
Citation: Perik, T.; Alves, N.;

Hermans, J.J.; Huisman, H.

Automated Quantitative Analysis of

CT Perfusion to Classify Vascular

Phenotypes of Pancreatic Ductal

Adenocarcinoma. Cancers 2024, 16,

577. https://doi.org/10.3390/

cancers16030577

Academic Editor: David Wong

Received: 20 December 2023

Revised: 20 January 2024

Accepted: 25 January 2024

Published: 30 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Automated Quantitative Analysis of CT Perfusion to Classify
Vascular Phenotypes of Pancreatic Ductal Adenocarcinoma
Tom Perik *, Natália Alves , John J. Hermans and Henkjan Huisman

Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
john.hermans@radboudumc.nl (J.J.H.); henkjan.huisman@radboudumc.nl (H.H.)
* Correspondence: tom.perik@radboud.com

Simple Summary: This study introduces a novel semi-automated artificial intelligence (AI) biomarker
for CT perfusion (CTP) analysis with the goal of identifying vascular phenotypes of pancreatic
ductal adenocarcinoma (PDAC) and assessing their effects on overall survival (OS). A deep learning
approach combined with a CTP curve model was utilized. The biomarker successfully differentiated
tumor vascular characteristics among 86 analyzed PDAC patients. Notably, tumors identified as
isovascular by the AI biomarker showed distinct enhancement metrics. These vascular phenotypic
differences were significantly associated with variations in OS. Thus, AI-enhanced CTP analysis
seems a promising potential clinical tool for predicting prognoses in PDAC patients.

Abstract: CT perfusion (CTP) analysis is difficult to implement in clinical practice. Therefore, we
investigated a novel semi-automated CTP AI biomarker and applied it to identify vascular phe-
notypes of pancreatic ductal adenocarcinoma (PDAC) and evaluate their association with overall
survival (OS). Methods: From January 2018 to November 2022, 107 PDAC patients were prospec-
tively included, who needed to undergo CTP and a diagnostic contrast-enhanced CT (CECT). We
developed a semi-automated CTP AI biomarker, through a process that involved deformable image
registration, a deep learning segmentation model of tumor and pancreas parenchyma volume, and a
trilinear non-parametric CTP curve model to extract the enhancement slope and peak enhancement in
segmented tumors and pancreas. The biomarker was validated in terms of its use to predict vascular
phenotypes and their association with OS. A receiver operating characteristic (ROC) analysis with
five-fold cross-validation was performed. OS was assessed with Kaplan–Meier curves. Differences
between phenotypes were tested using the Mann–Whitney U test. Results: The final analysis included
92 patients, in whom 20 tumors (21%) were visually isovascular. The AI biomarker effectively dis-
criminated tumor types, and isovascular tumors showed higher enhancement slopes (2.9 Hounsfield
unit HU/s vs. 2.0 HU/s, p < 0.001) and peak enhancement (70 HU vs. 47 HU, p < 0.001); the AUC was
0.86. The AI biomarker’s vascular phenotype significantly differed in OS (p < 0.01). Conclusions: The
AI biomarker offers a promising tool for robust CTP analysis. In PDAC, it can distinguish vascular
phenotypes with significant OS prognostication.

Keywords: perfusion imaging; biomarker; pancreatic neoplasms

1. Introduction

Dynamic CT perfusion (CTP) is a functional imaging technique that enables the
quantification of tissue vascularization [1]. CTP is based on temporal changes in tissue
attenuation after the injection of a contrast medium. Mathematical models can be used to
calculate the quantitative features of tissue. Early applications of CTP were focused on brain
imaging, but in recent years, multiple studies have used CTP for oncologic imaging [2].
Oncological applications involve lesion characterization, prognostication, and treatment
response evaluation [1,3–5]. Previous studies have shown that CTP can also help in the
detection and treatment assessment of pancreatic ductal adenocarcinoma (PDAC) [6–9].
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Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related
death in the USA. Its prognosis is poor, with a five-year survival rate of 12% [10,11]. The
treatment of PDAC poses clinical challenges, especially in tailoring optimal treatment strate-
gies. Prognostication could help in selecting subtypes with different treatment options.
Although the majority of tumors are hypoattenuating, a substantial subgroup, ranging
from 10 to 20%, is isoattenuating [12–14]. Earlier studies demonstrated that isoattenu-
ating tumors showed significantly longer survival after resection [12,15]. However, the
detection of isoattenuating tumors is difficult because there is no clear demarcation be-
tween tumor tissue and pancreatic parenchyma. Therefore, secondary signs are needed
to detect these tumors [13,16]. The quantification of perfusion using CTP can enable the
improved classification of these vascular subtypes. This information can be valuable in
shared decision-making and associated quality of life.

The clinical implementation of CTP for oncology is still limited because of a lack of
consistent kinetic models, and the analysis of CTP is time-consuming. Perfusion parameters
rely heavily on the specific kinetic models applied, which restricts their interchangeability
and interpretation, thus impeding their use in clinical decision-making [8,9,17,18]. Previous
perfusion studies used manual annotations to create a region of interest (ROI), which
was time-consuming and user-dependent, hampering its practical integration into clinical
routine [4,6,19,20].

To address these issues, we developed a novel method for the automatic quantification
of tumor perfusion with CTP based on a patented pharmacokinetic dynamic contrast-
enhanced MRI (DCE-MRI) analysis of prostate cancer [21]. We hypothesized that a
kinetic-model-independent method would allow for a consistent time–intensity curve
(TIC) analysis. Furthermore, we used a deep learning segmentation model to automate
ROI selection [22]. This enabled user-independent and rapid ROI selection of the entire
tumor, to calculate perfusion features in all tumors.

This study was aimed at evaluating our automated CTP analysis for identifying
vascular phenotypes of PDAC and correlating vascular phenotypes with overall survival
in patients with PDAC.

2. Materials and Methods
2.1. Patients

Institutional review board approval for this single-center study was obtained, and all
patients gave written informed consent. All inclusions and scans were performed at the
Radboud University Medical Center. Between January 2018 and September 2022, patients
with a clinical suspicion of pancreatic cancer, as determined by the multidisciplinary tumor
board, were prospectively included. The exclusion criteria were aged below 18 years,
previous treatment for pancreatic cancer, concomitant malignancies, contraindications
of CECT (i.e., untreatable contrast allergy and severe renal function impairment), and
insufficient command of the Dutch language. Only patients with histopathological proof of
PDAC, obtained via fine needle aspiration/biopsy (FNA/FNB) or tumor resection, were
included in the final analysis. Furthermore, image quality needed to be sufficient for
analyzing the time–intensity curve. If the entire tumor was not captured in scan volume, or
the quality of motion correction after registration was insufficient, the patient was excluded.
Patients with a loss of follow-up within 6 months were excluded from the final analysis.
Clinical data were gathered from electronic patient records. This study is registered in
the US National Library of Medicine registry (https://clinicaltrials.gov/, accessed on
19 December 2023) under identifier: NCT05669287.

2.2. Image Acquisition

All CT exams were performed on a 160 mm wide detector 320-row scanner ( Canon
Aquilion ONE Genesis Edition, Canon Medical Systems Corporation, Ōtawara, Japan). The
amount of contrast agent (400 mg/iomeprol, lomeron, Bracco) was body-weight-based
(1.3 mg I/kg) and intravenously administered at the fixed-duration injection time of 5 s. A
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test bolus of 15 mL was used to determine the time of contrast arrival in the aorta at the
level of the pancreas. A 5 mL saline bolus chase was injected directly after the contrast
agent injection.

Based on the time bolus, the perfusion series was started 2 s before the arrival time
of the measured contrast in the aorta, with 13 acquisitions at 2 s intervals, followed by a
diagnostic volume scan in the parenchymal phase at around 35 s and 9 dynamic acquisitions
at 3 s intervals. At 70 s, a portal-venous diagnostic helical scan of the thorax and abdomen
was performed, followed by three dynamic acquisitions at 90, 120, and 150 s. Only the
upper abdomen was included in the perfusion scans and in the diagnostic scan in the
parenchymal phase. The complete scan protocol is shown in Figure 1. Combining perfusion
CT with diagnostic CT, the interleaved scanning protocol allowed for obtaining both
quantitative information and staging information with a single intravenous contrast agent
injection. This “one-stop shop” protocol acquired the maximum diagnostic information in
a patient-friendly and time- and cost-efficient manner, which facilitates the use of CTP in
routine clinical practice [23,24].
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Figure 1. The interleaved CT perfusion protocol. All black bars represent dynamic perfusion
acquisition. The orange bars show the interleaved diagnostic protocol in the non-contrast-enhanced,
parenchymal, and portal-venous phases.

2.3. CTP AI Biomarker

The novel biomarker comprised a pipeline of modules to transform a CTP image into
a lesion phenotype prediction, as shown in Figure 2. The first module in the pipeline was
a non-rigid image registration using Body Registration software version 10.0.0 (Canon
Medical Systems Corporation).
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Figure 2. Modules of the CTP AI biomarker, starting on the left with the perfusion scan as the input.
The first module step was image registration, followed by 3D deep learning segmentation. This
segmentation was used to create the TIC, which was fitted via trilinear fit to calculate the perfusion
features. These features were used in a classification algorithm to discriminate vascular phenotypes.

The second module was a fully automated deep learning model (nnUnet frame-
work) previously developed in-house to create a 3D segmentation of tumor and pancreas
parenchyma [22]. This model was trained with portal-venous CT scans of patients with
histopathologically proven PDAC of the pancreatic head. To train manual annotations of
the tumor, the following were used: pancreas parenchyma, portomesenteric and splenic
veins, abdominal aorta, celiac trunk, hepatic, splenic, and superior mesenteric arteries,
pancreatic duct, and common bile duct.

The deep learning model was originally trained on CT scans of the portal-venous
phase. For CTP analysis the last acquisition before the portal-venous phase was then
applied as the input for this model. A fixed-size volume of interest was used to extract
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the region around the pancreas, serving as input for the segmentation model. The output
wasa 3D segmentation of the tumor and multiple surrounding anatomical structures. The
3D segmentation of this timepoint was overlayed on all other timepoints in the perfusion
sequence to enable both tumor and pancreas parenchyma to create a TIC as the input for
the curve fit. All automated segmentations were checked by an experienced radiologist
specialized in pancreatic imaging (J.H.). In the case of isoattenuating tumors, MRI was
used to validate the tumor segmentation. The tumor segmentation was adjusted when
the tumor location was incorrectly classified by the model. Vessels, endoprosthesis, and
a self-expandable metal stent (SEMS) running through the tumor segmentation were not
included in the segmentation to reduce artifacts in the TIC.

The third module was a newly developed automated trilinear curve fit based on
an in-house-developed and patented pharmacokinetic analysis package for DCE-MRI in
prostate cancer [21]. The trilinear model was focused on the first, upslope part of the curve
to avoid recirculation effects. The curve fit comprised two fitting steps: First, a higher-order
spline fit was used to robustly and automatically fit the complete time–intensity curve.
This spline fit was used to identify the time zone of the first upslope by determining the
maximum derivative. Second, the trilinear fit upslope phase was centered around this
maximum derivative by selecting five timepoints surrounding the maximum derivative.
The timepoints preceding and following the upslope phase were assigned to the non-
enhancement phase and the washout phase, respectively. This strategy allowed us to
generate a curve fit that separated three phases: the non-enhancement phase, the upslope
phase, and the washout phase. The intersection of the enhancement slope and the static line
was the start of enhancement. The peak enhancement was calculated as the intersection of
the washout phase with the enhancement phase. Using this method, we calculated three
main perfusion features: slope, peak enhancement, and the difference in enhancement
between the tumor and pancreatic parenchyma. The curve fit was repeated for the tumor
and pancreas ROIs.

The final module comprised a machine learning module that was trained to discrim-
inate two vascular phenotypes. To discriminate computational vascular phenotypes, a
logistic regression model was trained using three perfusion features: tumor slope (HU/s),
tumor peak enhancement (HU), and the difference between peak enhancement of tumor
and peak enhancement of pancreas parenchyma (∆HU). The visual phenotype classifica-
tion was used as a reference. The logistic regression model was trained using five-fold
cross-validation. To assess the model’s performance, receiver operating characteristic (ROC)
curves were produced for each fold. In addition, area under the curve (AUC) scores were
used to measure the model’s performance.

2.4. Visual Annotation

Visually isoattenuating or isovascular pancreatic adenocarcinoma was defined based
on the following criteria: an obstructed pancreatic duct and/or common bile duct without
a visible pancreatic lesion of increased or decreased attenuation, compared with pancreatic
parenchyma, in both the arterial and portal-venous phases; the difference in attenua-
tion between the pancreatic tumor and the adjacent upstream or downstream pancreas
parenchyma was less than 10 HU [25]. Figure 3 shows examples of both visual isovas-
cular and hypovascular tumors. All scans were annotated by an experienced radiologist
specialized in pancreatic imaging (J.H.).

2.5. Statistical Analysis

Descriptive statistics were used to summarize the clinical characteristics of the study
population. Continuous variables were expressed as mean ± standard deviation or me-
dian (interquartile range), depending on their distribution, which was assessed using the
Shapiro–Wilk test. Categorical variables were expressed as frequencies and percentages.
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Figure 3. (A): Example of CTP image of a visual isovascular tumor in the coronal plane: no pancreatic
lesion is visible, only signs of obstruction of the pancreatic duct (arrow). (B): Tumor (red) as segmented
with the deep learning model; other segmentations are pancreas parenchyma (yellow), pancreatic
duct (light blue), arteries (dark blue), portomesenteric and splenic veins (green), and the common bile
duct (purple) (C): The TICs of the tumor (green) and pancreas (purple) are almost identical, showing
similar perfusion in both tumor and pancreas parenchyma. (D,E): Example of a visual hypovascular
tumor in the coronal plane with segmentations. (F): The TICs of the tumor (green) and pancreas
(purple) with a significantly lower perfusion of the tumor compared with the pancreas parenchyma.

Phenotype prediction was evaluated by assessing the differences in perfusion param-
eters. ROC analysis was used to assess the ability to predict the correct phenotype. A
Mann–Whitney U test was used to determine the significance of differences between perfu-
sion features. The chi-square test was used to assess clinical categorical features. Survival
analysis was performed with a log-rank test using the lifelines package (version 0.28.0) in
Python. A p-value less than 0.05 was considered statistically significant.

3. Results
3.1. Patient Cohort

A total of 129 patients with clinical suspicion of pancreatic cancer were included. Of
this group, 105 patients had histopathologically proven PDAC; 8 patients were excluded
because of incomplete imaging (n = 7) and loss of follow-up within 1 year (n = 2). Therefore,
for the final analysis, we included 92 patients with pathologically proven PDAC (mean age
60, 56% men), as shown in Figure 4. The median overall survival was 11.3 months, and the
median follow-up period was 11.4 months.

Fully automated segmentation was possible for 76/92 (83%) of tumors; 16 tumors
were not completely identified using the deep learning model. Of the unsuccessful segmen-
tations, 9/16 tumors were tail tumors, and the other tumors were isovascular tumors in the
pancreatic head. These segmentations were manually adjusted for inclusion in the analysis

The clinical characteristics of these patients are summarized in Table 1.
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Figure 4. Inclusion flowchart of this study.

Table 1. Baseline characteristics of the study cohort.

Variable Total (n = 92 Patients) Visual Hypovascular
(n = 72)

Visual Isovascular
(n = 20) p-Value *

Age (year) 66 ± 9 65 ± 9 68 ± 8 0.29

Sex (n = males) 51 (55%) 41 (59%) 39 (47%) 0.40

Tumor size (mm) 36 ± 16 39 ± 16 28 ± 13 0.01

Tumor location
Head

Body–tail
60 (65%) 46 (66%) 14 (63%) 0.85
32 (35%) 26 (34%) 6 (37%)

Median overall survival (days) 337 320 377 0.04

* Tested using the Mann–Whitney U test; a chi-square test was used to determine clinical categorical features.

3.2. Visual Phenotype

Automated CTP features showed significant differences between visual phenotypes
(Table 2). The mean enhancement slope was steeper in the isovascular tumors (2.9 ± 1.1 HU/s)
compared with the hypovascular tumors (2.0 ± 0.6 HU/s) (p < 0.001). Additionally, the
mean peak enhancement was found to be significantly higher in the isovascular tumors
(69.9 ± 22.1 HU) compared with the hypovascular tumors (46.8 ± 12.2 HU) (p < 0.001). The
difference between the peak enhancement of the tumor compared with the peak enhance-
ment of the pancreas was also found to be lower in the isovascular tumors (12.0 ± 9.1 HU)
compared with the hypovascular tumors (35.3 ± 19.4 HU), (p < 0.001), (Figure 5).
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Table 2. Mean CT perfusion features of both visual vascular types.

Parameter Visual Hypovascular Visual Isovascular p-Value

Tumor slope (HU/s) 2.0 ± 0.6 2.9 ± 1.1 p < 0.001 *
Tumor peak enhancement (HU) 46.8 ± 12.2 69.9 ± 22.1 p < 0.001 *
Enhancement difference (∆HU) 35.3 ± 19.4 12.0 ± 9.1 p < 0.001 *

* Tested using the Mann–Whitney U test.
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perfusion values compared with hypovascular tumors, with a significant difference in both features
(p < 0.001). (C) Peak enhancement difference between tumor and non-tumorous pancreas parenchyma.
Isovascular tumors showed a lower enhancement difference compared with hypovascular tumors,
with a significant difference(p < 0.001).

3.3. Computational Phenotype and Survival Prediction

We found a significant difference in overall survival between the visual isovascular
and hypovascular tumors and longer survival of patients with visual isovascular tumors
(p = 0.06). The prediction of vascular phenotype had a mean AUC of 0.8, indicating that
the computational phenotype could reproduce the visual phenotype predictions. Using the
computational phenotype, we found a significantly longer survival of patients with tumors
predicted as isovascular (p < 0.001) (Figure 6).
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Figure 6. Kaplan–Meier plots of the tumors stratified by vascular type. (A): Based on visual classifica-
tion, isovascular tumors showed longer survival (p = 0.06). (B): Based on a logistic regression trained
on perfusion features (upslope tumor, peak enhancement tumor, and difference in peak enhancement),
predicted isovascular tumors showed significantly longer survival (p < 0.01) compared with the
predicted hypovascular tumors.

4. Discussion

The results showed that our novel AI biomarker for CT perfusion automatically identi-
fied vascular phenotypes in PDAC. The perfusion features of tumor slope and tumor peak
enhancement were significantly higher in the visual isovascular tumor type compared with
hypovascular tumors. The influence of tumor slope, which cannot be measured on conven-
tional CT, was an additional novel CTP finding. The difference in the peak enhancement of
tumor and pancreas was lower in the visual isovascular tumors, as expected. Furthermore,
the results showed significant differences in OS for both the visual phenotype and the
predicted phenotype of our AI biomarker, with prolonged survival of isovascular tumors.
This finding is in line with an earlier study that showed improved survival of isovascular
tumors classified on conventional CT and MRI [15].

Earlier studies demonstrated that CT perfusion can be used to determine histopatho-
logic subtypes of PDAC or evaluate chemotherapy responses [6,26,27]. However, none of
these studies investigated vascular subtypes or overall survival. Our study contributes new
insights by demonstrating that the vascular subtypes defined by CTP can help with prog-
nostication. Moreover, all prior CTP investigations utilized perfusion software that required
the manual placement of ROIs [6,19,27,28]. Our automated method makes it possible to
quantify perfusion of the entire tumor without the need for manual segmentation.

This study is the first to conduct an automated and kinetic-model-independent analysis
of CTP in patients with PDAC. This approach could support the use of CTP in routine
clinical settings, not only for PDAC but also for other tumors. The clinical evidence for the
use of CTP is still limited, which could be explained by the difficulty in implementing the
technique in a routine clinical setting.

Our AI biomarker depended on the CT acquisition protocol and multiple modules in
the pipeline, all of which influenced the final results. The first module was the non-rigid
registration model. Despite the non-rigid registration, because some residual movement
was still present in the scans, a voxel-by-voxel analysis of the TIC was not possible. The
automated segmentation was not correct in all cases, and therefore needed to be checked
and adjusted manually if needed. Because the algorithm was trained on PDAC tumors
in the pancreatic head, the tail tumors in particular required manual adjustment [22]. We
used a single CTP timepoint to create the segmentation. In the case of poor registration, the
tumor volume can move slightly over time, decreasing the stability of the TIC. Despite the
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occurrence of these problems in the first modules, the curve fit produced accurate results
for tumor volume and pancreas parenchyma.

Multiple studies have shown that various commercial perfusion software generates
significantly different perfusion features [8,29,30]. A reason could be the different boundary
conditions of these kinetic models, which do not always reflect tumor tissue physiology.
The advantage of our AI biomarker is that it does not require complex kinetic models, and
it performs direct calculations on the TIC.

Although the results are promising, this study has the following limitations. First,
although this research is the largest prospective study of CTP in PDAC to date, the study
population was heterogenous, including different tumor stages and treatment strategies,
which strongly influenced the survival data. A larger and more homogeneous sample size
is required to validate our findings and correlate them with patient outcomes. Second, the
current method is not yet fully automated because the 3D segmentations must be checked
and adjusted in some cases. In particular, improvement in the AI-based segmentation of
distal pancreas tumors could overcome the need for manual control.

Future research should explore the correlation between biomarker findings and patho-
logical subtypes, which could lead to new insights into vascular tumor types. Another
research direction could be the potential use of CT perfusion in the evaluation of responses
to chemotherapy or, more specifically, evaluations of anti-angiogenic therapy.

5. Conclusions

Available CTP kinetic perfusion models are user-dependent, show poor discrimination
power, and are difficult to implement in clinical practice. Because our new method is
automatic and discriminative, it can facilitate the clinical adoption of CTP for functional
oncological imaging.
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