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Simple Summary: Cells from the malignant brain tumor, glioblastoma multiforme (GBM) are highly
heterogeneous. After tumor removal, some tumor cells remain at the tumor-brain boundary since
in the brain, surgery cannot be performed with the normally required safety margin. Thus, it is of
upmost importance to develop tools able to destroy remaining tumor cells. One strategy is to develop
lentiviral vectors (LVs) with high specificity for GBM cells to transfer therapeutic genes into these
cells. The Zika virus (ZIKV) provides an envelope with the protein E, which has a high specificity for
GBM cells, making it a prime candidate for the development of LVs; so-called ZIKV protein E coated
lentiviral particles. The study demonstrates that such LVs have an efficiency and high specificity for
GBM tumor cells, leaving healthy cells mostly unharmed. These LVs open up new perspectives and
therapeutic options for combating tumor cells that cannot be removed through surgery.

Abstract: The development of new tools against glioblastoma multiforme (GBM), the most aggressive
and common cancer originating in the brain, remains of utmost importance. Lentiviral vectors (LVs)
are among the tools of future concepts, and pseudotyping offers the possibility of tailoring LVs to
efficiently transduce and inactivate GBM tumor cells. Zika virus (ZIKV) has a specificity for GBM
cells, leaving healthy brain cells unharmed, which makes it a prime candidate for the development
of LVs with a ZIKV coat. Here, primary GBM cell cultures were transduced with different LVs
encased with ZIKV envelope variants. LVs were generated by using the pNLgfpAM plasmid, which
produces the lentiviral, HIV-1-based, core particle with GFP (green fluorescent protein) as a reporter
(HIVgfp). Using five different GBM primary cell cultures and three laboratory-adapted GBM cell
lines, we showed that ZIKV/HIVgfp achieved a 4–6 times higher transduction efficiency compared to
the commonly used VSV/HIVgfp. Transduced GBM cell cultures were monitored over a period of
9 days to identify GFP+ cells to study the oncolytic effect due to ZIKV/HIVgfp entry. Tests of GBM
tumor specificity by transduction of GBM tumor and normal brain cells showed a high specificity for
GBM cells.

Keywords: human cerebrospinal fluid; glioblastoma cell culture; lentiviral vector; retroviral vector;
Zika virus; flavivirus; pseudotypes; transmembrane domain; gp41

1. Introduction

Glioblastoma, also known as glioblastoma multiforme (GBM), is a highly malignant
and aggressive brain tumor that develops from glial cells [1]. These tumors are known
for their rapid growth and their ability to infiltrate the surrounding tissue, which makes
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them difficult to treat. The current standard treatment for high-grade gliomas is surgical
resection. Unfortunately, the diffuse and invasive phenotype of glioblastoma means that
some tumor cells almost always remain after surgery and can continue to grow. For this
reason, radiotherapy and chemotherapy are the next stages of treatment. This treatment
modality was introduced in 2005 after a modest prolongation of overall survival and
progression-free survival was demonstrated [2]. Glioblastoma patients typically lived for
less than one year after diagnosis. With therapeutic treatment applied, the 5-year survival
rate ranges from 22% to 6%, depending on the age of the patients [3]. Various ideas are
being pursued to combat glioblastoma. This includes the development of new cytostatic
drugs, immune therapies and, above all, strategies that rely on tumor-directed killing
processes, such as tumor-specific programming of natural killer cells (chimeric antigen
receptor T-cell therapy) and the development of oncolytic viruses [4,5].

For oncolytic virus therapy, various viruses, including herpes simplex virus, aden-
ovirus, measles virus, reovirus, and vaccinia virus, were modified in such a way that they
can have an anti-cancer effect. Each of these viruses has its own characteristics in terms
of tropism, route of infection, and replication in cells. In general, research in the field of
oncolytic viruses is developing rapidly and there are a number of clinical trials investigating
their potential against GBM [6]. The search for a therapeutic virus is driven primarily by
the catastrophic prospects that still apply to a GBM diagnosis. Numerous studies have been
carried out to date and some oncolytic studies have shown efficacy in vitro and sometimes
partial efficacy in vivo in GBM-bearing mice. However, clinical studies promise some hope,
but have not yet shown any explicit success [7].

Another approach based on the natural features of viruses is the concept of oncolytic
pseudotypes targeting GBM [8]. Pseudotypes are modified viral particles in which the
original envelope is replaced by an envelope from another virus [9]. The pseudotyping
approach can be used to generate various changes, including a change in tropism towards
the host cells. A pseudotyped particle based on human immunodeficiency virus type-1
(HIV-1) is also referred to as a lentiviral vector (LV). LVs are widely used in research and
have shown promise for gene therapy applications as they are able to efficiently introduce
genetic material into the DNA of both dividing and non-dividing cells [10].

Unfortunately, there are only a limited number of publications describing the devel-
opment of GBM-specific HIV-1-based LVs. The development of LVs with the lymphocytic
choriomeningitis virus (LCMV) envelope glycoprotein (GP) is particularly noteworthy [11].
It has been shown that LCMV-GP pseudotyped LVs exhibit increased infectivity to tumor
cells in vitro, while other healthy primary human and brain cells of rats are not significantly
affected [12]. However, pseudotyping of LVs with envelope proteins from viruses other
than LCMV, like human foamy virus, rabies, Mokola or amphotropic murine leukemia
virus has resulted in lower transduction efficiencies [13]. Thus, LCMV-GP should be seen
as a promising candidate for LV-based cancer therapies [14]. In addition to LCMV-GP,
the Japanese encephalitis virus (JEV)-prME envelope proteins were successfully used for
pseudotyping of a gamma retrovirus [15] to study JEV neutralizing antibody [16].

To be successful, virus-based vectors against GBM must have a specific but also
efficient entry mechanism while leaving non-cancerous brain cells unharmed. In this
context, the Zika virus (ZIKV) with its special characteristics plays an important role [17].
It was found that babies born to mothers who had been infected with ZIKV were born with
microcephaly. Microcephaly is characterized by an underdeveloped brain, which manifests
itself in the form of an abnormally small head. The risk of microcephaly appears to be
highest if a pregnant woman is infected with ZIKV in the first three months of pregnancy. A
period in which the fetal brain cells multiply rapidly and in which various types of neurons
and supporting glial cells develop from neural stem cells. At that stage, the fetal brain will
be significantly impaired by the ability of ZIKV to infect and replicate in neural progenitor
cells [18]. It is worth noting that the mother’s brain is not damaged and no signs of brain
disorders have been detected related to ZIKV infection [19,20].
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For this reason, ZIKV has a specific tropism for brain cells that divide rapidly, and
these cells seem to express receptors that are weakly expressed or not at all present on
differentiated and healthy brain cells, which divide only rarely or no longer at all [21].
There is an ongoing scientific debate about the relevance of certain cellular markers that
act as ZIKV receptors in healthy non-tumor cells [22]. With regard to GBM, however, it is
important that the two potential ZIKV receptor candidates, Axl/Gas6 and integrin αvβ5,
can be found regularly on GBM tumor cells [23,24]. This makes GBM cells particularly
permissive to ZIKV and thus, a prime target for oncolytic strategies [25].

For the development of ZIKV E-coated LVs, it is also important to investigate their
infectivity in a cell culture system that comes as close as possible to the heterogenous
in vivo situation. After removal of the tumor, some tumor cells remain at the tumor–brain
boundary, as surgery in the brain cannot be performed with the usual safety margin. An
LV should be able to target all of these different GBM cells.

In the past, it has been shown that cell lines grown in the laboratory are generally no
longer representative of how tumors actually behave [26]. Therefore, primary cell cultures
that reflect the heterogeneity of the different tumor cells as well as possible and are used
as early as possible are well suited for the evaluation of LVs [27]. The addition of human
cerebrospinal fluid (CSF) as a 50% supplement to the culture medium also supports the
growth of a heterogeneous cell population by providing a medium that is as similar as
possible to the original in vivo environment of the tumor [27–29]. Here we report on the
transduction of primary GBM cells with different ZIKV E protein coated LVs and their toxic
or non-toxic effects on tumor or non-tumor brain cells, respectively.

2. Materials and Methods
2.1. Plasmids and Cell Lines

Expression of ZIKV E proteins was carried out using a modified version of pcDNA3.1
(pME) as described earlier [8,27,30] and the pSVATGrev plasmid [31]. Green fluorescent
protein (GFP) was expressed by plasmid pNLgfpAM (A. Trkola and N. Friedrich, Institute
for Medical Virology, University of Zurich, Switzerland) [32]. pCMV-VSV-G (Addgene,
#12260, Teddington, UK) was used for VSV-G expression. The following plasmids were
used; pME-Z1 for expression of ZIKV prME envelope proteins [8], pME-ME for expression
of ME (∆pr mutant) [27], pME-E2 for expression of E2 [30], and pE41.2 for expression
of E∆TMgp41TMCY [30]. COS-1 cells (CVCL_0223) were provided by Friedrich Löffler
Institute (Riems Greifswald, Germany). Human glioma cell lines U-87MG, U-138MG, and
U-343MG were obtained from CLS Cell Lines Service (Eppelheim, Germany). All U-cells
were cultured in DF medium (DMEM/10% fetal bovine serum, PAN-Biotech, Aidenbach,
Germany).

2.2. Primary GBM Cultures

The study design was approved by the Ethical Commission of the Hamburg Medical
Chamber (Ethik-Kommission der Ärztekammer Hamburg, Germany), registration number
PV6041. Primary GBM cultures were established as previously described [8,27,30]. Non-
cancerous brain tissue (AKH-22) was removed supratentorially from the border zone
between gray and white matter during temporoparietal metastasectomy of colon carcinoma.
Tissue samples were transported directly after surgical removal from the hospital to the
cell culture unit at the Bernhard Nocht Institute for immediate processing. They were
pressed through a 70 µm mesh (Fisherbrand, Schwerte, Germany) and the cell mixture was
washed with 50 mL of DF medium. The cells were transferred into the respective medium
and incubated in T75 cell culture flasks (Cell+™, Sarstedt, Nümbrecht, Germany) each
containing 30 mL of (i) CSF, (ii) CSF-DF, or (iii) DF medium. Transmitted light images were
taken using an M7000 microscope (EVOS, Thermo Fisher Scientific, Schwerte, Germany).
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2.3. Immunostaining

Immunostaining of primary GBM cell cultures was carried out as described before [30].
In brief, cells were plated on 96-well microplates and fixed using 3.7% formaldehyde,
then permeabilized by a treatment with 0.1% Triton X-100 in PBS buffer. Blocking was
performed with PBS/0.5% Tween 20/5% BSA for 1 h at RT. Marker-specific primary
mouse monoclonal antibodies were detected by using a secondary anti-mouse IgG H&L
antibody in blocking buffer. Actin and cell nuclei were visualized using Phalloidin (iFluor
555 conjugate, AAT Bioquest, Biomol, Hamburg, Germany) and DAPI (Rotimount, Carl
Roth, Karlsruhe, Germany). Microscopy was carried out using an EVOS FL Auto or M7000
Imaging system (Thermo Fisher Scientific, Braunschweig, Germany). Primary antibodies
to Integrin, Mouse anti-integrin αvβ5 (P1F6) (Abcam, Berlin, Germany, ab177004); Axl,
Mouse anti-Axl (C4-A8) (Thermo Fisher Scientific, Braunschweig, Germany, MA5-32897);
Sox2, Mouse anti-Sox2 (9-9-3) (Abcam, Berlin, Germany, ab79351); Oct4, Mouse anti-
Oct4 (GT486) (Abcam, Berlin, Germany, ab184665); Nanog, Mouse anti-Nanog (23D2-3C6)
(Abcam, Berlin, Germany, ab173368); and Nestin, Mouse anti-Nestin (2C1.3A11) (Abcam,
Berlin, Germany, ab18102) were used. The secondary antibody was Goat anti-mouse IgG
H&L (Alexa Fluor® 488) (Abcam, Berlin, Germany, ab150117). Actin was stained using
Phalloidin-iFluorTM 555 Conjugate (Biomol, Hamburg, Germany, ABD-23153) and the
nucleic stain was ROTI®Mount FluorCare DAPI (Carl Roth, Karlsruhe, Germany).

2.4. Production of ZIKV Envelope Pseudotyped LVs

Transfection of cells was carried out as described before [30]. Since the procedure
for preparing ZIKV/HIV pseudotypes seems to be the most critical step of the study, we
have specifically made an open access publication to provide easy access to our protocol
explaining in great detail how we proceed in the preparation of pseudotype particles with a
ZIKV-E coating [33]. It should be noted that this protocol is particularly designed to produce
pseudotypes with the described plasmids. For pseudotype production, we are using COS-1
cells and two plasmids, each adjusted to a 1 mg/mL concentration. One plasmid for the
expression of ZIKV envelope (plasmid pME) and the second plasmid for the expression of
the HIV-1 core and its genome with green fluorescent protein (GFP) (plasmid pNLgfpAM)
as a reporter for LV entry. ScreenFectA (Screenfect GmbH, Eggenstein-Leopoldshafen,
Germany) was used as the transfection reagent in all experiments. The COS-1 cell culture
supernatant containing the LVs was harvested 72 h post transfection by centrifugation
(15,000 rpm, 5 min, RT, Eppendorf 5414, Hamburg, Germany) to remove cell debris and
was used directly without any further modification or stored at 8 ◦C for up to 7 days.

2.5. HIV-1 p24-Antigen Assay

For p24 detection in LV-containing cell culture supernatants of COS-1 transfected
cells, an in house p24-ELISA was used. In brief, ELISA plates (Maxisorb 96-well, Nunc,
Thermo Scientific, Vantaa, Finland) were coated with 100 µL/well of anti-HIV-1-p24 D7320
(10 µg/mL; Aalto Bio Reagents, Dublin, Ireland). After blocking with PBSTM (PBS; 0.05%
Tween 20; 3% low-fat milk), the plates were washed with PBST and incubated with 100 µL
of the LV test solution for 1 h at room temperature (RT). The LV test solution was made by
treatment of the LV COS-1 cell culture supernatant with Empigen (final conc. 0.7%, #30326,
Merck, Darmstadt, Germany) and heat-inactivated at 56 ◦C for 30 min. After incubation
of the LV test solution, plates were washed three times with PBST and bound p24 was
detected using a goat anti-p24 polyclonal antibody horseradish peroxidase (HRP) conjugate
(PA1-73094, Thermo Fisher Scientific, Dreieich, Germany) diluted 1:2000 in PBSTM (1 h,
RT). Plates were washed three times with PBST and three times with PBS. For staining, to
each of the wells, 50 µL of TBM (3,3′,5,5′-tetramethylbenzidine) substrate solution were
added (SureBlue TBM substrate, Medac, Germany). After incubation for 15 min, 50 µL of a
stop solution (1N HCl) was added. The density of the yellow staining was measured at
450 nm (Microplate reader MRXII, Dynex Technologies, Chantilly, VA, USA). The LV yield
in COS-1 cell culture supernatants was in the range of 1.2–0.8 ng p24/mL for ZIKV/HIVgfp
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and 0.8–1.0 ng p24/mL for G-HIVgfp pseudotypes. Equal amounts of p24 equivalents were
used in comparative transduction experiments.

2.6. Transduction of Tumor Cells by Lentviral Vectors

Two days prior to infection, tumor cells were seeded in 96-well plates (Cell+™, Sarstedt,
Nümbrecht, Germany) in a total volume of 200 µL in CSF-DF medium to reach about 70%
confluence on the day of infection. Since the primary GBM cultures have different growth
characteristics, we seeded different dilutions of the cell suspension in 96-wells so that the
best wells (70–80% confluence, 3500–4500 cells/well) could be selected for the transduction
experiments on the second day. On the day of transduction, the medium was discarded
and between 100 and 150 µL of LV-containing supernatant were added per well. Cells were
incubated for 24 h at 37 ◦C and 5% CO2 and then media was exchanged with fresh CSF-DF
medium. GFP+ events were monitored in daily intervals by an automated multichannel
fluorescence life cell imaging system (M7000, Life Technologies, Fisher Scientific, Schwerte,
Germany). For antibody-dependent neutralization, LV-containing supernatant was mixed
with a dilution of ZIKV-positive human serum (provided by S. Kann [34], tested for ZIKV
neutralizing hAb by a ZIKV plaque reduction assay) or mAb (rabbit anti-flavivirus group
antigen antibody, clone D1-4G2-4-15, Novus, Bio-Techne GmbH, Wiesbaden, Germany)
and added to the tumor cell containing wells. The amount of input LV was tested in
the presence of 100 µg/well of a humanized monoclonal anti-PD1 antibody, used as a
blocking reagent to prevent unspecific mAb effects in the test wells. For counting GFP+
positive cells, cell layers were stained using DAPI three days after infection and the wells
were photographed at 4× magnification using the automatic scan function of the M7000
microscope (Thermo Fisher Scientific).

3. Results
3.1. Characterization of Primary GBM Cell Cultures

GBM tissue samples were transferred to cell culture in less than three hours after
surgical removal of the tumor. We did not treat the tumor tissue with enzymes, we simply
pressed it through a fine 70 µm sieve. After washing the cell suspension in medium, the
cells were incubated in Cell+ culture flasks and monitored daily for the appearance of
adherent cells. Three different media were used, standard DMEM/10% FBS (DF) pure
human CSF and a 1:1 mix of DMEM/10% FBS and CSF (CSF-DF). The growth of the cells
was monitored daily. The first cell passage was only carried out when the cells had reached
a density of at least 50%. Growth rates of the various cell cultures are given in Table 1.

Table 1. Growth rates 1 of freshly isolated cells in different media 2.

AKH Cells DF CSF CSF-DF

01 ++ − +++
02 ++ + ++
05 ++ + +++
09 +++ + +++
10 ++ + +++
11 ++ − +++
12 +++ + +++
13 ++ + n.d.
14 ++ + +++
15 + − ++
16 ++ − +++
17 ++ − +++
18 n.d. n.d. +++
19 n.d. n.d. +++

1 First cell passage: −, more than 5 weeks; +, 3–5 weeks; ++, 1–3 weeks; +++, <1 week. N.d., not done.
2 DF = DMEM/10% FBS; CSF = human cerebrospinal fluid; CSF-DF = 50% CSF/45% DMEM/5% FBS.
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Since we experienced that cell growth was optimal in CSF-DF, we did not perform any
growth in DF or CSF media from tissue probe 17 onwards. A time series of cell growth is
shown in Figure 1 from a tumor tissue obtained from GBM patient 19, designated primary
cell culture AHK-19.
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Figure 1. Growth of AKH-19 tumor cells in CSF-DF medium at different stages of development. Day 1,
the cell suspension after processing the tissue. Days 14–56, cell cultures used for pseudotype infection
experiments. (a–i) Cell cultures are shown at a 10× magnification (EVOS M7000 microscope).

From day one, cells of the adherent phenotype developed, which can be seen in the
form of thin black lines in Figure 1a,b. Over time, a heterogeneous population of tumor
cells develops with a variety of appearances, including cells with a characteristic roundish,
ependymal, or astrocyte-like shape. In case of AKH-19, cells were used from day 14
(Figure 1f–i) for transduction experiments and characterization of molecular markers. It is
important to note that every tumor cell isolation shows different growth rates, different
forms of cell interactions and most importantly different fine structures and shapes, which
illustrates the tumor term “multiforme” quite well. All AKH cultures as listed in Table 1
were positive for ZIKV receptors Axl and integrin αvβ5. Additionally, we also tested AKH
cell cultures positive for Nanog, Nestin, Oct4, and Sox2 as shown exemplarily in Figure 2.
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Figure 2. Immunofluorescent staining of representative markers in primary GBM cell cultures.
(a–l) Examples of the different morphologies, and established cell-to-cell connections in primary
GBM cultures, which all form their own appearances. Commercial marker-specific monoclonal
antibodies were used for immunostaining and were detected by a goat anti-mouse IgG antibody
(Alexa 488, green). Red, phalloidin actin staining. Blue, DAPI staining of nuclei. Scale bars = 200 µm.
AKH-XX = primary tumor cell cultures from different GBM patients.
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3.2. Transduction of Primary GBM Cells with Four Different LVs

In Figure 3a–d the transduction of primary AKH-16 cultures is shown for LVs carrying
ZIKV prME, ME, E2, or E41.2 envelope proteins, respectively (details for the constructs are
given in the Appendix A, Figure A1). Shown are full 96-well scans of transduced primary
AKH-16 cultures and a corresponding section at 20× magnification.
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Figure 3. Infection of primary AKH-16 cultures with ZIKV/HIVgfp LVs. Green fluorescence is the
indicator for a successful transduction. For transduction, tumor cells were grown in CSF-DF medium
and incubated with cell culture supernatants from COS-1-transfected cells. Left: Complete overview
of a pseudotype infected cell culture in a 96-well at 4× magnification (well Ø = 6.9 mm). Right: View
of a section at 20× magnification. Transduction of cells with (a), Z1-HIVgfp (prME envelope), 115 GFP+
cells; (b), ME-HIVgfp (ME envelope), 420 GFP+ cells; (c), E2-HIVgfp, (E envelope), 350 GFP+ cells;
(d), E41.2-HIVgfp (E∆TMgp41TMCY envelope), 525 GFP+ cells. GFP+ cells were detected on day 3
using an EVOS M7000 microscope with a 470/525 nm filter (excitation/emission).

In Figure 3a, Z1-HIVgfp transduced cells are shown. In the magnified section many
rudimentary filopodial attachments are still visible at the cellular base. In contrast to its
original form, however, the cell appears completely deformed, but has not yet collapsed
completely as can be seen in other parts of the picture (white arrow). The large GFP+ cell is
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partially surrounded by tiny green dots, which might originate from filopodia degradation.
The degradation of filopodia can be seen in more detail in Figure 3b,d. We also observed
small GFP+ cells (white arrow). Since, on day three, these small GFP+ cells have a nucleus,
they cannot originate from filopodia fragments. Comparing this appearance with the
immunostaining images of AKH-16 (Figure 2f,g), one can clearly see the altered cellular
shapes in the LV treated AKH-16 culture. Figure 3b shows a 96-well scan of an ME-HIVgfp
LV treated culture. The deformation and collapse of the filopodia-positive cells is obvious
in this example and clearly visible in the magnified section. The cells appear to retract
their filopodia and a condensed large sphere is formed (white arrows). The filopodia
collapse into much smaller globules, and the entire structure looks like little beads on a
string. This is a typical image showing the destruction of the highly complex fine structure
of astrocyte-like cells. Since the green spheres (white arrows) still have a nucleus, they
cannot originate from filopodia fragments which are visible as tiny green dots. In Figure 3c,
AKH-16 cultures are transduced using E2-HIVgfp. This example shows two deformed cells,
but also one cell that has barely retained its structure (white arrow). The green circular
GFP+ cell in the upper left corner of the image (white arrow) shows the typical shape
of one of the actin-positive AKH-16 cells. These actin+ cells are usually flat and spread
out, but in contrast to their original shape, they look like tiny fried eggs after successful
transduction. Although this cell appears to be rather intact, the corresponding GFP+ signal
extinguished after two weeks, and the cell finally died as did all other cells that were GFP+.
In Figure 3d, cells are transduced by E41.2-HIVgfp showing the highest rate of transduction
compared to Figure 3a–c. The enlargement shows an example of a disruption of the cellular
network, which is normally observed very well in AKH-16 cultures. The fragmentation
of the remaining filopodia, leading to the formation of tiny globules is also very well seen
here. The normally adherent, planar spreading of the healthy cells is no longer present
and the collapse into a smaller sphere becomes visible. A GFP+ cell showing the adherent
phenotype is seen in the lower left corner (white arrow). This cell also collapses and its
GFP+ signal disappeared after 13 days, as does the GFP signal of all other cells. Overall,
transduction with HIVgfp derived LVs and transfer of the LV genome expressing GFP
under the control of the CMV promoter leads to destruction of cell integrity and eventual
death of GFP+ cells. The infection study with four different ZIKV envelopes also showed
that E41.2-HIVgfp is the most efficient LV compared to the three LVs with envelopes which
have the original ZIKV TM (ETM) domain. Replacement of ETM with the HIV-1 gp41-TM
and gp41-CY domains appears to be advantageous for the efficiency of the E41.2-HIVgfp
pseudotype construct.

3.3. Neutralization of LV Entry into GBM Tumor Cells

To verify ZIKV E-specific LV entry, we used a Flavivirus group-specific antibody
(4G2) and sera positive for ZIKV neutralizing antibodies. Neutralization was achieved
by simultaneous addition of LV and antibody to cells, which were then exposed to the
antibody/LV mixture for 24 h. By this procedure, LV neutralization was tested in quadruple
96-wells. Neutralization was determined on the third day by counting GFP+ cells in each of
the four wells. A 90% reduction titer was observed in a range of 80 to 400 for the two human
ZIKV antibody positive sera and between 2000 and 3000 for the 4G2 monoclonal antibody.
When compared, ME-HIVgfp was more sensitive to antibody-dependent neutralization
than the E41.2-HIVgfp pseudotype. In Figure 4a, a complete scan of an ME-HIVgfp infected
AKH-11 culture is shown. Pseudotype transduction was carried out in the presence of
100 µg of an anti-PD1 antibody. This determined the initial quantity of GFP+ LV entry
events (GFP+ foci). Figure 4b showed exemplarily the initial quantity for the respective
test and in Figure 4c one of the four wells that were tested for each of the three sera. The
number of GFP+ cells was counted in all four wells and their mean values are shown in
Figure 4d. Neutralization of E41.2-HIVgfp is shown in Figure 4e–g demonstrating again the
E-specific blockade of pseudotype entry.
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Figure 4. Neutralization of LV entry into GBM tumor cells. Each neutralization experiment was
carried out in quadruple (4 well per antibody dilution). In the figure, for each neutralization test one
of the four wells is shown as an example. (a), AKH-11 primary culture transduced with ME-HIVgfp.
(b), ME-HIVgfp initial quantity of GFP+ cells in the presence of 100 µg PD1-hmAb/well with an
average of 484 ± 35 GFP+ cells/well. (c), For each neutralization test, a complete scan of one of
the four infected wells and one of the input wells is shown as an example. Neutralization was
monitored by GFP expression, and the number of GFP+ cells were counted for each well. (d), the
black dots represent the mean value of GFP+ cells from the 4 wells. The upper and lower bars show
the highest and lowest number of GFP-positive cells identified. (e), initial quantity of E41.2-HIVgfp
induced GFP+ cells with an average number of 715 ± 38 cells/well. Transduction was carried out in
the presence of 100 µg/well hmAb as for ME-HIVgfp. (f), for each serum dilution, one of the four
96-wells is shown as an example. (g), black dots represent the mean of four neutralization assays.
The bars indicate the highest and lowest number of GFP+ cells/well. (d,g), the red line indicates
the level of 90% reduction of LV entry. PD1-hmAB = anti-PD1 humanized monoclonal antibody
(2 mg/mL); 4G2 = anti-flavivirus group antigen antibody clone D1-4G2-4-15 (1 mg/mL); 346 and
335 = human ZIKV antibody positive sera (346, PRNT90 = 1/2048; 335, PRNT90 = 1/1024 determined
using Vero-B4 cells).
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3.4. Efficiency of LV Entry in Primary GBM Cell Cultures

Five different AKH cell cultures were transduced with E2- or E41.2-HIVgfp LVs. On
day three transduced cells were washed and stained using DAPI. Blue-stained nuclei and
green fluorescent cells were counted to determine the percentage of infected cells. Infection
rates were compared to G-HIVgfp infected cells. A section of an AKH-16 cell culture stained
blue and green is shown as an example in the Appendix A, Figure A2. Complete scans of
96-wells for E41.2-HIVgfp and G-HIVgfp, ZIKV E versus VSV-G, are shown in Figure 5.
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Figure 5. Efficient transduction of AKH-16 cells using E41.2-HIVgfp and G-HIVgfp. Shown is a com-
plete overview of a 96-well at 4× magnification (well Ø = 6.9 mm) three days after LV transduction.
Number of GFP+ cells: E41.2-HIVgfp = 830/well, G-HIVgfp = 150/well.

As shown exemplarily in Figure 5, 830 GFP+ cells were counted for E41.2-HIVgfp and
150 for G-HIVgfp. For each measurement, four wells were counted out to determine the
efficiency of the LVs in terms of their infectivity. The means and standard deviations for
E2-, E41.2-, and G-HIVgfp efficiencies are shown in Table 2.

Table 2. Efficiency of E2-HIVgfp and E41.2-HIVgfp transduction compared to G-HIVgfp 1.

Cell Cultures E2-HIVgfp E41.2-HIVgfp G-HIVgfp

AKH-13 3.6 ± 0.2 3.2 ± 0.3 0.5 ± 0.1
AKH-14 6.3 ± 1.1 11.7 ± 0.7 5.4 ± 0.5
AKH-16 8.2 ± 0.6 24.0 ± 1.3 5.9 ± 1.6
AKH-17 10.0 ± 3.7 n.d. 6.8 ± 1.1
AKH-18 5.7 ± 0.9 n.d. 6.5 ± 1.2
U-87MG 1.9 ± 0.2 7.8 ± 1.0 1.7 ± 0.4

U-138MG 2.4 ± 0.5 9.8 ± 2.4 1.6 ± 0.5
U-343MG 2.7 ± 1.3 n.d. 0.8± 0.7

1 Cell cultures in 96-wells were infected by 150 µL of LV-containing cell culture supernatants. The GFP+ rate in %
and the standard deviation were calculated by counting the GFP+ and DAPI+ cells in each of the four 96-wells.
Figure A2 shows an example of a section of a LV transduced and DAPI stained culture. n.d., not done.

For comparison, E2- and E41.2-HIVgfp were chosen, since they are identical in their E
and stem part and only differ in the TM region. As shown in Table 2, the best transduction
results were observed for E41.2-HIVgfp, showing rates of GFP+ cells 2–6× higher compared
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to G-HIVgfp. Especially, the AKH-16 cell culture showed cells of higher permissiveness.
Compared to G-HIVgfp the mean GFP+ number of AKH-16 cells was 4× higher. In these
experiments E2-HIVgfp showed similar GFP+ rates as with G-HIVgfp.

The only exception being AKH-13. Of all five AKH cultures, AKH-13 had a GFP+ rate
of approximately 3%, which was relatively low compared to the other AKH cultures. In
contrast, however, the differences to the G-HIVgfp control were highest for AKH-13, both for
E2-HIVgfp and E41.2-HIVgfp, with a 7- and 6- fold increase in GFP+ cells, respectively. Due
to the heterogenous nature of the primary cell cultures, the transduction experiments should
show variations in the number of GFP+ cells. But in all transduction experiments, GFP+
rates were close or significantly higher as with the commonly used VSV-G pseudotyped LV,
G-HIVgfp.

3.5. Oncolytic Activity of ZIKV/HIVgfp Lentiviral Vectors

Five 96-wells were transduced for each LV and the numbers of GFP+ cells were
monitored over a period of 9 days. As can be seen in Figure 6, the rates for GFP+ cells
decreased rapidly from the 5th day after transduction.

Cancers 2024, 16, x FOR PEER REVIEW 14 of 23 
 

 

For comparison, E2- and E41.2-HIVgfp were chosen, since they are identical in their 

E and stem part and only differ in the TM region. As shown in Table 2, the best transduc-

tion results were observed for E41.2-HIVgfp, showing rates of GFP+ cells 2–6× higher com-

pared to G-HIVgfp. Especially, the AKH-16 cell culture showed cells of higher permissive-

ness. Compared to G-HIVgfp the mean GFP+ number of AKH-16 cells was 4× higher. In 

these experiments E2-HIVgfp showed similar GFP+ rates as with G-HIVgfp. 

The only exception being AKH-13. Of all five AKH cultures, AKH-13 had a GFP+ rate 

of approximately 3%, which was relatively low compared to the other AKH cultures. In 

contrast, however, the differences to the G-HIVgfp control were highest for AKH-13, both 

for E2-HIVgfp and E41.2-HIVgfp, with a 7- and 6- fold increase in GFP+ cells, respectively. 

Due to the heterogenous nature of the primary cell cultures, the transduction experiments 

should show variations in the number of GFP+ cells. But in all transduction experiments, 

GFP+ rates were close or significantly higher as with the commonly used VSV-G pseudo-

typed LV, G-HIVgfp. 

3.5. Oncolytic Activity of ZIKV/HIVgfp Lentiviral Vectors 

Five 96-wells were transduced for each LV and the numbers of GFP+ cells were mon-

itored over a period of 9 days. As can be seen in Figure 6, the rates for GFP+ cells decreased 

rapidly from the 5th day after transduction. 

 

Figure 6. Monitoring of LV-transduced cell cultures over a period of 9 days. (a), ME- or E41.2-HIVgfp 

transductions of AKH-11 (green) and U-87MG (blue) tumor cells were carried out in five separate 

96-well and the GFP+ cells were counted. (b), transduction of AKH-22, non-tumor primary brain 

cells (black dots). AKH-22 cells were cultured in CSF-DF medium and used for transduction two 

days after sampling. 

Figure 6. Monitoring of LV-transduced cell cultures over a period of 9 days. (a), ME- or E41.2-HIVgfp
transductions of AKH-11 (green) and U-87MG (blue) tumor cells were carried out in five separate
96-well and the GFP+ cells were counted. (b), transduction of AKH-22, non-tumor primary brain
cells (black dots). AKH-22 cells were cultured in CSF-DF medium and used for transduction two
days after sampling.
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In agreement with the observation shown in Figure 2a–d, we also observed loss of
cell integrity and the collapse of the fine cellular morphology of the GBM cells. GFP+
signals were peaking generally on day three and were vanishing more rapidly from day
four. Thus, ME- and E41.2-HIVgfp transduction induced cell death, in contrast to brain cells
of a non-cancer origin, designated AKH-22. GFP+ signals in AKH-22 cells was low with
less than 6 GFP+ cells/96-well containing about 1000 adherent AKH-22 cells. Interestingly,
G-HIVgfp caused more GFP+ cells, albeit in low numbers (11–30 GFP+ cells/well), but
with a significantly higher number than the ME and E41.2 candidates. This demonstrates
also the high specificity of ZIKV/HIV-pseudotypes for GBM cancer cells leaving healthy
brain cells mostly unaffected whereas VSV-G-coated pseudotype entry into AKH-22 was
more evident.

4. Discussion
4.1. GBM Primary Cell Cultures

Establishing primary cell cultures from GBM tissues is critical for conducting research
and especially for the development of LVs aimed at understanding the disease and devel-
oping potential anti-GBM strategies [35]. Primary cultures provide a closer representation
of the tumor cell’s characteristics compared to established laboratory-adapted cell lines or
GBM cells that have been cultivated in vitro for a long time. In this study, all primary cell
cultures of glioblastoma cells are derived directly from patient tumors and are given into
in vitro cell culture conditions within <3 h after surgery. Once the cultures produced a suffi-
cient amount of tumor cells, they were characterized for expression of ZIKV entry receptors
Axl/Gas6 and Integrin αvβ5. Axl/Gas6 was detected regularly and evenly distributed on
GBM cells. In contrast, the presence of integrin was preferentially targeted to the nucleus
and was particularly pronounced in dividing cells [30]. In addition to the ZIKV receptors,
we further characterized all cell lines for the expression of embryonic stem cell markers
Nanog, Nestin, Oct4, and Sox2, as these are critical receptors for the progression of various
human malignancies, including brain tumors [36–40]. Additionally, to the proposed ZIKV
receptors, it has been shown that Sox2 is critical for ZIKV GBM infections [41].

The LV transduction tests were carried out in parallel with the first tests, which could
generally be performed from the second week onwards. For LV development, we do
not work with older, >6 months, AKH cultures. We therefore continuously collect tumor
samples in order to create new GBM cultures for LV transduction studies. The approach is
to use heterogeneous GBM cultures without transforming or selecting them, so that the cells
do not deviate significantly from their original state. The addition of human cerebrospinal
fluid as a major cell culture medium supplement is also part of this approach, which aims
to bring the cell culture conditions as close as possible to the original in vivo situation [42].
The multiforme character of the tumor is also one of the reasons why we keep using new
cultures. Especially because the tumor is very heterogeneous, it must be shown that an
LV is also able to transfer therapeutic genes into the cells from various tumors. In our
experience, primary GBM cell cultures show a very detailed morphology of the brain cells
compared to older GBM cells or laboratory strains that have lost this appearance. Because
in primary cultures, the isolated tumor cells form such excellent, fine structures, they are
well-suited to observing LV entry and especially tumor cell destruction. However, the cell
culture system is limited to the presence of adherent cells, and it would be interesting to
study the entry of LVs also in 3-D cell culture models if, for example, neurospheres are
less or more sensitive to LV entry compared to 2-D cultured GBM cells. In our opinion,
3-D models are better suited for the analysis of replication-competent oncolytic viruses or
for the analysis of drugs and glioblastoma biology in general. LV-induced morphological
changes or apoptotic effects of individual cells can preferably be analyzed in 2-D cell
culture systems. Especially in GBM research, attention must be paid to the interactions to
be investigated in order to select the appropriate cell culture system [43].

Comparing LV transduction in tumor and non-tumor cells, we observed a higher
specificity of ZIKV/HIVgfp for tumor cells as compared with VSV/HIVgfp. These experi-
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ments are limited to the region from which the healthy brain cells were taken, indicating
that healthy brain cells do not appear to be a major target for ZIKV/HIVgfp. However, the
tests with healthy brain cells presented in this study are limited to a single tissue sample
and are therefore, probably not sufficient to completely rule out possible effects on the
heterogeneous cell populations in the brain. We therefore cannot exclude the possibility that
a ZIKV/HIVgfp LV would infect neural stem cells or other healthy cell types in the brain,
which could lead to possible off-target effects [44–46]. Given the poor 5-year survival rate
in GBM, this may not be a major problem, but off-target effects should be avoided as much
as possible. In general, off-target effects must be considered in a differentiated manner. On
the one hand, the specificity of cell entry and on the other hand, the oncolytic mechanism
of action must be taken into account. Currently, the LV specificity for GBM cells is given by
the ZIKV E protein, and it is not clear what kind of changes to this protein could further
improve the differentiation between tumor and normal cells [45]. The oncolytic mechanism
of action is therefore another important factor that should preferably be directed against
tumor cells. The GFP expression might be an example of how cells can be inhibited, it
is therefore an interesting question if other genes can be identified that are accepted by
normal cells, but lead to cell death when expressed in GBM cells. In addition, LVs can be
used for the transfer of siRNA or mutation-specific sgRNA, which are preferably effective
against GBM cells [47,48]. Therapeutic genes of this kind can easily be inserted into retro-
or lentiviral genomes [49,50]. In combination with ZIKV E, a very high specificity can be
achieved, which might greatly reduce any off-target effects by such LVs.

4.2. Virus Envelope for Pseudotyping Lentiviral Vectors

One of the major hurdles has been how to target a gene transfer vector to cells of
interest. With the technique of pseudotyping, virus particles can be generated with viral
envelope proteins from another virus to either restrict or broaden the host cell tropism.
Pseudotyping is mainly used for the enveloped viruses of lentiviruses (HIV-1), retroviruses
(murine leukemia virus) and rabies viruses (VSV). Lentiviruses, as a subgroup of retro-
viruses, provide the advantage of being able to transfer genetic material into both dividing
and non-dividing cells, mainly due to the HIV-1 accessory protein vpr [51]. They also offer
a much larger cargo capacity compared to other viral vectors, so that they can carry and
transfer relatively large therapeutic genes or multiple genes simultaneously. This feature is
an important advantage that significantly expands their range of applications [52].

A commonly used envelope protein for pseudotyping is the vesicular stomatitis virus
G protein (VSV-G), which is well suited for infection of many cell types, as the envelope
receptor pairings such as VSV-G—phosphatidylserine (PS) or VSV-G—low-density lipopro-
tein receptors (LDLR) offer a broad tropism. From a technical point of view, like G-HIVluc
or G-HIVgfp as used in the present study, have the advantage that they are stable and can
be enriched by ultracentrifugation to generate high titers [53]. This is one of the reasons
why VSV-G is often used for ex vivo cell transduction and the industrial processing of
VSV-G coated LVs. Since we cannot be sure and there is no data available on the stability of
ZIKV/HIV pseudotypes, we are not modifying LV-containing cell culture supernatants.
Adjusting LV extracts by counting GFP+ foci or by analyzing the HIV-1 p24 antigen of the
LV extract seem to be the method of choice to normalize LV extracts.

It was noted that vesicular stomatitis virus G-protein (VSV-G)-pseudotyped lentiviruses
which do not utilize a specific receptor-dependent entry pathway have a much wider trans-
duction potential. VSV-G-pseudotyped HIV-1 was used to transduce patient-derived GBM
laboratory-adapted cell lines with an apparent 100% success rate [6]. But from the reference,
it is not clear how the VSV-G pseudotyped HIV-1 was generated or concentrated to reach
such a high rate of transduction. We prefer to use unmodified LV-containing supernatants
from the originally transfected cell cultures for comparing efficiencies between different
LVs. It is evident that LVs produced, harvested, and finally concentrated by transfection
from much larger culture vessels than 24-wells must result in a higher number of i.e., GFP+
cells when added to cells in a 96-well. The development of a more efficient LV packaging
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method is certainly one of the next tasks to be addressed. However, with regard to combat-
ting GBM, the broad tropism of VSV-G is undesirable for planned in vivo applications due
to the risk of severe off-target infectivity, as was also shown in our study.

To transfer therapeutic genes into GBM tumor cells, there is a special need for an
envelope protein on the LV surface that has a high binding activity to a corresponding
receptor present on the GBM tumor cell. Fortunately, the receptor molecules Axl/Gas6
and integrin αvβ5, proposed for Zika viruses, are particularly exposed on GBM tumor
cells, which makes ZIKV envelopes perfect candidates for the encapsulation of retroviral
vectors. For the development of an anti-GBM pseudotype, the search for a viral envelope
with a perfect tropism, like ZIKV E, is only one part of the solution. A second aspect is
the assembly of the pseudotype particle. The prerequisite for this is that both the selected
envelope protein and the HIV-1 proteins gag and gag-pol localize at the cell membrane.
However, HIV-1 is assembled at the outer cell membrane, whereas ZIKV is not. When using
ZIKV E, it must therefore be modified so that it becomes part of the normal HIV-1 assembly
process. In addition to the publications of our group, there is one publication that describes
such a modification, in which the transmembrane region of ZIKV E was exchanged for that
of VSV-G [54]. Together with a retroviral vector, they showed also an enhanced transduction
rate for tumor cells in comparison to the use of VSV-G. Since we are using a lentiviral vector
system based on HIV-1, we decided to use the transmembrane region of gp41 (TMgp41)
and its cytoplasmic domain (CYgp41) as a replacement for TME [30]. Here, we have shown
that by using such a construct, E∆TMTMgp41CYgp41, a significantly better transduction of
different primary GBM cultures could be achieved compared to VSV-G.

Efficient assembly and budding of the pseudotype particle at the cellular membrane
are important aspects on the way to a functional ZIKV/HIV pseudotype. The budding
of the virus particle is a process driven by the ESCRT machinery [55]. This requires the
presence of a specific PTAP sequence motif within the cytoplasmic part of the envelope that
links it to the ESCRT-I factor TSG101. Viruses like Ebola (matrix protein), lymphocytic chori-
omeningitis virus (LCMV, Z protein), Lassa (Z protein), Moloney murine leukemia virus
(MMLV, p12-gag), simian immunodeficiency virus (SIV, p6-gag), human T-lymphotropic
virus type 1 (HTLV-1, p19-gag) and HIV-1 (p6-gag), hijack all ESCRT-I via their PTAP se-
quence [56,57]. The TM or CY domains of HIV-1 gp41 have no such epitope, but the p6
domain of HIV-1 gag hijacks ESCRT-1 via its PTAP epitope. Thus, the TM and CY domains
of HIV-1 seems to be well suited as a replacement for the E TM domain.

Another aspect is a fundamental problem with oncolytic virus strategies. A safe
therapeutic virus that replicates in the human brain needs not only an efficient on-switch;
it also needs a very effective off-switch. The concept of oncolytic pseudotypes offers
a very effective off-switch, as it only leads to pseudotype entry, also known as single-
round infection, and most importantly, all transferred genes are deleted together with the
transduced cells whenever the oncolytic effect is strong in this LV.

4.3. GFP as a Reporter for Transduction

Green Fluorescent Protein (GFP) is commonly used as a selection marker for gene
transduction and to track tumor or stem cells. In addition, GFP is not considered toxic
to living cells in most cases. However, the potential for toxicity can depend on how GFP
is used and expressed in cells [58]. Some cells have shown to be sensitive after being
transfected by various GFP-plasmid vectors when GFP is expressed under the control of
SV40 or CMV promotors. These include mouse embryonic and baby hamsters kidney
fibroblasts, whose GFP fluorescence disappears within 4–5 days, and which also die after
this period [59]. Initiation of apoptosis has been postulated as a possible mechanism for
GFP-dependent toxicity and cellular death. The DAPI staining technique in this study
shows also that nuclear decay was observed in HIVgfp pseudotype-infected cells. We
observed roundish GFP-positive spheres under fluorescence microscopy, which did not
correlate with concomitant positivity for DAPI as shown in Figure 7.
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Figure 7. Negative DAPI stain of GFP+ cells after LV transduction. Shown is an example of GFP-
positive cells displaying negative DAPI staining (day 6). Red circle, cells positive for GFP and
negative for DAPI.

The GFP+ cells shown in Figure 7 are not observed after further days, so that after
about 13 days, no GFP positivity could be observed anymore in the LV transduced GBM
culture. Condensed black structures of dead cells are then present at these sites, clearly
negative for GFP and DAPI. From our observations, we conclude that cells transduced with
the HIVgfp pseudotype lose their structure, collapse, and eventually die. This effect was not
only a rare event, but death of infected cells was observed in all primary cell cultures after a
period of 7–10 days. This observation and its time course is similar to the GFP-induced cell
death observed in mouse embryonic fibroblasts and in baby hamster renal fibroblasts seen
by other researchers [59]. In the context of GFP-induced toxicity and apoptosis, various
morphological changes such as loss of structural integrity were also observed [59].

In stem cell biology, stable expression of fluorescent reporter genes, such as GFP, is of
great importance to follow the development of stem cells and their progeny. Interestingly, it
has been demonstrated that cells with GFP as reporter are not suitable for studies on longer
time scales, due to the cytotoxicity of GFP [60]. In primary cortical neuron cultures, transfer
of the GFP reporter gene triggered apoptosis, demonstrating a high GFP-dependent toxic
effect [61]. In addition, rat hepatic adult stem cells were shown to be highly sensitive
to GFP-induced damages, preventing the establishment of GFP-expressing strains [60].
Studies in mice showed that GFP co-expressed together with ß-galactosidase, induced
growth retardation of neurons and premature death due to the apoptotic effects observed
in the forebrain area [62]. It is proposed that the apoptotic effects seen are in part due
to the oxidative stress produced by GFP [63]. Additionally, in neuroblastoma cell lines,
GFP expression has been shown to induce oxidative stress, resulting in selection of cells
sensitized to death [64].

One of our original ideas was to isolate the infected cells in order to further characterize
them. In agreement with the reports of [60], we were also unable to generate clonal lines
from the pseudotype infected, GFP-positive tumor cells, which prevents use of techniques
like FACS or Macs sorting. We have not yet identified a fluorescent marker that enables
long-term cultivation of GBM tumor cells. In particular, the expression of mCherry proved
to be more toxic compared to GFP, which is also consistent with observations from other
studies [65]. Interestingly, there is a new report on a fluorescent protein that appears to
be suitable for the long-term labeling of fine structures, like filopodia, in neurons [66].
Whether E2-crimson protein can be of help as a fluorescent marker, constitutively expressed
in cells from primary GBM cell cultures, to establish classical cell lines is a question that
still needs to be addressed.

Another aspect that is important in the context of the present study is the influence
of GFP expression on the structural integrity of cells. Impairment of the actin-myosin
interaction has also been reported due to GFP cytotoxicity. Transduction of myotubes that
were derived from primary myoblasts with GFP lentivirus vector showed an impaired cell
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performance. Expression of GFP resulted in disruption of actin-myosin interaction and
consequently impaired contractile function in transduced cells [67,68].

Considering the various GFP-induced defects, it is likely that GFP may be the trigger
for the damages we commonly observe in GBM tumor cells after HIVgfp pseudotype
transduction. For example, intact and healthy fine structures of astrocyte-like cells, as
seen in the immunostaining images in Figure 2, are no longer detectable after HIVgfp
pseudotype entry. In this context, it has been shown that GBM astrocytes, by targeting their
immunometabolic pathway, cause destruction of the GBM tumor architecture [69].

In agreement with the studies described by Liu et al. [59], we also observed that after
five days the GFP+ signal in the transduced cells began to vanish. The non-transduced
cells, on the other hand, continued to multiply unhindered. The GFP effect on GBM
cells, identified as a new side effect, can be interpreted as an oncolytic effect. Thus, the
ZIKV/HIVgfp LVs would not only be a tool for the transfer of therapeutic genes into GBM
cells but would also have a general oncolytic potential due to its GFP expression.

5. Conclusions

For oncolytic virus therapy, the biggest hurdle is to transfer the relevant genetic
material into a sufficient number of target cells and to avoid the transduction of non-target
cells. It is important to design the gene transfer vector in such a way that it has the best
possible specificity for the desired cells. ZIKV envelope coated LVs provide prime tools for
targeting GBM since they have a high specificity for these kind of tumor cells.
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CY domains of HIV-1 gp41. c’, c-terminal part of ZIKV capsid. StemE, flexible region between E and 

TME; TME, transmembrane domain of E. TMgp41, transmembrane domain of HIV-1 gp41. CYgp41, cy-

toplasmic domain of HIV-1 gp41. Black and white bars, ZIKV sequences. Grey bars, HIV-1 se-

quences. 

 

Figure A2. Infection of the AKH-16 cell culture by E41.2-HIVgfp. Cells were grown in CSF-DF me-

dium and infected cell cultures were stained on day three using DAPI (blue). Shown is a section of 

a 96-well scan at 4× magnification (EVOS M7000). Green, LV transduced GFP+ cells. 
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TM CY domains of HIV-1 gp41. c’, c-terminal part of ZIKV capsid. StemE, flexible region between
E and TME; TME, transmembrane domain of E. TMgp41, transmembrane domain of HIV-1 gp41.
CYgp41, cytoplasmic domain of HIV-1 gp41. Black and white bars, ZIKV sequences. Grey bars, HIV-1
sequences.
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