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Simple Summary: A tumor tissue is composed of not only cancer cells but also other cell types and
microorganisms that communicate among themselves in a three-dimensional (3D) space to support cancer
cell growth. Using two different gynecologic tumor tissue samples, we integrated multiple new techniques
using a suite of newly developed analytical methods to simultaneously identify expression of genes,
metabolites, and proteins in single tissue ‘voxels’. These tissue voxels contain cells, genes from those cells
and microorganisms, and the stromal context of proteins (collagen), glycans, metabolites, and peptides,
all identified in the 3D space within a tumor tissue. We have successfully demonstrated different arrays
of analytes expressed by cancer cells and their neighboring cells in different regions of the tumor tissue.
Understanding how cancer cells communicate with other cell types in the 3D space of the tumor tissue
will allow for the identification of new therapeutic targets for the treatment of these diseases.

Abstract: Most platforms used for the molecular reconstruction of the tumor–immune microenvironment
(TIME) of a solid tumor fail to explore the spatial context of the three-dimensional (3D) space of the tumor
at a single-cell resolution, and thus lack information about cell–cell or cell–extracellular matrix (ECM)
interactions. To address this issue, a pipeline which integrated multiplex spatially resolved multi-omics
platforms was developed to identify crosstalk signaling networks among various cell types and the ECM
in the 3D TIME of two FFPE (formalin-fixed paraffin embedded) gynecologic tumor samples. These
platforms include non-targeted mass spectrometry imaging (glycans, metabolites, and peptides) and
Stereo-seq (spatial transcriptomics) and targeted seqIF (IHC proteomics). The spatially resolved imaging
data in a two- and three-dimensional space demonstrated various cellular neighborhoods in both samples.
The collection of spatially resolved analytes in a voxel (3D pixel) across serial sections of the tissue was
also demonstrated. Data collected from this analytical pipeline were used to construct spatial 3D maps
with single-cell resolution, which revealed cell identity, activation, and energized status. These maps will
provide not only insights into the molecular basis of spatial cell heterogeneity in the TIME, but also novel
predictive biomarkers and therapeutic targets, which can improve patient survival rates.
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1. Introduction

The complex ecosystem of a solid tumor is composed of tumor cells, immune cells,
stromal cells, fibroblasts, extracellular matrix (ECM), blood vessels, and intratumoral
microbiota, which constitute the tumor–immune microenvironment (TIME) [1,2]. Dynamic
and bidirectional interactions occur among various cell types through direct cell–cell
interaction or communication signals such as secreted proteins, glycans, metabolites, and
microvesicles such as exosomes modulate the malignant phenotype of the tumor cells so
that they can survive, proliferate, and modulate therapeutic efficacy in the oxygen- and
nutrient-limiting TIME [2–4].

Cellular and molecular reconstruction of the TIME of a solid tumor is of great significance
to the field of cancer research and will have an immediate impact in the clinical management
of cancer patients [5]. For example, public datasets such as data generated from the Cancer
Genome Atlas (TCGA) projects demonstrate how these data provide new insights into cancer
research. TCGA projects have provided results, which have been referenced extensively, and
their data have been used to generate many new projects and hypotheses [6]. However, TCGA
mainly uses bulk tissue samples, and therefore the data cannot be used to address key questions
including how intertumoral and intratumoral heterogeneity develop, how tumor cells and
various stromal cell types interact in the TIME, and how certain histological patterns within
tumors such as the location of activate CD8+ T cells play an important role in modulating the
malignant phenotypes of tumor cells [7–9]. Recent single-cell RNA sequencing (scRNAseq)
projects and datasets from various tumor types allow the study of tumor heterogeneity [10–13].
However, the initial tissue dissociation step disrupts any three-dimensional spatial context,
thus again lacking any information about cell–cell or cell-ECM interactions.

Multiple spatially resolved omics platforms including spatial transcriptomics (ST),
imaging mass cytometry (IMC), mass spectrometry imaging (MSI), and multiplex sequential
immunofluorescence (seqIF) have recently been developed, which allow for both targeted
or non-targeted profiling of mRNAs, metabolites, and proteins in both frozen and formalin-
fixed paraffin embedded (FFPE) tissue sections with spatial context [14–20]. Data generated
by these platforms have provided an immediate identification of new signaling networks,
delineate crosstalk between stromal and epithelial components, characterize the nature and
function of immune infiltrates, and determine how these change with anatomical location,
treatment response, and patient survival [21–24]. However, most of these platforms,
particularly those using non-targeted approaches, do not provide true single-cell level
resolution. For example, each spatial transcriptomics platform spot contains multiple cell
types, and deconvolution using parallel scRNA-seq analyses of the same specimen are
required to re-assign and adjust the spatial transcriptomics data [17,22]. Non-targeted MSI
data needs to be integrated with IMC for single-cell metabolomics profiling [25]. In addition,
most of the experiments have been performed on a single histological tissue section of a
particular tumor sample in which cellular interaction can only be observed in 2D space.
Interaction with neighboring cells in the adjacent histological planes, which may be located
closer than those observed in the 2D space, have not been considered. Three-dimensional
(3D) multi-omics mapping of the TIME has just only begun in recent studies [26]. Finally,
it remains a challenge to integrate data generated by multiple spatially resolved omics
platforms, which will allow for discovering novel cell–cell or cell-ECM crosstalk signaling
networks and facilitating hypothesis generation with mechanistic insights.

Here, we describe a novel pipeline for the construction of a 3D spatial atlas with
subcellular resolution using FFPE sections obtained from a high-grade serous ovarian
cancer (HGSOC) and atypical endometrial hyperplasia (AEH) tissue, and multiple spatially
resolved omics platforms including the newly developed spatial enhanced resolution
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omics-sequencing (Stereo-seq), mass spectrometry imaging (MSI), and multiplex sequential
immunofluorescence (seqIF). We also demonstrate the feasibility of using the pipeline to
integrate data from these platforms to identify cell–cell crosstalk networks among various
cell types in the 3D space of the TIME. The pipeline can be applied to large patient cohorts
to identify novel spatially resolved predictive and prognostic biomarkers, which can be
used to develop new therapeutic agents and strategies in cancer treatment.

2. Materials and Methods
2.1. Patient Samples

Two paraffin-embedded tumor tissue samples were used in this study. One was ob-
tained from a patient with stage IIIC HGSOC. The other one was obtained from a patient
with atypical endometrial hyperplasia (AEH). They were collected from previously un-
treated patients undergoing primary cytoreductive surgery and hysterectomy for HGSOC
and AEH, respectively. All samples and clinical data were collected with the approval of
MD Anderson’s Institutional Review Board. Clinicopathologic characteristics of utilized
samples are shown in Table S1.

2.2. Sample Preparation for 3D Multi-Omics Analyses

For each tissue block, seventeen 5 µm serial FFPE sections from an 85 µm-thick tissue
block were cut and deposited onto slides specific for each platform. The first and the last
sections were stained with hematoxylin and eosin (H&E) for histological evaluation as
described in Figure 1 (in Section 3). Sections were cut to a step size of 5 µm, and every third
section was used for non-targeted metabolomics, glycan, and tryptic peptide analysis (by
mass spectrometry imaging, MSI), targeted proteomics (by multiplexed seqIF, COMET)
or non-targeted Stereo-seq (by STOmics) analyses. To generate a 3D atlas, 3 sections per
specimen as shown in Figure 1 were evaluated for each of the three platforms. Sections
for Stereo-seq analysis were deposited onto a DNA Nanoball (DNB)-patterned array chip
(STOmics, San Jose, CA, USA). Sections for MSI and COMET analyses were deposited onto
superfrosted microscopic glass slides (Fisherbrand, Toronto, ON, Canada).

2.3. Sequential Immunofluorescence Staining (seqIF)

SeqIF was performed using the COMET instrument (Lunaphore Technologies SA,
Tolochenaz, Switzerland) as previously described [27]. In brief, FFPE tissue slides were
deparaffinized in xylene followed by rehydration in a graded alcohol series and blocked
with 3% hydrogen peroxide for 10 min. Antigen retrieval was performed with EZ-AR2
Elegance buffer (BioGenex, Fremont, CA, USA) at 107 ◦C in an EZ-Retriever system V.3
(BioGenex, Fremont, CA, USA) for 15 min. The processed slides were then transferred to a
Multistaining Buffer (BU06, Lunaphore, Tolochenaz, Switzerland) bath until use [27]. The
microfluidic chip (9 × 9 mm imageable area) was clamped against the FFPE tissue section
on a standard microscope slide forming a closed reaction chamber. The reagents were
delivered through microfluidic channels under highly controlled conditions. Automated
multiplex sequential immunofluorescence staining and imaging was performed on the
COMET platform (Lunaphore Technologies, Switzerland). Slides underwent 10 cycles
of iterative staining and imaging, followed by an elution of the primary and secondary
antibodies at each cycle. Primary antibodies were diluted to desired concentrations based
on preliminary titration tests to optimize signal-to-noise ratio (see Tables S2 and S3) in
multistaining buffer (BU06, Lunaphore Technologies) with 3% BSA (Millipore Sigma,
Burlington, MA, USA) and 1% horse serum (Millipore Sigma). Secondary anti-rabbit/anti-
mouse Alexa Fluor 555 (Invitrogen, Waltham, MA, USA) and Alexa Fluor 647 (Invitrogen)
were used at 1:200 and 1:400 dilutions in multistaining buffer, respectively regardless
of species reactivity (see Table S4). 4′,6-diamidino-2-pheynlindole DAPI (Thermofisher,
Waltham, MA, USA) was used either alone, or in conjunction with secondary antibodies, at
a 1:2000 dilution in multistaining buffer.
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The 20-plex protocol template was generated using the software program COMET
Control, and reagents were loaded onto the device to perform the multiplex sequential
immunofluorescence protocol. Images were taken by the integrated epifluorescent micro-
scope at 20× magnification using DAPI (exposure time, 80 ms), TRITC (exposure time,
400 ms), and Cy5 (exposure time, 200 ms) channels for every cycle with an imaging area of
9 × 9 mm. Initial images were captured for autofluorescence subtraction during image pro-
cessing post-acquisition and to provide DAPI nuclear counterstaining. Primary antibody
incubation was carried out for 4 or 8 min for each cycle based on prior optimization (see
Tables S2 and S3), and all secondary antibodies were incubated for 2 min (Table S4). An-
tibodies were then eluted following each cycle for 4 min. The seqIF protocol in COMET
resulted in a multi-layer OME-TIFF file where the imaging outputs from each cycle were
stitched and aligned. COMET OME-TIFF contains DAPI image, intrinsic tissue autofluores-
cence in TRITC and Cy5 channels, and a single fluorescent layer per marker. Images were
exported from COMET after background subtraction.

2.3.1. Sequential Immunofluorescence Data Analysis

Image analysis was performed using Visiopharm image analysis software version
2023.09 x64 (Visiopharm Inc., Hoersholm, Denmark). Fluorescent images of layers 1,
2, and 3 for each sample were first aligned to the corresponding MSI images utilizing
the Tissuealign module to obtain a 3-dimensional image. The seqIF layer was used for
tissue segmentation to separate different tissue areas. For the HGSOC sample, tumor and
stroma areas were identified based on expression of keratin 8/18 and Col1A1, respectively.
Subsequently, the tumor and stroma areas were each eroded by 50 µm to obtain an interface
width of approximately 100 µm. For the AEH sample, tissue segmentation was performed
utilizing pan-keratin, CD10 and αSMA markers to define glandular epithelium, glandular
stroma, and muscle regions, respectively. The space inside each glandular epithelium was
labelled glandular lumen. After tissue segmentation, cell boundaries were determined by a
pretrained machine learning algorithm that used DAPI channel to automatically identify
nuclei and cells. Identified cells were then phenotyped using Visiopharm’s unbiased
autoclustering module using only the top 20% of pixel values per cell.

2.3.2. 3D Reconstruction of seqIF Images

Three regions of interest were selected and subsequently extracted from the COMET
background subtracted multi-layer OME-TIFF files for 3D reconstructions. In brief, ex-
tracted regions were imported into QuPath software version 0.5.0 and aligned using Warpy
software version 0.3.0 [28,29]. The second of the three tissue sections was used as the base
image with the first and third sections overlaid and manually aligned using the Image
Combiner Warpy interactive alignment tool with nearest neighbor interpolation [29]. Sub-
sequently, alignment was performed using affine transformation registration and image
intensity alignment. Fine manual adjustments were made with interactive alignment to
ensure tissue structure between samples was aligned before creating the combined overlay
image. The combined and aligned image was then exported from QuPath as original pixels
to TIFF.

The combined and aligned TIFF image was converted and imported into Imaris
version 10.1.10 (Bitplane, Belfast, UK) using ImarisFileConverter. Fluorescent channels
were re-assigned to each marker, and each section was exported as a separate file. The three
resulting files for each region of interest were then combined in Imaris as slices, the voxel
size adjusted to Z = 0.23 µm (equal to XY voxel dimensions), and the combined 3D image
was resampled maintaining X/Y aspect ratio in 3D to generate 85 slices for visualization.
The resampled 3D image was cropped to 575 × 575 × 19.6 µm (2500 × 2500 × 85 pixels) to
remove areas that were missing signal in a slice due to prior alignment in QuPath.
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2.4. Stereo-Seq Analysis

Spatially resolved transcriptomes were generated from the HGSOC and AEH tissue
samples by Stereo-seq following established protocols. In brief, paraffin sections, cut to a
thickness of 5 µm, were mounted on Stereo-seq N transcriptomics chips (Cat#210CN114,
STOmics). The Stereo-seq procedure adhered to the vendor’s manual and prior publica-
tions [30,31]. Briefly, the tissue section on the Stereo-seq chip (1 cm × 1 cm) underwent a
drying process for 3 h at 42 ◦C, followed by overnight drying (up to 48 h) at 37 ◦C. Paraffin
was melted at 60 ◦C for 1 h, deparaffinized in xylene substitute and ethanol, and then sub-
jected to de-crosslinking using the STOmics reagent kit (Cat# 211KN114, STOmics). Fixation
in pre-cooled methanol (Cat# 34860, Sigma) for 20 min at −20 ◦C ensued. Post-fixation, the
Stereo-seq chip was air-dried, and the tissue section was incubated in permeabilization
buffer (Cat# 211SN114, STOmics) for 30 min at 37 ◦C. After permeabilization, FFPE Dimer
mix (Cat# 211SN114, STOmics) was added and incubated at 25 ◦C for 1 h. Captured
RNAs were reverse-transcribed and ligated onto the transcriptomics chip surface at 42 ◦C
overnight. Subsequently, cDNAs were released from the chip using the transcriptomics
reagent kit (Cat# 211KN114, STOmics). After size selection, amplification, and purification,
cDNA concentration was quantified using the Qubit dsDNA HS assay kit (Cat# Q32854,
Invitrogen). Library construction utilized 20 ng of cDNA from each sample with the library
preparation kit (Cat# 111KL114, STOmics) and subsequent DNB (DNA Nano Ball) genera-
tion. The DNBs were sequenced on the DNBSEQ T7 sequencing platform with 91 cycles of
Read 1 and 100 cycles + 10 bp barcode of Read 2 (Cat#940-000838-00, Complete Genomics,
San Jose, CA, USA).

2.4.1. Stereo-Seq Raw Data Processing

Fastq files were generated using a DNBSEQ-T7 sequencer. CID were MID are con-
tained in the read 1 (CID: 1–25 bp, MID: 26–31 bp) while the read 2 consist of the cDNA
sequences. CID sequences on the first reads were first mapped to the designed coordinates
of the in situ captured chip achieved from the first round of sequencing, allowing 1 base
mismatch to correct for sequencing and PCR errors. Reads with MID containing either
N bases or more than 2 bases with quality score lower than 10 were filtered out. CID
and MID associated with each read were appended to each read header. Retained reads
were then aligned to the reference genome (hg38) using STAR [32] and mapped reads with
MAPQ > 10 were counted and annotated to their corresponding genes). UMI (Unique
Molecular Identifier) with the same CID and the same gene locus collapsed, allowing
1 mismatch to correct for sequencing and PCR errors. Non-host reads were then collected
and MID counts for proportion of microbes were calculated. Finally, this information was
used to generate a CID-containing expression profile matrix.

2.4.2. Stereo-Seq Data Processing

Analysis of Stereo-seq data was conducted in a conda environment using stere-
opy/1.1.0 and scanpy/1.9.6. Raw data from above were loaded onto Python using the
stereopy package one sample at a time forming a list. Quality control measurements
were performed using default settings found in the cal_qc() function from stereopy where
cells with minimum genes = 3, minimum genes by counts = 3 and mitochondrial percent-
age >20% being excluded from the analysis. Next, we merged the 3 sections from each
patient, using the data_helper.merge() function from stereopy, forming 2 patient batches.
Merging was necessary to project the results back onto the same gene clusters, rather than
leave the three sections to cluster independently. This was followed by normalization and
log1p transformation over each batch using the standard normalization/transformation
settings from stereopy. Batch PCA (Principal Component Analysis) and data integration
(using default harmony settings from stereopy) was carried out using all genes and prin-
cipal components respectively. The standard settings for the ‘find neighbors’ function
and Leiden clustering were applied using the relevant functions from stereopy, over each
batch corrected patient set. Following this, uniform manifold approximation and projection
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(UMAP) was applied to dimensionally compress the gene information into 2D plots, using
default settings from stereopy. The UMAP coordinates were plotted colored by Leiden
cluster, to indicate the relationship between the different clusters. Each batch was then
converted to an AnnData object and the rank_genes_groups function from scanpy was
applied, over each sample in a batch, using the ‘Wilcoxon’ statistical analysis method.
Finally, the spatial coordinates (in x,y) for individual sections, alongside the combined
Leiden coordinates, and gene expression values for samples by batch were combined into a
single dataframe. The top genes were identified for each Leiden cluster by selecting for
differentially expressed genes (from rank_genes_groups() function) that had significance
of p < 0.01 and log2foldchange > 1 and that were shared across the sections in a batch.
The AnnData objects per each 3 sections were converted into data frames and exported
as csv files, which were then converted from a list of pixel values to a 2D map, in which
individual channels held a unique index value that corresponded to a particular Leiden
cluster x and y value. This ‘virtual image’ was then warped using affine transformation
to align it with the COMET and MSI datasets. From there, the virtual image was used in
similar ways to a ‘look up table’ or a hash in a database, a unique value that corresponds to
a particular spot within the tissue. In this fashion, a unique tissue region was identified by
the particular patterns that showed up in the Leiden gene space, and was further identified
by its appearance in ‘protein space’, namely the H&E and multiplex immunofluorescence
image, which contain pathologist-identified regions of distinct tissue morphology, and
protein expression denoting common tissue features such as stroma, epithelium (including
tumor), and other tissue compartments.

2.5. MSI Analysis
2.5.1. MSI Sample Preparation

Prior to metabolite analysis, sections were deparaffinized with xylene, 2 × 3 min,
with no further rehydration. Fiducial points were etched onto the slides with a diamond
scribe, and images were acquired of the sections using an Epson Perfection V600 Photo
flatbed document scanner (Epson US, Los Alamitos, CA, USA) at 4800 dpi. All matrix
and enzyme application were carried out with an HTX M5 Robotic Reagent Sprayer
(HTX Technologies, LLC, Chapel Hill, NC, USA). Full details of spraying conditions for each
spray application are summarized in Table 1. Briefly, sections were coated with 10 mg/mL
1,5-diaminonaphthalene (DAN) matrix in 50% ACN for metabolite analysis. After metabo-
lite imaging, the matrix was removed with 100% ethanol, and the sections were rehydrated
with grade ethanol. Antigen retrieval was performed in a Biocare Medical Decloaking
Chamber™ NxGen (Biocare Medical, Pacheco, CA, USA) in 100 mM Tris at pH 9 for 20 min
at 95 ◦C. For in situ release of N-linked glycans, the sections were coated with PNGaseF
(Bulldog Bio, Portsmouth, NH, USA) using the HTX Sprayer, and the slides were incubated
in a humidity chamber for 2 h at 37 ◦C [33]. After PNGaseF digestion, the sections were
coated with 10 mg/mL α-cyano-4-hydroxycinnamic acid (CHCA) matrix in 70% ACN,
0.1% TFA, 10 mM ammonium phosphate using the HTX Sprayer. After glycan imaging,
matrix was again removed with ethanol and the rehydration and antigen retrieval repeated.
The sections were then coated with trypsin using the HTX Sprayer and the slides were
incubated in a humidity chamber for 4 h at 37 ◦C. After tryptic digestion, the slides were
again coated with CHCA matrix using the HTX Sprayer. Finally, after tryptic peptide image
acquisition, matrix was removed using ethanol and the sections were hematoxylin and
eosin stained using standard protocols. Digital images were acquired of the sections at
20× magnification using a Hamamatsu NanoZoomerSQ Digital Slide Scanner (Hamamatsu
Photonics, Bridgewater, NJ, USA).
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Table 1. HTX M5 Sprayer Parameters.

Metabolites PNGaseF Glycan Matrix Trypsin Peptide Matrix

Matrix/Enzyme DAN PNGaseF CHCA Trypsin CHCA

Concentration (mg/mL) 10 0.1 10 0.1 10

Solvent 50% ACN Water 70% ACN, 0.1% TFA,
10 mM AmPhos

9% ACN, 100 mM
AmBic

70% ACN, 0.1% TFA,
10 mM AmPhos

Flow Rate (mL/min) 0.1 0.025 0.12 0.01 0.12

Number of Passes 4 15 3 12 4

Nozzle Temperature (◦C) 60 45 75 30 75

Track Speed (mm/min) 1200 1200 1200 750 1200

Track Spacing (mm) 3 3 3 3 3

Track Pattern CC CC HH HH HH

Nozzle Height (mm) 40 40 40 40 40

DAN—1,5-diaminonaphthalene, CHCA—α-cyano-4-hydroxycinnamic acid, ACN—acetonitrile, TFA—
trifluoroacetic acid, AmPhos—ammonium phosphate, AmBic—ammonium bicarbonate, CC—crisscross,
HH—horizontal-horizontal.

2.5.2. Mass Spectrometry Imaging

All mass spectrometry images were acquired on a Bruker timsTOF fleX QTOF mass
spectrometer (Bruker Daltonics, Billerica, MA, USA) at 20 µm resolution: metabolites in
negative ion mode, glycans and metabolites in positive ion mode. Methods were optimized
for each analysis using timsControl 3.1 and acquisition parameters are summarized in
Table 2. FlexImaging 7.0 was used to align each slide to the optical image acquired on the
Epson scanner using the etched fiducial points. The aligned image was then used to guide
data collection from the tissue sections. Prior to each image acquisition, the instrument was
mass-calibrated using red phosphorus.

Table 2. Bruker timsTOF fleX Imaging Acquisition Parameters.

Metabolites Glycans Peptides

Polarity Negative Positive Positive

m/z range 50–600 700–3500 600–4500

Number of laser shots 200 300 300

Funnel 1 RF (Vpp) 75 450 450

Funnel 2 RF (Vpp) 100 500 500

Multipole RF (Vpp) 150 500 600

Collision Energy (eV) 10 10 10

Collision RF (Vpp) 500 2700 3400

Quadrupole Ion Energy (eV) 5 5 5

Transfer time (µs) 35 140 180

Pre Pulse Storage (µs) 2 14 18

After collection, data files were loaded into SCiLS Lab 2024a Pro (Bruker, Daltonics,
Billerica, MA, USA) for visualization. Peaks from each imaging dataset were manually
picked, excluding known matrix peaks and non-monoisotopic peaks. Metabolites and
glycans were putatively identified using the SCiLS MetaboScape 2023b plugin. Metabolites
were searched against the human metabolite database as [M-H]−, [M]−, and [M+Cl]−

primary ions, and glycans were searched as [M+H]+, [M+Na]+, and [M+K]+ primary ions.
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Images were exported from SCiLS as .imzML files for further analysis and integration with
other imaging modalities.

2.6. Integration of Multi-Omics Platforms

A key element of our approach was to base the alignment between the modalities
against the STOmics reference frame, as the data output from the standard STOmics work-
flow included files that could be converted into AnnData objects, for subsequent analysis
using the scverse pipelines. Given the choice of coordinate system with the STOmics data,
we utilized one of the elements of the structure of the data, the capacity to ‘bin’ individual
Stereo-seq spots together into ‘bins’ of increasing dimension. There are actually interesting
parallels between this and the ‘pyramid’ structure of pathology images, such as H&E or
COMET, in that the high resolution pixel data is overlaid with downsampled tiles at lower
resolutions, allowing a lower resolution overview of different scales of tissue morphology
and structure. The Leiden cluster at bin 50 could be considered roughly equivalent to a
5× magnification on a tissue microscope, able to visualize broad tissue structures, but not
necessarily more highly resolved finer features. The bin50 downsampling also permitted
us to integrate enough genes across those bins to achieve reasonable computational times
for Leiden gene clustering, as well as avoid the appearance of too ‘noisy’ of a Leiden cluster
map, given that the smaller bins may also contain less coverage than larger bins.

Once the Leiden cluster alignment was complete for COMET datasets, subregions
were then accessed within the tissue, using the Tissue Segmentation and Cell Segmentation,
and cellular phenotypes, identify (in ‘protein-space’) unique biological entities present
in the region. Downstream analysis could include more in-depth assessment of spatial
neighborhood analysis and other aspects of the tissue architecture, but from here we
evaluated at a baseline the correlation between cell phenotypes, tissue structure, and
molecular readouts with the Leiden cluster ‘voxel’, comprised of a set of x and y coordinates
within which the bin50 clustering was performed. Evaluating each bin50 region as a
‘Leiden cluster voxel’, and then looking at the distribution of gene expression values, cell
phenotypes, and MSI data, as an aggregate of bin50 ‘voxels’ present within each Leiden
cluster, permitted us to interrogate the molecular information present at the same x and y
coordinate across modalities. Likewise, Leiden gene cluster to mass spectrometry alignment
permitted us to interrogate peaks that showed discrete tissue localization, and identify
areas of alignment between these two disparate data sources.

In addition to alignment using the Leiden gene cluster maps, the MSI data were also
directly aligned with the COMET datasets within the Visiopharm software version 2023.09
x64 TissueAlign feature, which permitted us to identify tissue regions and phenotypes that
matched features seen in the MSI data, in order to validate that the alignment through Leiden
matched with a direct alignment between the protein and mass spectrometry analysis.

3. Results
3.1. Sequential Immunofluorescence Analysis

Multiplex sequential immunofluorescence analysis on the 3 FFPE sections prepared
from an HGSOC, and an AEH sample as shown in Figure 1 was performed using the
COMET instrument (Lunaphore, Tolochenaz, Switzerland) as previously described [26]. A
panel of 20 protein markers was designed for the HGSOC or AEH tissue samples. These
markers were detected simultaneously by specific antibodies on a single tissue section
(Tables S2 and S3). Figure 1B demonstrates that many cells traverse multiple sections in a
tumor block given standard 3–5 micron sectioning. It is the foundation of this concept that
allows the multi-modality approach to function. Figure 1C is a visual demonstration of
the various resolutions of the technologies employed, where COMET features the highest
resolved value, as no binning or unionization of the pixel values are needed. The STOmics
is classically binned, but even with the binning typically performed is higher resolved
than its closest competing assay, VisiumHD. Image data were successfully generated and
applied for tissue and cell segmentation, which were used for the analysis of Stereo-seq
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aand MSI data generated from adjacent sections. For the HGSOC samples, we were able
to define tumor, stroma, and interface areas using Keratin8/18 and Col1A as markers
(Figure 2A). Regions of interest (ROI) were selected from the tumor enriched, stroma
enriched and interface area for further analysis using additional stromal cell markers
including those specific for immune cells and endothelial cells (Figure 2B,C). For the
AEH samples, glandular epithelium, stroma, and luminal areas were identified using
Pan-keratin and CD10 as markers for tissue segmentation (Figure S1), while muscle cells in
the myometrium area were segmented based on αSMA expression (Figure S1).
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Every third section was used for non-targeted metabolomics, glycan, and tryptic peptide analysis 

Figure 1. Schematic diagram summarizing the 3D targeted and non-targeted multiplexed multi-omics
workflow used to dissect the tumor immune microenvironment. (A) For each sample, 5 mm serial
FFPE sections from an 85 mm thick tissue block were cut and deposited onto slides specific for each
platform. The first and the last sections were stained with H&E for histological evaluation. Every
third section was used for non-targeted metabolomics, glycan, and tryptic peptide analysis (by mass
spectrometry imaging, MSI), targeted proteomics (by multiplexed sequential immunofluorescence,
COMET) or non-targeted spatial transcriptomics (Stereo-seq by STOmics) analyses. (B) Rationale
for using serial tissue section for analysis with different modalities. The same cell (average diameter
20 microns) transverses multiple sections (5 microns each, a–c), equate to 4–5 sections. (C) Resolution
of the three different modalities used in the study, by comparing pixel dimensions.
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Figure 2. Multiplex sequential immunofluorescence analysis on HGSOC sample. (A) Whole tissue
images overlaid with tissue segmentation mask created based on Keratin8/18 and COL1A1 markers
in Visiopharm software for each layer. White boxes represent chosen ROIs for tumor (T), stroma (S)
and interface (I) areas shown in panel (B). Scale bar is 3000 µm. (B) Chosen ROIs from panel (A),
highlighting corresponding marker expression in tumor, stroma and interface areas. Blue squares
represent chosen ROIs shown in panel (C). Scale bar is 450 µm. (C) Chosen ROIs from panel (B),
showing differential expression of main immune markers in tumor, stroma and interface areas. Scale
bar is 50 µm. (D) 3D reconstruction through rendered voxel stack from assembled layers 1–3. Scale
bar is 50 µm.
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The Lunaphore COMET SeqIF data is understated here as we used it as a screening
and naming tool to identify tissue landmarks and cell phenotypes. Additional and more
traditional analysis including neighborhood analysis is possible and will be performed
but would require a larger cohort of images. Clinical correlation is also an additional
analytical step, and this correlation could be continued across the additional imaging omics
methods presented, however this adds in complexity and the purpose of this manuscript is
to demonstrate the initial integration of the three technologies. The imaging produced from
the seqIF is the cornerstone of the other imaging modalities, due to its ability to capture
both morphological tissue patterns at high resolution, as well as molecular information
about specific cell types present within the tissue.

In agreement with the findings presented in Kuett et al. [26], we demonstrated that
features, adjacent cells, vessels, etc., are closer in the Z dimension than in the X and Y di-
mensions. This speaks to the fact that clustering or neighborhoods are not two-dimensional
objects they occupy a three-dimensional space. This means that many of the findings
related to the relevance of immuno-supportive or immuno-suppressing may not be found
in the same plane, but in the planes above or below. Even in the limited tissue examples
used in this study, the complexities of the tumor, interface, and stromal compartments
is visible in Figure 2B,C. With closer inspection, one can see that in the tumor sample of
Figure 2C, CD66b positive cells were found in the upper left quadrant within a small space
of each other in layer 1 and layer 3. When we consider the sections between these CD66b
positive cells are within ~20 microns of each other, significantly closer as there are no other
CD66b positive cells in layer 1. Reflecting on the second tumor area, this is also very visible
with the CD45 positive immune population as it appears to cluster in the keratin positive
tumor area. The Interface area, which involves CAFs, immune cells, and tumor cells is the
most complicated and interesting area as we previously described [21,22]. The ability to
align the datasets produced in this paper permits us to start asking advanced questions to
further interrogate this important tissue region (Figure 2D).

Figure S1 of the AEH precancerous lesions is much more complicated due to the
complexity of the lesion. Of interest is the observation that the lesions, particularly in
the luminal area, are filled with metabolites. This would serve as a metabolomics reserve
for this area’s tissue development. The same observations are possible when considering
the CD45 positive immune cells or the CD10 positive cells in ROI3. Understanding how
this area develops is critical to early cancer detection. The aforementioned observations
and measurements are possible in a series of two-dimensional images or even in a series
of data tables that have a shared cartesian coordinate system of X, Y, Z. However, much
of biology is from observation; seeing is believing in many cases. Rendering these areas
in 3-dimensional space gives the observer the ability to dive into and around the cells in
their environment and make the observations, which can then be hypothesized and tested.
This is the critical importance behind collecting sections and holding them in reserve as
suggested in Figure 1. This allows for reflection on the initial data collection and to have
follow-up studies performed on proximal samples for clarification and extension using
these research methods.

3.2. Generation of Robust Spatially Resolved Transcriptomic Profiles Using the Stereo-Seq Chip

The Stereo-seq N transcriptomics chips (1 cm × 1 cm) (STOmics) were used to generate
spatially resolved transcriptomic profiles from 3 FFPE sections prepared from HGSOC and
AEH samples as shown in Figure 1. The DNB patterned chip uses unique molecular identifiers
(MIDs) and poly N sequence-containing oligonucleotides ligated onto each spot on the
chip through hybridization with an oligonucleotide sequence containing the coordinate
identity (CID), which allows capturing not only human coding and non-coding RNA but
also microbiome RNAs. In the 3 sections of HGSOC sample, stereo-seq captured mean gene
type counts ranging on average from 59.44 per 100 µm2 (bin 20, 10 µm × 10 µm) to 97.85 per
100 µm2 (bin 20), equivalent to the size of ~1 median size cell (Tables 3 and 4); while in the
3 sections of AEH sample, stereo-seq captured mean gene type counts ranging on average
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from 91.64 per 100 µm2 (bin 20) to 102 per 100 µm2 (bin 20). Mitochondria transcripts were
found to be less than 2% in all the sections. Total microbiome transcript counts ranged from
24,980 to 104,870 (Table 3). They include bacteria, fungi, and viruses, with a majority belonging
to the Actinomycetia and Gammaproteobacteria classes (Figures S3 and S4).

Table 3. Summary of results from Stereo-seq N transcriptomics chip analysis.

Sample Type Sample Name MID under
Tissue Area

Median Reads
(per bin200)

Median MID
(per bin200)

Median
Gene types
(per bin200)

Mitochondria
Transcripts

Microbiome
Transcripts

HGSOC
HGSOC_4 82.40% 349,016 8442 4102 <2% 104,870

HGSOC_9 66.80% 489,331 6193 3122 <2% 52,250

HGSOC_14 77.70% 504,198 9964 4396 <2% 42,360

AEH
AEH_4 59.68% 253,798 9401 4169 <2% 35,650

AEH_9 66.70% 145,040 9055 4000 <2% 24,980

AEH_14 74.18% 159,337 10,224 4345 <2% 40,300

HGSOC: High grade serous ovarian cancer; AEH: Atypical endometrial hyperplasia; MID: Molecular identifier.

Table 4. Mean gene type number per bin with different bin size.

Mean Gene Type Number Mean Gene Type Number

Bin RNA Capture Area HGSOC_4 HGSOC_9 HGSOC_14 AEH_4 AEH_9 AEH_14

1 0.5 µm × 0.5 µm 1.2 1.16 1.25 1.2 1.21 1.21

20 10 µm × 10 µm 82.62 59.44 97.85 91.64 90.87 102

50 25 µm × 25 µm 461 333 536 505 502 561

100 50 µm × 50 µm 1501 1101 1706 1592 1586 1752

150 75 µm × 75 µm 2741 2045 3050 2816 2810 3078

200 100 µm × 100 µm 3985 3010 4362 3989 4000 4339

High Levels of Tumor Heterogeneity Identified by Stereo-Seq Analysis and Leiden
Clustering Analysis

Stereo-seq identified a collection of markers in the HGSOC sample that are associated
with the tumor and stromal compartments, and the tumor–stroma interface identified
through tissue segmentation, and some of them are depicted in Figure 3. We utilize the
uniform manifold approximation and projection (UMAP) dimensionality reduction method
to provide a 2d representation of the relationships between the data in the Stereo-seq
dataset. The left figure in (Figure 3A) indicates that all three sections fall within the same
UMAP space, indicating the likely absence of major batch effects between transcriptomic
runs between the individual tissue layers. The right panel of Figure 3A reveals that the
Leiden clustered data, plotted against UMAP coordinates, shows how the Leiden clusters
separate well from one another in the UMAP. MUC16 and WFDC2 are known markers
for HGSOC cells and Stereo-seq data demonstrated the expression of these two genes
in the tumor compartment of the HGSOC sample. AL357507.1, a long non-coding RNA
(lncRNA) which has been shown to be associated with advanced stage clear cell renal
cell carcinoma and osteosarcoma metastasis [34,35], was found to be highly expressed
in a particular cluster of cancer cells in the HGSOC tissue. In the stromal area, high
levels of ACTA2 (aSMA) and COL1A1 were detected in the stromal region as previously
reported [22]. In addition, IGFBP7, a tumor associated stroma markers with growth-
promoting effects in colon cancer through a paracrine tumor -stroma interaction [36],
was highly expressed in the stromal compartment. Finally, CADPS, a novel neural and
endocrine-specific cytosolic protein required for the Ca2+-regulated exocytosis of secretory
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vesicles [37,38], was highly expressed by HGSOC cells particularly in the tumor–stroma
interface. Quantitative Leiden cluster analysis was then performed based on unsupervised
clustering of the Stereo-seq transcriptomic data. High levels of heterogeneity within
both the epithelial, stromal, and interface compartments with multiple subclusters were
identified (Figure 3B and Supplementary Data S1). For example, LINC00536 and EFNA5
were highly expressed in clusters 1 and 10, which represented two sub-clusters of cancer
cells. SADMA4 and SERPINE1 were highly expressed in cluster 3, one of the sub-clusters
of the stroma compartment. TENM4 and ACSM3, as well as CADPS and SLC35F3, were
highly expressed in clusters 5 and 13, respectively, which represented two different sub-
clusters in the tumor–stroma interface area. While it is interesting that most of these genes
have not been implicated in the development of the two diseases, their expression patterns
need to be validated using multiplex seqIF and correlated with clinical outcomes before
determining their roles in the pathogenesis of both diseases.

Stereo-seq also identified a collection of markers in the AEH sample that are associated
with the hyperplasia glandular epithelium and associated stroma in the endometrium and
smooth muscle cells in the myometrium (Figure S2). High levels of heterogeneity were
identified by quantitative Leiden clustering analysis, particularly in the endometrium. A
total of 14 clusters were identified, and they were quite consistent among the 3 sections.
Markers that are specific of each cluster were identified. For example, NPAS3 and NELL1
were highly expressed in cluster 3, which represented the glandular epithelial cells in the
endometrium. IGF1 and ADAM12 were highly expressed in cluster 5, which represented
the stroma surrounding the endometrial glands. MECOM and RHEX were highly expressed
in cluster 6, which represented the luminal area within the endometrial glands. Finally,
SLP1 and ERBB4 were highly expressed in cluster 12, which represented stroma adjacent to
the myometrium (Figure S2 and Supplementary Data S2).

3.3. Mass Spectrometry Imaging Analysis

At each layer in the section stack, mass spectrometry imaging was preformed to map
localization of metabolites, glycans, and tryptic peptides, sequentially, from the same tissue
section. After loading each dataset into SCiLS Lab (Bruker Inc., Billerica, MA, USA), features
were manually selected from the average spectrum resulting in 948 metabolites, 164 glycans,
and 586 peptides detected. Metabolites were selected with a peak width of 15 ppm while
glycans and peptides were selected with a peak width of 10 ppm. Biomolecule images from
each dataset were evaluated for features that correlated with segmented regions determined
by COMET analysis of serial sections. Figure 4 highlights some of these localized features.
Within the metabolite data, m/z 136.076 was found to be most abundant in stroma and
interface areas, while m/z 140.010 was more uniformly distributed but showed a slight
decrease in stroma of HGSOC sample (Figure 4A). Three N-linked glycans at m/z 1077.361
and 2100.737 (core fucosylated and sialated) showed high abundance in the areas of stroma,
and interface with lower abundance in tumors showed high abundance in areas of stroma and
interface with lower abundance in tumor areas while m/z 1743.585 (high mannose) showed
higher abundance in tumor and interface (Figure 4A). Finally, tryptic digestion imaging was
performed on the same sections. Selected ion images show m/z 958.578 highly abundant in
areas of tumor and interface but absent from stroma. A peptide at m/z 2072.971 was found to
be increased in tumor just outside the main band of stroma in the sections with low abundance
detected across nearly all sections. The peptide at m/z 2727.315 showed the highest levels
in stroma and tumor immediately adjacent to the large stromal band but had overall more
diffuse localization across the sections throughout all 3 layers.
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Figure 3. Non-targeted spatially resolved transcriptomic analysis. (A) UMAPs generated after Stereo-
seq analysis for HGSOC sample. (B) Quantitative Leiden cluster analysis and qualitative images for
most differentiated genes exported from STereoMap software for each layer and overlaid to seqIF
images through Visiopharm software version 2023.09 x64 (tissue segmentation overlay shown in the
second panel). Scale bar is 1.5 mm.
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Figure 4. Non-targeted metabolomics, glycan, and tryptic peptide analysis by mass spectrometry
imaging (MSI). (A,B) Localization of glycans, metabolites and tryptic peptides that correlates with
segmented tissue areas for HGSOC (A) and AEH (B) samples. Scale bars 2500µm (A), 4000µm (B).
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Similarly, the AEH sample was evaluated for biomolecules that localized to the glandu-
lar portion of the sections (Figure 4B). A metabolite at m/z 244.080 was detected throughout
this region with highest abundance in a subset of the glands. Three example glycan images
are shown at m/z 1663.583 (complex type), 1758.583 (unknown), and 2158.770 (fucosylated),
respectively, with all displaying highest abundance within the lumen of glands. However,
differences are observed between the 3 glycans in which specific glands have the highest
abundance of each glycan. Within the peptide data for this sample, m/z 1198.701 (actin) was
found to be most abundant in epithelial areas, while m/z 1778.932 has highest expression
levels within the glands, similar to patterns observed with the glycans. This peptide was
also observed in the non-glandular part (right side) of the sections. The peptide at m/z
957.570 had a more diffuse distribution within the glandular region of the tissue than the
other two peptides.

3.4. Multi-Modality Data Integration

As has been mentioned previously, the generation of Leiden clusters from Stereo-seq
data, plotted on an x–y coordinate framework, permits us to interrogate the spatial re-
lationships within the dataset itself, identifying a number of unique spatial regions that
seem to match well with morphological landmarks within the histology and seqIF staining
regions. In order to refine the ability to do more precise alignment and retrieval of particu-
lar regions, we instituted an additional step of enumerating each bin50 region, providing
an index of unique intensities across every bin50 ‘Leiden voxel’ within the tissue space
(Figure 5A). Sampling the STOmics data at bin50 produced data inherently aligned with
the Leiden clusters, permitting us to interrogate the normalized gene expression values on
a per-Leiden cluster basis within the same ROI shown in Figure 5A. Two representative
genes, SAMD4A (Figure 5B) and CADPS (Figure 5C), alongside quantitative box plots
showing the mean and variance of genes within each Leiden cluster region in the ROI, are
included as an example. Generating a ‘Leiden voxel indexed image’ as shown in Figure 5A,
in which each bin50 region has a unique intensity value, the resulting image was then used
for alignment with the individual modalities, first by matching the edges of the tissue,
followed by more refined adjustments to maximize the alignment between each subregion
within the tissue. This ‘common coordinate system’ permits us to pass data between other
modalities that have been aligned to it. including Figure 5D a representative MSI Glycan
peak (m/z 1077.361) in the same region of interest, in the same orientation as the Leiden
clustered image. Quantitative box plots show the mean and orientation as the Leiden
clustered image. Quantitative box plots show the mean and variance in peak intensity
across the Leiden clusters ROIs. COMET data is at higher resolution than bin50 grouped
data, such that several COMET pixels fit within each Leiden cluster ‘voxel’. Utilizing tissue
alignment algorithms to align the COMET data with the Leiden cluster data, similarities
were noted between the tissue morphology and molecular characteristics, and the Leiden
cluster-informed differential genes being expressed in these regions. Figure 5E shows
representative channels of COMET data, indicating epithelial and stromal regions within
the tissue. Figure 5F shows phenotyped cells within this same region, which can then be
summed across each Leiden cluster voxel that is present. The resulting graphs in Figure 5G
show the presence of keratin, indicative of epithelial or cancer tissue, revealing which
Leiden clusters are primarily epithelial in nature, and Figure 5H, the number of ACTA2
(aSMA) positive cells, which tend to be more prevalent in stromal tissue regions. This per-
mits us to identify stromal or tumor features that might correspond with particular subsets
of gene expression, such as SAMD4A and m/z 1077.361, which show higher expression
in stromal-associated Leiden clusters, and CADPS, which appears at the tumor:stromal
interface, corresponding to Leiden clusters 13 and 5. This cross-modality comparison
permits us to either interrogate the differential gene expression on a per-cell group basis,
or alternatively to re-sample the STOmics dataset at lower bin sizes, in order to identify
transcripts aligned with individual cells within the dataset itself.
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Figure 5. Demonstration at the region of interest level of the alignment of Leiden clusters with MSI
and Comet data. (A) indicates the presence of Leiden clusters within one ROI, which is then indexed
for alignment to the other datasets. (B) SAMD4A normalized gene expression (image) is measured for
every bun50 ‘voxel’ within the Leiden cluster regions, showing differential expression across discrete
Leiden clusters, primarily in stromal regions. (C) CADPS-normalized gene expression (image) shows
higher prevalence in Leiden clusters 5 and 13, corresponding to the tumor:stromal interface. In (D),
following alignment using the registered indexed cluster, a single peak from the MSI imaging dataset
(m/z 1077.361), the MSI pixels corresponding to each bin50 Leiden cluster ‘voxel’ are quantitated in the
box plot, showing a similar enhancement of peak intensity matching with stromal and tumor:stromal
interface regions of the tissue. In (E), the DAPI (nuclei), Keratin (tumor epithelium) and Col1A (tumor
stroma) immunostaining is shown alongside (F) segmented and phenotyped cells, which are then
summed within each bin50 voxel to produce (G) box plots indicating the mean number of Keratin+ cells
within each bin50 voxel, indicating higher abundance in Leiden clusters 6, 8 and 9, corresponding to
tumor enriched Leiden clusters. (H) shows per-voxel cell numbers for ACTA2 (aSMA), with highest
abundance at the tumor:stromal interface on Leiden cluster 5.



Cancers 2024, 16, 846 18 of 23

4. Discussion

In this study, we developed an analytical pipeline which integrated 3D spatially re-
solved data generated from non-targeted mass spectrometry imaging (glycans, metabolites,
and peptides), Stereo-seq (spatial transcriptomics) and targeted seqIF (IHC proteomics) us-
ing FFPE sections prepared from a HGSOC and an AEH precancerous sample. The dataset
we are describing here has many dimensions. A 3D piece of tissue was first sectioned
and then split across multiple analytical modalities. Those three dimensions were then
indexed on a thirty-plex high resolution CyIF protein immunostaining platform (COMET),
which outputs a high resolution (250 nm) sequence of images, exported in a pyramidal
ome.tiff format. Added on to those tens of protein markers, we add thousands of mass
spectrometry peaks, corresponding to glycans, metabolites and peptides existing within
the tissue. And then added to those thousands of spatial and molecular dimensions, we
add the approximately 30,000 human genes and additionally more non-nuclear genetic
reads (mitochondrial genomes, microbiome genomes).

Integration of multiple omics platforms have been recent used to identify spatially
resolved biomarkers in 2D space associated with tumor progression [25,39]. However, most
of these studies utilized targeted approaches with only two platforms. In this study, we
successfully used non-targeted STOmics Stereo-seq combined with seqIF to generate a 3D
spatially resolved transcriptome map using FFPE sections and subsequently integrated
the data with those generated from non-targeted MSI to generate a comprehensive macro-
molecule 3D map of the tumor tissue. This approach uses a novel version of the STOmics
pipeline that permits the sampling of FFPE samples versus fresh frozen tissue. The STOmics
method holds the highest resolution so far of any non-targeted assay by at least an order of
magnitude, depending on how the data is binned. At the time of preparing this manuscript,
10× Visium HD (2 microns × 2 microns) has just been released and has been reported to
use a bin 4 (8 microns × 8 microns). This equates to a STOmics bin 16, permitting the higher
resolution assessment of genes of interest at down to bin 5 (2.5 microns × 2.5 microns)
and bin 10 (5 microns × 5 microns). There is a tradeoff between bin size and collection
efficiency per bin, that was recognized visually when inspecting the STOmics dataset, so
for that reason we chose to set the bin size for Leiden cluster analysis on detected genes to
bin50 (25 microns × 25 microns), a size that is practically quite close to the MALDI-Mass
Spec image resolution (20 microns × 20 microns), permitting easy comparison of the data
between those modalities; and still small enough that anywhere from one to a handful of
cells might be present per bin at the protein/COMET level.

One of the novel benefits of STOmics Stereo-seq ST technology is that, since it is
untargeted, it is capable of collecting information from non-nuclear transcripts, such as
mitochondrial RNA, which was detected in the assay, but not yet used for subsequent
analysis. Also detected were sequences derived from the microbiome, which, while po-
tentially quite powerful for potential future spatial analysis of the tumor microbiome, did
not have sufficient read counts in the initial attempts to be able to make any conclusions
regarding spatial distribution of the bacterial signatures. Given that this was one of the first
applications of this technology to FFPE tissue, optimization is likely needed to develop
these tools further. Also of interest is that through this analytical pipeline, the MSI data
may find correlatives that could help validate the microbiota’s identification. This could be
furthered by using RNAscope, an ACD application, on the Lunaphore COMET seqIF assay,
a method currently in development in our laboratory. Another novel benefit in utilizing
the Stereo-seq ST technology includes the ability of detecting and quantify mutated and
alternative spliced transcripts in the 3D space, which have not been examined in this study.

Beside using the newly developed Stereo-seq platform, another novelty in this study
is that MSI was used to generate metabolites, glycans, and tryptic peptide profiles on the
same FFPE tissue section. In typical MSI experiments, only one image is collected per
section of tissue, and serial sections are employed if more than one biomolecular class is to
be imaged. Here, however, we have developed a method that allows us to collect 3 mass
spectrometry images (metabolites, glycans, and tryptic peptides) sequentially from the
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same tissue section. In this way, we are able to compare different classes of molecules from
the same cells as opposed to slightly different cell populations in serial sections of tissue.
Additionally, since all data are collected from the same section, the separately collected
datasets are inherently co-registered to each other. Using the Image Ion Mapper feature
in the SCiLS Lab 2024a software (Bruker, Daltonics, Billerica, MA, USA), we can directly
integrate all 3 datasets and view them simultaneously, allowing determination of the co-
and differential localization of these 3 classes of biomolecules. This is of utmost importance
when trying to understand cellular communication within the TIME.

Despite much recent progress, it remains challenging to integrate spatially resolved
multiplexed multi-omics data, in part as success highly depends on the pathological
quality of the tissue samples. Storage of tissue in FFPE blocks, permit the tissues under
investigation to be cut into 3–5 mm sections, with the fixation helping to optimize tissue
morphology relative to frozen sections—the fact that we could get this pipeline working
forms the foundation of integrating these modalities. While they are separate tissue sections,
the same cell can transverse multiple sections, as on average a cell is 20 mm in diameter,
meaning one cell can be captured between 3–5 sections on average. Note that in these
studies we used three groups of three sections spaced ten microns apart. This means the
depth of each study plane is 9–15 microns and should contain the same cell vertically,
but after an additional 10 microns transition into a new cell for the next study plane. As
spatial proteomics based in IHC methods such as seqIF retain the best markers for tissue
region (PanCK: Tumor, SMA: Stroma, CD31: vessel, etc.) and cell (CD4: t-cell, CD68:
Macrophage, CD56: NK cell, etc.) identification. By using this technology in the central
section of each study plane the analysis will use these annotations in the adjacent (above and
below) sections where STOmics Stereo Seq non-targeted spatial transcriptomics and Mass
Spectrometry Imaging non-targeted spatial metabolomics, glycomics, and peptidomics
will collect information about these various analytes. Therefore, the key to integration
is aligning the various sequential sections and passing the SeqIF annotations (tissue and
cell) to non-targeted methods to allow for collection of output variables (intensity, location,
morphometry, etc.). Once this is performed at the three study planes these three planes
can be reassembled at both the imaging and data table level to allow for integration of the
multiplex multi-omics data to create a three-dimensional cartesian coordinated map of the
various samples used in this study. While this sounds straightforward the sheer number of
analytes detected in this simple example study is staggering and computationally heavy.
Also, by facilitating the correlation of the various analytes novel findings are possible
as are novel molecular mechanisms primarily focused on cell–cell communications and
interactions, specifically immune–tumor cell engagement. In this manuscript, we primarily
focused on the tissue level details, specifically the tumor, interface, and stromal regions of
the ovarian cancer sample building on our past research studies. However, we were able to
dive into the cellular level details as indicated in the MSI and Stereo-seq data.

It remains challenging to integrate multiple spatially resolved omics platforms with
different resolution in data analysis. It is imperative when doing such an exercise to pick
a coordinate system upon which to base the remaining analysis. We chose the largest
dimensional dataset, the STOmics tissue array coordinates, upon the realization that the
other datasets could be converted to ome.tiff formats and aligned using existing software
techniques (Visiopharm commercial software version 2023.09 x64, and the combination of
QuPath software version 0.5.0, Warpy software version 0.3.0 and ImageJ software version
1.54f), whereas there are not yet equivalent easy-to-use alignment methods in the scverse
space (though there is a lot of innovation in this space). We feel that our efforts here
represent the first demonstration of a methodology to systematically utilize dimensionality
reduction and clustering in a spatially aware context, in order to resolve the necessary
outputs across the tens of thousands of dimensions expressed in this dataset.

Given the choice of coordinate system with the STOmics data, the next choice was
what element of the STOmics data we should use as an ‘anchor point’ from which to tie
the modalities together. Standard analytical packages on high dimensional datasets like
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this one rely on dimensionality reduction and clustering methods, in particular Uniform
Manifold and Projection (UMAP) followed by Leiden clustering, to reduce the number of
dimensions taken to assess the data into a manageable form. Interestingly, even though
spatial information was not incorporated in the clustering analysis, the clusters of related
genes (in gene-space), when mapped to x and y coordinates (in physical space), at the bin
size that the STOmics data was sampled at. This mapping revealed a striking number of
morphologically interesting features as shown in Figure 3, that seemed to match with tissue
phenotype features found in the COMET dataset. We decided to generate a new ‘image’,
consisting of Leiden cluster ‘voxels’ at bin50 resolution (25 mm × 25 mm), which was chosen
provided a compromise between low read counts in smaller bins, and losing too much
spatial information at higher bins—though re-binning and re-sampling of Leiden clusters
at different resolutions could certainly be tested, though perhaps not at the resolution of
the whole image.

This Leiden cluster ‘image’ was then converted into a stack of 15 image ‘channels’, in
which each ‘channel’ contained the tissue ‘voxels’ for that particular channel. We assigned
each individual Leiden bin a unique number (in our tissue samples there were between
15,000 and 25,000 ‘Leiden voxels’, corresponding to a 16 bit 15 channel ‘indexing tool’ that
we could then align to each subsequent modality.

We used either commercial (Visiopharm) or open source (QuPath, Warpy and ImageJ)
tools to align these Leiden cluster images (consisting of x,y, channel data arranged in a
tiff file), with the COMET data, and with the Mass spectrometry Glycan, Metabolite, and
Peptide datasets. COMET data is stored as pyramidal ome.tiff files, and the resulting
aligned data, can be rendered back for a particular region of interest, a representative region
illustrating this is shown in Figure 5.

The same Leiden cluster voxel images were aligned to the Bruker MALDI mass
spectrometry data, and the subsequent combined image was then queried to identify
biologically relevant regions of interest. And, with the coordinate system preserved in the
voxel edges of the Leiden clusters themselves, the STOmics data is accessible by querying
the relevant x and y coordinates of the AnnData object storing the Leiden cluster, either at
the same bin size, or by reducing bin size to address cellular or subcellular information.

Using the methodology described above, we demonstrated that we can simultaneously
query various cellular neighborhoods in both tissue samples using spatially resolved
imaging data in a two- and three-dimensional spaces. We also showed the collection of
spatially resolved analytes in a voxel (3D pixel) across serial sections of the tissues.

There are several limitations to this study. First, only one HGSOC and one AEH
samples were used in this study. More samples are needed to be examined by our 3D
multi-omics profiling pipeline if we want to determine whether those markers identified
by can be used in modulating the clinical management of patients with HGSOC and
AEH. Second, we primarily focused on the tissue level details in this study, specifically
the tumor, interface, and stromal regions of the HGSOC and AEH samples building on
our past research studies. However, we can dive into the cellular and subcellular level
details as indicated in the MSI and Stereo-seq data. Finally, the spatial distribution of the
microbiomes, and its integration with the host transcriptomes and MSI data have been
examined in this study. Further validation on the microbiome distribution needs to be
performed to eliminate the impact on sequence-based microbiome analyses from tissue
handling and regent contamination.

5. Conclusions

Mapping tumors and precancerous lesions is critical in personalizing medical treat-
ments to the environments found in each patient and holds the best promise for the optimal
outcome for that patient. This means an understanding of which cells are present, what
their functional statuses are, and how they are energized is critical to understanding how a
patient’s disease will progress and in identifying the aforementioned optimal treatment.
In this manuscript, we have demonstrated an integrated multiplex multi-omics methodol-
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ogy to generate a three-dimensional tissue map of multiple tissues. Even in this limited
example, several novel findings were identified, including new markers associated with
stromal (SAMD4A) and tumor:stromal interface (CADPS) regions and m/z 1077.361, which
show higher expression in stroma-associated areas from spatial transcriptomics and MSI
data, respectively. By examining the 3D structure of the tissue and understanding how
cellular neighborhoods are constructed, we have a more comprehensive understanding of
the TIME. We have also mitigated the weaknesses of any single technology by leveraging
the strengths of an adjacent technology to build a comprehensive map of the TIME. As we
dive deeper into the data mapped to the central cartesian coordinate map we can further
correlate these analytes with each other and with cellular functions such as movements and
communications, as well as clinical outcomes and responses to therapies. This will function
on multiple levels and allow for the development of not only better model systems to test
novel therapies, but may also suggest novel therapies, which will improve the survival
rates of cancer patients.
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