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Simple Summary: This study examines the application of magnetic nanoparticle hyperthermia
(MNH), a cancer treatment technique that utilizes magnetic particles at the scale of nanometers and a
controlled magnetic field to selectively heat and destroy cancer cells. The study focuses on a specific
system, the Sarah Nanotechnology System, which combines these magnetic particles and a device
that generates the magnetic field. The main goal is to ensure this treatment is safe for patients. We
used a combination of real-world experiments and computer simulations to test how the system
affects the body’s temperature, particularly aiming to avoid overheating healthy tissues. We used a
virtual human model to predict temperature changes during treatment. The findings are promising
for safely using this advanced technology in cancer treatment, potentially offering a new, targeted
approach for patients with advanced-stage tumors. This could be a significant step forward in cancer
therapy, highlighting the importance of combining experimental and computational methods in
medical research.

Abstract: The present study focuses on the development of a methodology for evaluating the safety
of MNH systems, through the numerical prediction of the induced temperature rise in superficial skin
layers due to eddy currents heating under an alternating magnetic field (AMF). The methodology
is supported and validated through experimental measurements of the AMF’s distribution, as well
as temperature data from the torsos of six patients who participated in a clinical trial study. The
simulations involved a computational model of the actual coil, a computational model of the cooling
system used for the cooling of the patients during treatment, and a detailed human anatomical model
from the Virtual Population family. The numerical predictions exhibit strong agreement with the
experimental measurements, and the deviations are below the estimated combined uncertainties, con-
firming the accuracy of computational modeling. This study highlights the crucial role of simulations
for translational medicine and paves the way for personalized treatment planning.

Keywords: magnetic nanoparticle hyperthermia; anatomical human model; Sim4Life; Pennes BioHeat
equation; temperature-dependent perfusion

1. Introduction

Magnetic nanoparticle hyperthermia (MNH) is a minimally invasive therapeutic tech-
nique for targeted heating with applications in cancer treatment [1,2], utilizing the unique
properties of magnetic nanoparticles (MNPs). Operating on the principle of converting
magnetic energy into heat within an oscillating magnetic field, MNH allows for precise
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temperature control at the tumor site by adjusting the amplitude and frequency of these os-
cillations. Heat dissipation in tumor cells by MNPs mainly occurs through two mechanisms
corresponding to the heat generation processes in magnetic materials. The first is related to
hysteresis losses in bulk materials. The second mechanism corresponds to relaxation losses
(Brown and Néel relaxations). The efficiency of these heat transfer processes depends on the
specific design parameters and physical properties of the MNPs, such as size, composition,
and magnetic characteristics.

During the implementation of MNH, a magnetic fluid, usually a dispersion of coated
MNPs, is injected into the patient’s circulation or directly into the tumor [3]. When the
MNPs are on site, the externally applied AMF generates a local temperature increase due
to heating of the MNPs, resulting in the hyperthermic death of malignant cells.

However, the concurrent induction of eddy currents, resulting from a time-varying
magnetic field in the body according to Faraday’s law of induction, and the consequent
temperature increase in healthy tissues often cause local heating, leading to discomfort,
pain, or distress in patients during treatment due to AMF exposure. Atkinson et al. [4]
theoretically estimated the rate of heat production per unit of tissue volume for a cylindrical
body and introduced the highest acceptable value of the product of the magnetic field
strength H and frequency f of (H × f) at 4.85 × 108 Am−1s−1. This value, known as the
‘Atkinson–Brezovich limit’ was supported by experiments performed with a coil operating
at 13.56 MHz positioned around the thorax of patients. It was found that the patients
could thermally tolerate magnetic fields up to 35.8 A/m. Since the heating power of the
induced eddy currents is proportional to the square of the product (H × f × D), where
D is the diameter of the eddy current loop, Hergt and Dutz [5] proposed a safety limit of
5 × 109 Am−1s−1, which is one order of magnitude higher than that of Atkinson–Brezovich,
for body parts of smaller diameters entering the treatment coil. It should be noted that
the above calculations assume homogeneous tissue and do not take into account the effect
of anatomical constrictions or tissue interfaces, which have been shown to result in local
hotspots [6,7]. It appears from the literature that since the clinical study reported in [4],
no other studies have been performed to assess the safety of coils intended for MNH
use. A recent study examined safety for animals [8], for which much smaller diameters of
coils are used than those for humans. Several studies have proposed different treatment
strategies to mitigate healthy tissue heating by eddy currents. These strategies range from
moving the coil [9–11] and intermittent magnetic field exposure [12] to the design of new
coils [13,14]. Experiments with in vitro phantoms have shown that some of these strategies
can considerably reduce the undesirable heating of healthy tissues.

An important issue that arises in the safety evaluation of MNH is the existence of
a valid predictive model for temperature distribution, which can also be used in treat-
ment planning and study design. Although there exist numerical studies on MNH
modeling [14,15], only a few of them have been validated ex vivo [16] or in vivo [17].
To the knowledge of the authors, no validation study has been published so far for a
predictive model of temperature rise in humans undergoing MNH in clinics.

The objective of the current study is to present, for the first time, a clinically validated
computational model for temperature distribution inside the body of human patients
exposed to MNH using a novel Electromagnetic Induction System (EIS) manufactured by
New Phase Ltd. (Petah Tikva, Israel). The predictive model has been validated by clinical
data obtained from a Phase I feasibility clinical study (MOH_2022-09-18_012060) [18],
conducted in patients with stage IV solid tumors who signed an informed consent form
and were treated with escalating doses of MNPs according to the NOAEL [19] criteria
and AMF irradiation, to evaluate the safety of the system, which operates well above the
Atkinson–Brezovich limit. Nevertheless, the model can also be used for treatment planning
once a validated model for the tumor heating rate of the injected MNPs [19] is integrated
into the computational calculations.
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2. Materials and Methods

The Sarah Nanotechnology System is a medical device developed by New Phase Ltd.
to treat stage IV metastatic solid tumors through the delivery of thermal energy to malignant
cells, thereby causing hyperthermic cancer cell death at sub-ablative temperatures [19,20].
The system involves two main components, MNPs named Sarah nanoparticles (SaNPs)
and an Electromagnetic Induction System (EIS). The SaNPs, which contain an encapsulated
superparamagnetic iron oxide core and paraffin wax as a phase change material that keeps
the temperature of the nanoparticles at a maximum of 50 ± 3 ◦C, have an average size
of 135 ± 10 nm and magnetic saturation above 60 emu/g. These MNPs are administered
intravenously to the patient [21] and become localized via the Enhanced Permeability and
Retention (EPR) effect [22] in cancerous tissues. Following the delivery and accumulation
of the nanoparticles in the surrounding malignant tissue, the patient is placed in the center
of the EIS coil and undergoes partial-body exposure with an AMF of 9 mT ± 1 mT at
a frequency of 290 kHz ± 10%. The SaNPs convert electromagnetic energy to thermal
energy, thereby heating the malignant cells they are in contact with and causing their
hyperthermic cell death. To minimize unintended patient body surface heating, the system
is accompanied by a cooling blanket system (CBS) (Figure 1), which includes a blanket
filled with flowing water connected to a chiller and optical temperature probes to measure
the skin temperature during AMF exposure. During treatment, the patient wears the CBS
to cover the area of exposure, while the chiller keeps the water temperature constantly at
20 ◦C.
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Figure 1. Cooling blanket system used for validation and for clinical trial.

To numerically evaluate the thermal impact of the medical system on a represen-
tative patient, a triple validation process of the coil, CBS, and human model was fol-
lowed, involving multiple experimental measurements and sequences of electromag-
netic and thermal simulations. All the experiments, which included magnetic field and
temperature measurements, were conducted on site by New Phase Ltd., implementing
custom configurations and using the appropriate equipment (refer to Supplementary
Material). The computational simulations were designed and run in the Sim4Life plat-
form for electromagnetic simulations (Sim4Life 6.2, Zurich MedTech AG, Zurich, Switzer-
land) using the platform’s low-frequency (LF) and thermal solvers, which implement the
Magneto Quasi-Static (M-QS) approximation and the Pennes BioHeat transfer equation
(BHTE) [23], respectively.

2.1. Coil Simulations

The EIS coil was initially modeled in the Sim4Life platform, following the CAD design
provided by New Phase Ltd. (refer to Figure 2). The coil featured a total of 14 turns, each
with an oval-like shape, and measured 44 cm in height, 64 cm in width, and 23 cm in length.
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Figure 2. Coil CAD model (a) front view and (b) side view. The coil was modeled numerically in
the Sim4Life platform as a current source, and it consisted of 14 turns. Each turn as circulated by a
current of 316.19 A amplitude.

In the M-QS simulation, the coil was represented as a current source operating at
a frequency of 288 kHz and a current amplitude of 316.19 A, so that the numerically
calculated magnetic field induced by the model would agree with the measured magnetic
field value of 9 mT in the coil’s isocenter. The match between the actual EIS coil and the
numerical model was confirmed through magnetic field measurements at various points
on three axial planes, specifically, the isocenter, and planes 11.7 cm above and below it, as
illustrated in Figure 3.
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Figure 3. (a) Experimental configuration for the magnetic field measurements (b1). Illustration of
measurement points in EIS coil (b2) over the selected planes inside the coil model.

2.2. Agar Phantom Simulations

Following the validation of the coil model, the next step was to measure the tempera-
ture impact of the CBS. For this purpose, an agar phantom (Supplementary Material) was
employed to record temperature changes at seven locations using IR probes, as shown in
Figure 4a–c.
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Figure 4. Measurement setup of the agar phantom inside the CBS: (a) front view without cooling
blanket, (b) front view with cooling blanket, (c) side view and points of interest, (d) points where
temperature probes were placed—coronal view, and (e) points where temperature probes were
placed—side view.

Agar phantoms [13] were prepared using agar powder dissolved in a sodium chloride
solution (27.36 g of NaCl in 40 L deionized water). The weight concentration of the agar in



Cancers 2024, 16, 621 6 of 17

the phantoms was 1% (w/w). The phantoms had a square shape with a length of 36 cm, a
height of 17 cm, and a width of 30 cm. The calculated electrical conductivity was 0.18 S/m
and the measured was 0.2 S/m [16], similar to that of human skin tissue [24].

At the same time, a similar phantom was digitally replicated in the Sim4Life platform,
as shown in Figure 4d,e. The heat transfer coefficient for each section of the CBS, necessary
for defining the boundary conditions in thermal simulations, was calculated. This calcula-
tion, based on the corresponding hydraulic diameters and the Nusselt numbers [25], led to
an average value of 210 W/m2/K for all CBS’s sections.

Two scenarios were experimentally and computationally investigated to evaluate the
effect of the CBS model. The first considered the CBS OFF, whereas the second considered
the CBS ON. The same AMF exposure scheme, named [7-5-7], was implemented in both
cases and involved three sequential steps. The applied protocol started with a 7 min cycle
of heating with AMF irradiation turned on, followed by a 5 min break with AMF turned
off, and then, an additional cycle of 7 min of heating with AMF turned on. In the “CBS ON”
scenario, the same AMF exposure scheme was used [7-5-7] with the CBS ON throughout
the entire exposure scheme of 7 + 5 + 7 = 19 min in total.

2.3. Human Phantom Simulations

The posable Ella model (Ella cV3-1, https://doi.org/10.13099/VIP11002-03-1 [26]) of
the Virtual Population (ViP) family [6] was selected to serve as a typical treatment candidate
for the MNH simulations, because it meets two major criteria. Firstly, the anthropometric
characteristics of the model (Table 1), such as its Body Mass Index (BMI), are indicative
of the target patient population, and secondly, its posing functionality allows us to mimic
the actual clinical practice, where the patient’s arms remain outside of the coil area during
AMF treatment. In the Sim4Life environment, Ella was consistently equipped with the CBS
to replicate treatment conditions, and was placed in a prone position, with arms extended
horizontally outside the coil, as shown in Figure 5. The dielectric parameters of the tissues
in the Ella model were chosen according to the database of Gabriel [24].

Table 1. Anthropometric characteristics of six patients and Ella model.

Age
[Years]

Weight
[kg]

Height
[cm]

BMI
[kg/m2]

Back Width
[cm]

Chest Height
[cm]

Circumference
[cm] Gender

P01 55 52.0 160 20.3 26.0 17.0 82.0 F
P02 63 53.7 163 20.2 30.5 22.0 86.0 F
P03 64 61.0 160 23.8 38.0 17.0 86.5 F
P04 70 64.4 165 23.7 35.0 20.0 92.0 F
P05 56 47.2 155 19.6 N/A N/A 93.0 F
P06 67 86.6 193 23.2 35.0 21.0 105.0 M
Ella 26 57.3 163 21.6 27.0 17.7 89.9 F

In the simulation process, setting the appropriate perfusion parameters was a critical
step. Rather than handling blood perfusion as a static parameter, a more realistic approach
was adopted. This approach was based on the findings of Drizdal et al. [27], which
highlighted the temperature-dependent behavior of blood perfusion during superficial
hyperthermia. The results of Drizdal et al. suggest that blood perfusion exhibits dynamic
variations with changes in temperature. To capture this variability, three distinct scaling
factors (SFs) were integrated into the simulations. These factors, designed to adjust the
baseline perfusion values at 37 ◦C for essential tissues such as skin, fat, and muscle, were
applied in the BHTE as SF × [ρbcbω(T − Tb)]. The SFs for each tissue type were calculated
as follows:

SFs(T) =

1 + 9.2 exp
(
− (T−44)2

10

)
T ≤ 44

◦
C

10.2 T > 44
◦
C

(1)

https://doi.org/10.13099/VIP11002-03-1
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SF f (T) =

1 + exp
(
− (T−45)2

12

)
T ≤ 45

◦
C

2 T > 45
◦
C

(2)

SFm(T) =

1 + 7.9 exp
(
− (T−45)2

12

)
T ≤ 45

◦
C

8.9 T > 45
◦
C

(3)
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Figure 5. (a) Patient inserted in the Electromagnetic Induction System during the clinical trial;
(b,c) human model of Ella placed inside the coil model with axial and trans axial views, respectively.
The horizontal lines, in both blue and orange, depict the coil. More specifically, the orange loops
delineate the coil’s isocenter plane.
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The temperature data of six typical patients (detailed in Table 1), with all participants
in a clinical trial approved by the Ethical Committee (Protocol: CL-100-001-R Rev 14, dated
23 October 2023, Helsinki RMS 0397-22, MOH: MOH_2022-09-18_012060, 202228263), were
utilized in this study. Each participant provided their consent after signing an informed
consent form. The inclusion requirements for the study were limited to patients with a
maximum torso circumference of up to 110 cm, to ensure that they would fit within the
system bore. This set of clinical data was used to validate Ella as a proxy (digital twin) for
the patient population [7].

The surface temperature of each patient was measured using optical temperature
probes at nine strategic points (as illustrated in Figure 6) throughout the treatment with a
sampling rate of 1 min, to ensure precise and consistent data collection. The selection of
these probe locations was guided by the objective to obtain a wide picture of the tempera-
ture distribution in the torso area, particularly at anatomical landmarks where anatomical
tissue narrowing occurs, as these points are expected to maximize hotspots due to eddy
currents. Probe 1 was positioned on the sternum, and Probe 2 was located on the inframam-
mary fold. Probe 3 was attached to the right lung area, while Probe 4 was placed on the
upper back. Probe 5, used as a reference, was situated on the shoulder, outside the CBS. The
waist was monitored by Probe 6, and Probe 7 was fixed to the mid-back. Probe 8 was placed
on the abdomen, and finally, Probe 9 was positioned on the lower back. Additionally, the
core temperatures of all patients were measured using an oral thermometer. The average
readings varied from 35.5 to 37 ◦C during treatment, with the maximal allowable increase
in temperature throughout the entire clinical session being 1.5 ◦C. The clinical session
followed a [5-7-5] protocol according to the approved phase 1 clinical trial protocol, which
stands for 5 min of heating, followed by 7 min of rest and 5 more minutes of heating.
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Figure 6. Temperature probe locations on female (left) and male (right) patients: Probe 1 (sternum),
Probe 2 (inframammary fold), Probe 3 (right lung area), Probe 4 (upper back), Probe 5 (shoulder,
reference), Probe 6 (waist), Probe 7 (mid-back), Probe 8 (abdomen), and Probe 9 (lower back).

The same treatment protocol, [5-7-5], was simulated with Ella with the CBS ON and
the temperature was recorded at the locations of the experimental optical temperature
probes. Then, the computational thermal model was validated for all nine probe locations
and the whole treatment time (17 min).



Cancers 2024, 16, 621 9 of 17

3. Results
3.1. Coil Validation

The distribution of the induced magnetic field is shown in Figure 7a. Figure 7b
presents a comparison between the numerical and measured values, normalized to the
central value of each of the three planes involved in the validation process. When these
values are plotted against each other, they fall within the acceptance limits, as determined
by the estimated combined standard/expanded uncertainty, detailed in the Supplementary
Materials [28,29].
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correspond to the combined standard uncertainty, whereas the dashed lines signify the combined
extended uncertainty. Blue line represents the identity 1:1 line.
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3.2. Cooling System Validation

The experimental and the numerical agar phantom temperatures were compared as
functions of time and temperature for the seven selected points (Figure 4). The measure-
ments and the simulation results showed good agreement in both investigated scenarios,
as detailed in Table 2, with the maximum deviation at the final temperature reached when
the CBS was OFF being 18% (Figure 8), whereas the corresponding value with the CBS ON
was 56% (Figure 9). The deviation for both cases was lower than the estimated combined
standard/expanded uncertainty (see Supplementary Material). Notably, while in Figure 8,
the numerical and experimental data align well, Figure 9 exhibits notable discrepancies
at points 1, 2, and 4. These deviations are likely due to some random displacement of the
thermal probes when the blanket was put on. This interpretation is further supported by
the fact that point 6, which is symmetrical to point 2, does not exhibit similar deviations.

Table 2. Deviation in final temperature reached at each point between measurements and numerical
simulations when the CBS is OFF and when the CBS is ON in terms of % relative error.

Deviation
Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7

CBS OFF −10% −7% 14% 4% 18% −9% 6%
CBS ON −46% −56% 15% −31% 13% −8% 23%
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3.3. Human Model Validation

The results demonstrate that the numerically calculated temperature of Ella is quite
similar to the average measured temperature of the six patients for every probe location
during the entire session (Figure 10). Integral to this analysis, the SAR estimate for the Ella
model, expressed as the peak spatial value averaged over 10 g (psSAR10g) of skin, was
calculated numerically at 102 W/kg.

In Figure 10, the numerical and experimental results show good correspondence
overall. However, a deviation is observed at probe location 2, situated in the chest area,
specifically under the breasts. This discrepancy can be attributed to the unique anatomical
features that influence the effectiveness of the cooling blanket. Unlike the simulation
where the blanket is modeled to fit perfectly around Ella, the real-world scenario features a
non-conformal blanket. This leads to reduced efficiency in heat transfer.

Furthermore, the error errj
i was calculated every minute for every probe location i and

for every minute j as
errj

i = T j, mean
i − T j, Ella

i , (4)

i.e., as the difference between the computationally and experimentally obtained tempera-
ture values, where for the experimental temperature value at each time point j and probe
location i, the arithmetic mean, T j, mean

i , over all six patients was used.
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Figure 10. The black line represents the average measured temperature, typically within two standard
deviations (grey area), compared to the numerically calculated temperature of Ella (red) during the
treatment session and across the nine probe locations.

The computational relative standard uncertainty, uj, num
i , was evaluated using a Type

B [30] approach and sensitivity analysis at 10.97%. Therefore, for every numerically calcu-
lated temperature T j, Ella

i , the standard uncertainty was evaluated as

uj, num
i = 0.1097 × T j, Ella

i (5)

The experimental standard uncertainty uj,exp
i was evaluated using a Type A [30]

approach as the standard error across all patients.
Figure 11 shows that for all probe locations i and throughout the treatment (for all

minutes j), the following condition was true:

errj
i <

√(
uj, num

i

)2
+

(
uj, exp

i

)2
(6)

The smallest validation margin (largest error) appears in Figure 11 for probe location
2 (front left of the chest) and the largest validation margin for probe location 5 (back
left shoulder).
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Therefore, it is shown that the thermal model of Ella is a validated model for the
patient group which participated in the clinical study and had been chosen following
specific selection criteria related to the anthropometric data of Table 1.
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4. Discussion

Hyperthermia Treatment Planning (HTP) has increasingly made its way into clinical
use in recent years. Current alternative treatments in MNP hyperthermia primarily focus
on localized therapy, where tumors are identified, located, and then, directly injected with
MNPs for targeted irradiation, as exemplified in systems, like the one by MagForce AG [31],
that involve HTP [32]. The MNH system presented in this study introduces a method
of regional irradiation, treating the patient’s entire torso, thus eliminating the need for
precise tumor detection and localization. This approach, combined with the intravenous
injection of MNPs, which accumulate around tumors due to the EPR effect [20], facilitates
the treatment of multiple tumors, including undetected micro-tumors, across various torso
locations, thus not being organ specific.

The strength of numerical simulations lies in their ability to evaluate the safety and
effectiveness of different scenarios before actual treatment, allowing for patient selection,
specific power excitation planning, and clinical outcome prediction [33]. These simula-
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tions are also crucial for training, treatment visualization, and basic research to enhance
our understanding.

To our knowledge, this is the first introduction of a comprehensive methodology
designed for assessing the safety of MNH treatment in the torso and founded on the
validation of all key components (the treatment coil, the cooling system, and a detailed
human anatomical model) with experimental data. Previous computational studies in
the field of hyperthermia treatment often limited their scope to specific areas, such as the
head and neck [34], focused on specific organs or animals [16], or employed simplified
anatomical models based on the segmentation of a limited number of tissues [35], focusing
on different hyperthermia modalities and on other (usually higher) operating frequencies.
Our study, incorporating Ella as a digital proxy that closely mirrors the anthropometric
characteristics of the target patient population, emphasizes the practical relevance and
applicability of this approach.

The validation of the 3D models of human thermoregulation requires temperature
data from various locations. The lack of temperature data from inside the body, such as
muscle and fat temperatures, often makes validation challenging and leads to a limited
understanding of fundamental thermoregulatory mechanisms [36]. However, it can be
shown from the data in the current study, as well as from other similar validation studies
in MRI safety [7,37], that the change in blood perfusion with increasing temperature must
always be considered in the patient’s thermal model to achieve an accurate representation
of the clinical situation. In a previous study, Murbach et al. [7] used two high-resistance
temperature probes placed at numerically estimated temperature hotspot regions on both
shoulders of a male subject inside a 64 MHz body coil. The authors showed that con-
stant blood perfusion could overestimate the hotspot temperature by more than 3 ◦C. Oh
et al. [37] used MRI thermometry to validate their thermal modeling of surface coils both
in vitro (with an agar phantom) and in vivo (in a human forearm) in a methodological
approach like ours. The regulation (increase) of local blood perfusion with temperature
gave us a conservative value for the in vivo maximum temperature increase of about 25%
greater than the value measured experimentally. However, the data on the temperature
dependence of tissue thermal properties, including blood perfusion, are still scarce [38].
More experimental studies are necessary to collect detailed data for all tissues involved in
the thermal modeling of MNH treatment.

As MNH methodologies evolve, predictive models like the one presented here will
become indispensable. The future of thermal modeling looks promising, and as it matures, it
will play an integral role in the medical field. With the advent of non-invasive thermometry
approaches, thermal models will gain even more significance, especially where MR thermal
imaging is not feasible. The validation of developed HTP tools in vivo and their integration
into routine clinical workflows will be vital going forward [33].

Regarding the MNH treatment, the critical challenge has always been ensuring the tar-
geted heating of malignant cells while safeguarding surrounding healthy tissues. Therefore,
the discomfort arising from local heating due to AMF exposure accentuates the need for
predictive models [36]. Systems like the one from New Phase Ltd., which operate beyond
the established Atkinson–Brezovich limit [2], carry risks. Thus, our computational model,
backed by clinical data from patients with stage IV solid tumors, offers an in-depth under-
standing of temperature distribution during MNH treatment and enables the expansion of
irradiation treatment duration and/or power (Hxf).

5. Conclusions

This study introduces, for the first time, a clinically validated computational model that
predicts temperature distributions in patients undergoing MNH treatments. The individual
components of the model were validated in vitro, whereas the full thermal model of the
patient was validated in clinical practice, considering both numerical and experimental
uncertainties. This validation shows that the integration of temperature-dependent blood
perfusion offers a more accurate physiological representation during treatment.
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The clinical results and the predictions obtained by the validated computational model
support the safe application of the New Phase MNH treatment. The temperature in healthy
tissues of the torso does not reach harmful values, with the system preventing any thermal
toxicity to patients. The inclusion criteria, which are dominated by the torso circumference
of patients, may be broadened by using constant temperature monitoring.

Computational simulations play a pivotal role in translational medicine, not just in
predictive modeling but also in calculating and validating safety and efficacy parameters.
These simulations are instrumental in advancing clinical applications for MNH. While the
primary focus of this research is clinical validation, it is obvious that the model’s potential
extends to treatment planning.
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