plasma represents 9,000,000 copies. In the entire cfDNA population, only one cancer
genome originates from a 1 mm diameter tumor, increasing the probability of extracting
one tumor-derived cfDNA fragment from a 10 mL blood sample, which is very low. Hence,
these available methods detect tumors with a diameter greater than 1 cm (0.5 cm3) [64].
Different from protein-based methods, tumor-derived cfDNA are DNA fragments released
from dying cancer cells, and DNA copy numbers are limited in a cell. Thus, there is a
limit of detection and a potential limit to how early detection can occur. Thus, if a cancer-
associated MAF is detected, it is likely cancer. Protein biomarkers are released by cancer
cells at a relatively high amount, so are easily detectable early [39,66,67], but lack specificity
because protein biomarkers can be released by both cancer cells as well as normal cells.

The cost of cfDNA testing has significantly decreased in recent years, although it is
still over five times the price of protein biomarker panels [5]. However, it can generally be
achieved at a cost below USD 1000. The price reduction may lead to increased accessibility;
however, there are still some inherent issues with cfDNA testing that remain unresolved.
One critical concern is its short half-life, potentially as brief as a few minutes to hours [68].
Such a short half-life would result in an unstable cfDNA quantity in the specimen. Ad-
ditionally, specimen preservation would pose a challenge, as the cfDNA could degrade
within a few hours of in vitro storage. In contrast, protein biomarkers have a half-life
lasting several days or even weeks [69,70]. These inherent issues may be the reasons why
the effectiveness of cfDNA testing in MCED is not as promising as initially anticipated. In
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fact, a study suggests that combining cfDNA with protein biomarker testing does not yield
better cancer efficacy than using protein biomarkers alone [71]. Further optimization is
required for the use of cfDNA testing in MCED. The diagnostic performance of the cfDNA
biomarkers is summarized in supplementary materials (Table S1).

4. Synergizing AI Algorithms for Biomarker Analysis
4.1. Classical Machine-Learning Techniques in Biomarker Interpretation

Harnessing ML in interpreting clinical inputs for classification or prediction is becom-
ing a mainstream application nowadays in the medical field. Several studies have indicated
that ML algorithms analyzing clinical [72], genetic [13], or protein biomarker [16] results
can provide diagnoses similar to or even better than those made by physicians. What is
noteworthy is that ML algorithms demonstrate greater consistency in pattern recognition,
reducing interindividual differences. In the medical domain, there exists a wide variety of
ML algorithms, including logistic regression, decision trees, random forests, support vector
machines, and more [73,74]. Despite differences in the underlying logic of these algorithms,
their design aims to identify specific patterns and relationships between the data and the
predicted targets.

In cancer screening or diagnosis studies, the effectiveness of ML algorithms was com-
pared with physician interpretation of tests [16,75]. In these studies, human physicians used
the reference range-based single-threshold method: predicting the probability of cancer
occurrence within the next year if any test item exceeded the reference range. Conversely, if
all test items fell within the reference ranges, the individuals were predicted not to be at risk
of cancer. While this interpretation method is straightforward, the effectiveness of cancer
screening is not as high as that achieved by machine-learning algorithms. This suggests
that physicians may not be as sensitive to specific data patterns in laboratory test results as
ML algorithms. The possible explanation is that ML algorithms detect the “face/pattern of
a disease” rather than only a few test items.

While ML algorithms appear to generally outperform physicians in interpreting mul-
tiple test items, there does not seem to be a particular advantage among different ML
algorithms for lab data-based classification problems in the medical field. Although in indi-
vidual reports, various algorithms, like the support vector machine [75], random forest [76],
and logistic regression [16], have been reported to outperform others. In a review study, it
was also noted that other ML algorithms do not show a clear superiority over traditional
logistic regression (also categorized as an ML algorithm) [77]. In fact, most MCED products
still adopt logistic regression as the ML algorithm. Galleri, a cfDNA-based MCED AI, is
composed of two logistic regression models, one for cancer detection and the other for
predicting the tissue of origin [78]. Protein biomarker-based MCED products, such as
OneTest [6] (20/20 GeneSystems) and CancerSEEK (Exact Sciences) [15], also revealed the
utility of the classical ML algorithms. Overall, despite some ML algorithms seeming more
prominent in these studies, their advantages are very limited. In fact, the nature of the
laboratory data themselves determines whether such classification problems have good
predictive performance. The data have already predetermined the predictive performance,
and the choice of which ML algorithm to use does not play a significant role [79].

The reason why data predetermine the outcomes can be explained by the fact that
the lab data-based AI models are based on lab data, and the lab tests typically have a
good signal-to-noise ratio [77]. Moreover, these test items have undergone a series of
rigorous validations from the development stage, and were implemented in clinical settings
for years [80]. Thus, the lab test items fundamentally have a certain correlation with the
predictive phenotypes or diseases. On top of that, tests like proteomic panels consisting of
peptides and proteins would not suffice as biomarkers on their own; instead, acquiring an
ML strategy for their interpretation renders good predictive performance [81]. On the basis
that the data themselves are composed of such strong predictors, ML models built on either
theoretical foundations can easily identify hidden patterns in the data. In summary, for
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medical AI models with lab data as the input, the importance of good data far outweighs
the significance of the ML algorithm used.

4.2. Unveiling Deep Learning’s Potential in Biomarker Analysis

In recent years, deep-learning (DL) algorithms have achieved significant success in
the field of computer vision. In the domain of medical imaging, DL algorithms are widely
employed for the development of image-recognition models. Medical images, such as elec-
trocardiograms, chest X-rays, and computed tomography scans, are particularly well-suited
for the application of DL algorithms. In these areas, DL algorithms demonstrate excellent
performance, often approaching the level of human experts [82]. One key distinction
between DL algorithms and traditional ML algorithms lies in feature engineering. Typically,
when dealing with high-dimensional data, traditional ML algorithms require the use of
feature-extraction or feature-selection methods to reduce the data dimensions in order to
improve the prediction accuracy. In contrast to traditional ML algorithms, DL does not
necessitate upfront feature engineering [83]. Therefore, DL offers the convenience of not
requiring these preprocessing steps over traditional ML and provides a distinct advantage
in practice.

While DL algorithms have achieved significant success, it appears that they do not
necessarily outperform conventional ML algorithms in the medical domain. For instance,
the traditional ML–random forest method attained higher diagnostic performance than DL
in ultrasound breast lesion classification [84]. In a study predicting postoperative patient
conditions, DL algorithms did not demonstrate higher predictive capabilities compared to
traditional logistic regression [85]. In another study predicting drug resistance based on
mass spectrometry data, random forest or XGBoost algorithms exhibited higher predictive
abilities than DL [80]. In the field of MCED, models using DL algorithms to analyze protein
biomarker results did not show higher cancer prediction capabilities than traditional
ML algorithms like logistic regression [35]. In certain data structures where the data
themselves contain strong predictors, the need for feature engineering in DL algorithms is
not as apparent as in traditional ML algorithms [80]. Thus, the performance comparison
between DL and ML depends significantly on the data structure inherent to the specific
application [84]. In situations where there is no advantage in predictive performance, the
use of DL algorithms to analyze lab test results becomes debatable. Due to the complex
computations within the model, DL algorithms require more processing time to generate
classification or prediction results [80]. Beyond the longer processing time, DL algorithms
also consume more energy compared to traditional ML algorithms to produce predictive
outcomes [80]. In an era where AI algorithms are gradually becoming a part of daily
life, energy-intensive methods pose a higher carbon footprint, eventually facing serious
challenges. While there may not be a significant advantage in the predictive performance,
certain DL algorithms can assist in addressing clinical challenges encountered in MCED in
the real world. Taking the field of predicting cancer risk using protein biomarkers as an
example, the test panel provided by each diagnostic institution may vary, with only partial
overlap in the panels tested. Additionally, if the items tested for each case only partially
overlap at different time points, comparing risk predictions becomes challenging. In this
regard, long short-term memory networks, with their flexibility and tolerance for missing
values, prove to be a suitable solution for addressing such clinical issues [35].

5. Training and Validation of AI Models for MCED
5.1. Impacts of Training Dataset: Case-Control, Retrospective Cohort, or Prospective Cohort?

AI technology is very promising for many applications in medical fields [11,72,86].
However, the robustness of the medical AI models is suboptimal when deployed into
real-world settings [87]. The suboptimal robustness indicates that the medical AI models
perform well in training and validation, but such models fail to perform in a real-world
deployment. While the underlying mechanisms are many, for the MCED AI model, the most
crucial factor for a suboptimal performance would result from the inadequate selection
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of training datasets. The training dataset types can be categorized into a case-control
cohort, retrospective cohort, and prospective cohort (Table 1). The difference on the training
dataset determines what the MCED AI models learn. Basically, MCED AI would perform
well when the training datasets mimic the real-world settings. By contrast, diagnostic
performance of the MCED AI models would drop if the training datasets are considerably
different from the real-world settings. Typically, training by dataset with a case-control
design is the most susceptible to failure when deployed in the real world, even if the
training datasets are reasonably designed according to classical principles of ML models
training. In training an ML model of binary classification, the training datasets include
cases with a positive label and cases with a negative label. For MCED, the positive label
indicates positive for cancer diagnosis while the negative label indicates cancer-negative
(i.e., healthy cases). Cancer cases and healthy cases are the only learning materials for the
ML algorithms. Appropriate datasets are the key to successful and useful MCED models.
By contrast, inappropriate datasets would lead to disastrous deployment, even though the
models perform well in the training processes.

The differences between a case-control study and a real-world cohort study for cancer
screening would be as follows:

1. On cancer cases: Specimens of the cancer cases in a case-control study are typically
collected in more advanced stages than the specimens of a real-world cohort study.
The reason for that is that the specimens of the cancer cases in a case-control study
are collected when the diagnosis of cancer has been made, which is often associated
with symptoms/signs that are caused by cancers. In this case, the cancers show their
malignant behaviors, like space occupying or mass effect. By contrast, specimens of
the cancer cases in a real-world cohort are collected long before cancer diagnosis or any
symptom/sign. Such conditions are usually closer to the health checkup population
in the real world. Theoretically, biomarkers in presymptomatic or asymptomatic
cancer cases would be closer to those of healthy controls than in the symptomatic
cancer cases.

2. On healthy cases: The number of healthy control cases in a case-control study is
usually up to several hundred given the fact that the ratio of cancer versus control
ratio is set around 1:1–1:4 [15,17,34,49]. The relatively small number cannot represent
the large diversity in the healthy control cases. As a result, there are fewer outlier
cases. Fewer healthy outliers would simplify the classification problem (i.e., classify
cancers versus healthy). AI models trained with fewer healthy outliers may therefore
not have a classification threshold that can be used in the real world.

Figure 2 illustrates the probability distributions of the AI models trained by the case-
control dataset or the real-world dataset. Consider a case-control study with a ratio of
cancer to health cases = 100:100 and a real-world cohort study with a ratio of cancer to
healthy cases = 100:10,000. In the training and validation steps, AI models in the case-
control study can easily reach a good performance when the cutoff of the risk score is in the
range 10.49–15.49 (Figure 2A). By contrast, the optimal cutoff would be largely converged
to a smaller range or a number (e.g., 15 in the example, Figure 2B). As illustrated in the
plots, the cutoff of AI risk scores in the case-control study are not optimized for use in
the real world. Many models (or many cutoffs) can have good classification performance.
However, once in the real world, the performance of these AI models will be significantly
weakened or changed. For example, when an AI model with Cutoff.1 (i.e., 10.49) is used in a
real-world setting, the specificity would largely decrease; when Cutoff.2 (i.e., 15.49) is used,
the sensitivity would largely decrease. Of note, AI models with either Cutoff.1 or Cutoff.2
attain nearly 100% for sensitivity or specificity, but fail to deliver similar performance in
real world.
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Table 1. Serum biomarker-based MCED AI products on the market. RWD: real-world dataset; CCD: case-control dataset; Sen: sensitivity; Spe: specificity; NNS:
number needed to screen; TOO: tissue of origin.

MCED
Products Biomarkers Cancer Types Algorithms Model Development Performance Report Comments

Gallery
[18,78]

cfDNA methylation
(>100,000 informative
methylation regions)

More than 50 types Logistic
regression

Train: CCD
Validation:

1. CCD-based
independent
testing

2. Prospective RWD

Sen: 28.9%
Spe: 99.1%
NNS: 189

1. cancer
detected/not
detected

2. TOO

1. Validated in a prospective cohort study.
2. Prediction of TOO is accurate.
3. Market available. Cost is relatively high

(USD 949) but may decrease with DNA
sequencing cost in the future.

4. Top 3 cancer types with the best
performance: head and neck, pancreas,
and lymphoma; suboptimal
performance in kidney, prostate, and
breast cancers.

OneTest
[6,35]

Protein biomarkers (six
tumor markers for male:

AFP, CEA, CA19-9,
CYFRA21-1, SCC, and
PSA, and seven protein

tumor markers for
females: AFP, CEA,

CA19-9, CYFRA21-1,
SCC, CA125, and

CA15-3)

More than 20 types

Classical
ML

algorithms;
Long

short-term
memory

algorithm

Train: RWD
Validation:

1. RWD-based
cross-validation

2. RWD location-wise
independent
testing

Sen: 82.3%
Spe: 80.8%
NNS: 125

(male);
200

(female)

1. cancer
detected/not
detected

2. categorized risk
3. TOO

1. Developed and validated by using
RWD.

2. Market available with affordable cost
(USD 189), potential for large scale
MCED.

3. Top 3 cancer types with the best
performance: prostate, colon, and liver;
suboptimal performance in breast
cancers, cervical cancers, and
lymphoma.

OncoSeek
[17]

Protein biomarkers
(seven protein tumor
markers: AFP, CA125,

CA15-3, CA19-9, CA72-4,
CEA, and CYFRA 21-1)

Nine types: breast,
colorectum, liver,
lung, lymphoma,
osophagus, ovary,

pancreas, and
stomach

Classical
ML

algorithms

Train: CCD
Validation:

1. CCD-based
cross-validation

2. CCD-based
independent
testing

Sen: 51.7%
Spe:

92.9%

1. cancer
detected/not
detected

2. TOO

1. Cost-effective MCED tool.
2. Retrospective RWD or prospective

cohort study needed for validation.
3. Top 3 cancer types with the best

performance: pancreas, ovary, and liver;
suboptimal performance in breast
cancers, esophagus cancers, and
lymphoma.
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Table 1. Cont.

MCED
Products Biomarkers Cancer Types Algorithms Model Development Performance Report Comments

CancerSeek
[15]

cfDNA + protein
biomarkers (61 genetic
markers and 8 protein

tumor markers: CA125,
CA19-9, CEA, HGF,

myeloperoxidase, OPN,
prolactin, TIMP-1)

Eight types: ovary,
liver, stomach,

pancreas, esophagus,
colorectum, lung,

and breast

Logistic
regression

Train: CCD
Validation:

1. CCD-based
cross-validation

Sen: 70%
Spe: 99%

1. cancer
detected/not
detected

2. TOO

1. Partial markers (protein biomarkers
alone) would perform as well as the full
panel.

2. Top 3 cancer types with the best
performance: ovary, liver, and stomach;
suboptimal performance in breast, lung,
and colorectum cancers.
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Figure 2. Probability distribution difference between cancer cases and normal (healthy) cases in
(A) the case-control study dataset and (B) the real-world cancer screening dataset. In a case-control
study dataset, cancer cases and noncancer cases are well-defined at the time of enrollment. The risk
score distributions of cancer and noncancer cases would be apparently different. In this case, any
cutoff value in between Cutoff.1 and Cutoff.2 is fine to have a perfect predictive performance. By
contrast, the risk score distributions of cancer and noncancer cases in the real-world cancer screening
dataset overlap more, and the optimal diagnostic cutoff is much more narrow than those in the
case-control study. The illustrative plots demonstrate the reason why the MCED AI models that are
trained by using the data of case-control studies would have suboptimal predictive performance in a
real-world cancer screening.

The failure of AI models that were trained from case-control studies in a real-world
setting can be explained by t-value theory. According to the t-value formula, the disparity
of the means relative to the variances between the two populations (cancer group vs.
healthy group) determines the significance of the difference between populations [88].
For a case-control study, a larger difference between the averages of the two populations
indicates a greater statistical significance between the two populations and renders it easier
to be classified. Moreover, MCED AIs that are trained on case-control studies will not
recognize the smaller differences in marker values that will be seen in early diagnosis,
because such asymptomatic/presymptomatic cases are missing in such datasets. Thus, the
sensitivity of a case-control-trained AI model will be greatly lost in an asymptomatic early
population. Furthermore, it may rely more on markers that dominate later in the cancer
development process.

5.2. Cross-Validation vs. Independent Testing: Generalizability or Continual Monitoring Matters?

In the general development of AI models, validating the performance of the model
is a crucial step. There are various methodologies for model validation, including k-fold
cross-validation (KFCV), nested k-fold cross-validation (NKFCV), and independent testing.
KFCV is typically used for initial internal validation, meaning it uses a single-source dataset
while developing and validating the model. NKFCV is employed for smaller datasets, and
it involves placing the model-tuning steps in a separate inner layer to avoid overfitting.
Independent testing is commonly considered the fairest method in the machine-learning
training and validation process.

For MCED AIs trained by real-world datasets, special data processing is necessary to
cope with the extremely balanced data structure, in which the cancer versus noncancer ratio
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is around 1:100 [16]. To better train AI models, typically the number of cases with a positive
label (i.e., cancer) and the number of cases with a negative label (i.e., noncancer) should
be comparable. The oversampling of cancer cases or the undersampling of noncancer
cases can be adopted to create a balanced dataset for model training (Figure 3A). The
undersampling of noncancer cases would be a more acceptable method in the medical
community because no artificial data are created. In the model training step, stratified
sampling rather than simple random sampling is adopted to divide the data into the
training dataset and the validation dataset (Figure 3B). With stratified sampling, the case
number of the minor subgroup (i.e., cancer cases) is elevated so there will be sufficient
cancer cases in the training dataset [89]. Of note, the cancer versus noncancer ratio should
be kept the same as that of the original real-world cancer screening dataset in the validation
dataset as well as in the independent dataset. It is only by keeping the original cancer
versus noncancer ratio that the static metrics of AI models can be accurately estimated.

Independent testing can further be divided into using data from a second or even a
third healthcare institution to validate the AI model trained on data from the first institution
(Figure 3C). This approach ensures that the AI model trained by the first institution is not
limited to its specific context, but can be applied more broadly. This characteristic is
referred to as generalizability and is typically regarded as one of key characteristics for AI
models [90]. However, should the use of medical AI be predicated on its generality? This
issue has raised considerable interest in recent years. Medical behaviors are significantly
influenced by the local socioeconomic status and healthcare insurance, coverage, as well
as reimbursement. In places where healthcare costs are low and accessibility is high (such
as in East Asia), people are accustomed to undergoing annual cancer screenings, even
without any symptoms [16]. Conversely, in places where cancer screening is expensive
and highly inconvenient, individuals might only opt for screening when experiencing
significant symptoms or discomfort. Therefore, despite both being considered cancer
screening databases, there is a substantial difference between them: categorized into
presymptomatic/asymptomatic or symptomatic cases. These two groups exhibit significant
differences in the progression of the disease, but current research has paid less attention
to this aspect. This phenomenon creates a challenge for AI models for cancer screening,
as obtaining similar results across datasets from different locations is difficult due to the
inherent differences in these datasets.

Because the data collected from different places exhibit considerable heterogeneity,
and there are significant variations in healthcare systems and reimbursement structures.
Therefore, pursuing the generality of AI models for cancer screening would contribute
minimally to increasing the robustness of local medical services. In contrast, time-wise
management appears to be a more locally relevant strategy for AI-driven MCED (Figure 3C).
Before the AI models provide services, it is essential to verify whether the predictive
accuracy remains stable across different years. Additionally, offering services locally and
continuously, recurrently monitoring the model’s performance over time, helps ensure its
stability. This involves training the model with local data and testing it with local data,
aiming to provide better local healthcare services. The primary focus of local healthcare
should be to serve the local community effectively, and there seems to be little benefit in
overly pursuing generalization. Although this approach deviates from the conventional
emphasis on the generalization of AI models, it maximizes healthcare benefits.

In summary, data and validation methods predetermine the performance of MCED
AI products. Using the RWD of cancer screening rather than case-control datasets would
fit better to the purpose of cancer screening. The goal of model validation would lie on
validating an AI model that will benefit the target population the most.
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Figure 3. Special considerations on developing MCED AI models. (A) The paucity of cancer cases
in the real-world cancer screening scenario. In a real-world cancer screening dataset, the ratio of
cancer cases versus noncancer cases is typically around 1:100. The ratio is extremely unbalanced for
training an AI model. The oversampling of cancer cases or the undersampling of noncancer cases
are commonly used data processing methods to create a balanced dataset for AI model training.
(B) Data processing for training, validating, and independently testing MCED AI models. In the
undersampling strategy, stratified sampling can be used to create a balanced training dataset. By
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contrast, the cancer versus noncancer cases ratio is good to be kept the same as the original dataset for
both validation and independent testing in order to have an accurate estimation of diagnostic metrics.
Mc: cancer cases; mc: cancer cases in 5-fold split datasets; Mb: noncancer cases; mb: noncancer
cases in 5-fold split datasets that are sampled from Mb by using stratified random sampling; Nc and
Nb: cancer cases and noncancer cases in an independent dataset. (C) Different approaches for the
independent testing of MCED AI models. Location-wise independent testing can be used to test the
generalizability of an AI model across different locations. Time-wise independent testing can be used
to recurrently test the robustness of an AI model in different periods of time.

6. Challenges and Opportunities
6.1. Data Quality and Quantity: Navigating the Complex Landscape

While the performance of medical AIs depends largely on data, the characteristics of
the data would serve as the cornerstone for the performance and applications of MCED AI
models. There are still several key challenges ahead, and careful consideration is needed.
One of the foremost challenges revolves around the inherent heterogeneity in datasets
sourced from various medical institutions and laboratories. The reasons for such variations
are manifold. Firstly, differences arise at the level of analytical measurements, where, even
for the same biomarker, various laboratories and medical facilities may employ reagents
or platforms from different suppliers. Studies indicate that variations would exist be-
tween assays for the same biomarker on different analytical kits, emphasizing the need
for extensive and rigorous validation before clinical implementation [91]. Additionally,
discrepancies in the biomarkers that are tested in the panel also pose computational chal-
lenges and interpretation issues for AI models. Taking the example of protein biomarkers,
one MCED screening kit may assess seven protein targets [16], while another MCED AI
examines twelve protein targets [49]. Yet another screening kit may include both protein
and gene targets [15]. While some items overlap among these kits, the differences would
complicate the interpretation and comparison. In this case, there is often an absence of
comprehensive input data during the computation of AI models. To address the missing
values, reliance on various data imputation methods becomes necessary. The methods for
data imputation are diverse [92], but the imputed values generated through these methods
may not represent real-world values. This imputation stage introduces some biases into
the calculations. Moreover, regional or national heterogeneity also plays a significant role.
Beyond factors related to diverse ethnicities, variations in health insurance reimbursement
systems and healthcare cultures across different regions or countries can profoundly impact
data collection [93,94].

Acquiring a training dataset that can represent the real world is crucial for an MCED
AI model to be effectively used in cancer screening. Ideally, such locally relevant data
should be continuously collected without selection from local routine medical practices.
However, collecting such datasets poses significant challenges due to the scarcity of cancer
cases compared to healthy cases [95]. An extremely imbalanced dataset is inevitable in
the real-world setting (Figure 3A). The primary difficulty is the inadequate collection of a
sufficient number of cancer cases, especially for rarer cancer types. Under the supervised
learning training framework, insufficient positive cases will prevent the training of a
trustworthy AI model. Therefore, collecting a substantial number of cases is absolutely
critical. Unfortunately, in the current framework, patients or healthcare institutes lack
sufficient incentives to contribute data because there are no additional rewards, and there
are concerns about the privacy and security of personal information [96]. To address
this dilemma, apart from some open-source medical datasets [15,97], there are emerging
blockchain-based technologies that incentivize patients to upload medical data [98]. These
technologies not only reward patients for contributing their data, but also create a cyclical
reward system for the AI model’s profits, all while preserving individual privacy through
blockchain technology.
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6.2. Interpretability, Explainability, and Integration: Bridging the Gap in AI-Driven Insights

In addition to the issues related to data and AI algorithms, the most significant chal-
lenge in implementing an MCED AI model in clinical applications is likely how to interpret
and communicate the results generated by the AI models (Figure 4). With extensive re-
search in recent years, AI models in healthcare have made significant progress. However,
beyond predictive performance, correctly explaining the reasons for such predictions is
crucial to gaining the trust of clinical physicians and patients. Information such as the coef-
ficient in logistic regression or RF importance in random forests can provide rationale for
predictions. Only when clinical physicians can clearly explain the reasons for the model’s
interpretation can they trust that the AI model’s interpretation is reasonable and not just
a “black box”. Establishing such a trust relationship between clinical physicians and AI
models is a crucial first step for the success of MCED AIs. Moreover, clinical factors like
age or sex are informative and crucial inputs for clinical diagnosis. The importance of such
clinical factors would be as important as the serum biomarkers [16]. While these clinical
factors are the typical factors to be considered in the clinical diagnosis, including more
clinical factors together with the serum biomarkers in MCED AI models would provide a
more comprehensive solution to healthcare professionals.
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Figure 4. Challenges for the implementation of MCED AIs. Besides cancer early detection, an
MCED AI product should also provide a lot of clinically relevant information in order to successfully
integrate MCED AIs into current clinical workflows of diagnosing and treating cancers.

On top of a reasonable and explainable MCDE AI model, the next crucial question
that physicians would be interested in is the clinical relevance and actionability [99]. To
communicate with patients, the MCED AIs should provide more communicable terms for
the predictive results. The predictive probability generated by AI models may not be an
adequate metric for communication with patients. Instead, the incidence-based risk score
(or positive predictive score, PPV score) that has been widely used in prenatal checkups is a
more appropriate term [100]. The PPV score is based on comparing the patient’s predictive
probability to the cases with similar risk levels. For example, a risk of 1 in 10 is interpreted as
higher than the background risk, whose risk level is 1 in 1000. The population-derived PPV
score would be more intuitive for nonmedical professionals. Additionally, the PPV score is
also an explicit metric rather than simply a predictive probability to have in comparison to
the background risk.

Unfortunately, only a few MCED AI models provide actionability to clinical physicians
and patients, leaving a considerable gap between a report of elevated risk and the following
cancer diagnosis. For cases with an elevated risk for cancers, the next diagnosis of interest
is the staging and localization. Staging relevant to the risk score would provide earlier
information for prompt action [6]. Localization is also key information for MCED AI models.
When the tissue of origin is provided together with the risk score [6,15,18], physicians
would know which medical specialty to suggest to the patients with an elevated risk score.
Actionable suggestions following an MCED test should also be provided to complete the
whole test-and-action cycle. The call-to-actions that are built based on evidence can include
the time interval for following-up, retesting, and visiting medical subspecialties [6,18]. All
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of the actions can be depicted in a flowchart for easy guidance for MCED-using physicians
so that an MCED AI can be seamlessly integrated into clinical workflows, facilitating
informed decision making by healthcare professionals.

7. Conclusions

Serum biomarker-based AIs hold promise in MCED and are undergoing rapid devel-
opment. The analytical targets include cfDNA, protein biomarkers, or their combination.
When the serum biomarkers typically have the characteristics of strong predictors, various
ML algorithms can have good diagnostic performance. The technical key of building a trust-
worthy MCED AI resides in using real-world mimetic data rather than a case-control design
for training and validation, so as to have a robust implementation back in a real-world
setting. Like other medical products, MCED AIs with high interpretability, explainability,
and actionability would integrate better into medical workflows and benefit more patients
in early cancer diagnosis.
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BEAMing beads, emulsions, amplification, and magnetics
CAPP-Seq CAncer Personalized Profiling by deep Sequencing
CEA carcinoembryonic antigen
cfDNA cell-free DNA
CLE confocal laser endomicroscopy
CTC circulating tumor cells
ctDNA circulating tumor DNA
ctRNA circulating tumor RNA
CT computed tomography
ddPCR droplet digital PCR
DL deep learning
HER2 human epidermal growth factor receptor 2
KFCV k-fold cross-validation
MRI magnetic resonance imaging
MAF mutant allele fraction
MCED multicancer early detection
ML machine learning
NBI narrow-band imaging
NGS next generation sequencing
NKFCV nested k-fold cross-validation
PET positron emission tomography
TPA tissue polypeptide antigen
TPS tissue polypeptide specific antigen
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