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Simple Summary: This study explored the predictive value of neutrophils and neutrophil-related
biomarkers as auxiliary diagnosis biomarkers of NSCLC in an ongoing large cohort. IL-6 and
IL-1RA were identified as independent risk factors for NSCLC. These findings can improve the
predictive performance beyond epidemiological variables and classic neutrophil-related biomarkers
in identifying NSCLC.

Abstract: Background: Recent studies have revealed that neutrophils play a crucial role in cancer
progression. This study aimed to explore the diagnostic value of neutrophil-related biomarkers for
non-small-cell lung cancer (NSCLC). Methods: We initially assessed the associations between classic
neutrophil-related biomarkers (neutrophil-to-lymphocyte ratio (NLR), absolute neutrophil counts
(NEU), absolute lymphocyte counts (LYM)) and NSCLC in 3942 cases and 6791 controls. Then, we
measured 11 novel neutrophil-related biomarkers via Luminex Assays in 132 cases and 66 controls,
individually matching on sex and age (±5 years), and evaluated their associations with NSCLC risk.
We also developed the predictive models by sequentially adding variables of interest and assessed
model improvement. Results: Interleukin-6 (IL-6) (odds ratio (OR) = 10.687, 95% confidence interval
(CI): 3.875, 29.473) and Interleukin 1 Receptor Antagonist (IL-1RA) (OR = 8.113, 95% CI: 3.182, 20.689)
shows strong associations with NSCLC risk after adjusting for body mass index, smoking status,
NLR, and carcinoembryonic antigen. Adding the two identified biomarkers to the predictive model
significantly elevated the model performance from an area under the receiver operating characteristic
curve of 0.716 to 0.851 with a net reclassification improvement of 97.73%. Conclusions: IL-6 and IL-
1RA were recognized as independent risk factors for NSCLC, improving the predictive performance
of the model in identifying disease.

Keywords: non-small-cell lung cancer; neutrophils; biomarkers; Interleukin-6; Interleukin 1 receptor
antagonist; diagnosis

Cancers 2024, 16, 513. https://doi.org/10.3390/cancers16030513 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers16030513
https://doi.org/10.3390/cancers16030513
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0009-0005-1637-0318
https://orcid.org/0000-0002-9862-9143
https://orcid.org/0000-0002-1009-5387
https://orcid.org/0000-0001-5174-3769
https://doi.org/10.3390/cancers16030513
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers16030513?type=check_update&version=1


Cancers 2024, 16, 513 2 of 16

1. Introduction

Worldwide, lung cancer stands as the principal cause of cancer-related deaths. In 2020,
approximately 2.2 million new lung cancer cases were diagnosed, with 1.8 million fatalities.
Over 85% of all lung cancer patients have non-small-cell lung cancer (NSCLC) [1].

Neutrophils, the most abundant cells in human blood circulation, are recently iden-
tified as a crucial player during carcinogenesis [2]. Neutrophils are the primary cell type
during the acute inflammatory response, rapidly recruited to the affected tissue through a
multi-step cascade [3], and capable of eliminating pathogens through diverse mechanisms,
including phagocytosis, release of antimicrobial proteins, and formation of neutrophil extra-
cellular traps (NETs) [4]. During the resolution of inflammation or in an anti-inflammatory
state, the involvement of neutrophils is also significant. Their phagocytic activity aids
in the clearance of dead cells and bacteria, thereby contributing to the elimination and
reconstruction of the affected area. This can be attributed to the essential functions of
several proteases expressed by neutrophils, including MMP9 and VEGFA, in tissue repair,
remodeling, and angiogenesis [5,6]. The persistent infiltration of neutrophils causes chronic
inflammation, which in turn leads to tissue damage and plays a significant role in the
onset of cancer. This lasting and unresolved tissue inflammation is a characteristic feature
of the tumor microenvironment [6]. It has been proven that neutrophils can modulate
tumor progression during the onset and growth of cancer, possessing both pro-tumoral and
anti-tumoral functions [5,7]. Based on the different mediators of cancer cells and the tumor
microenvironment, neutrophils can be polarized into different activation states, thereby
playing distinct functions in alteration of tumor progression [8]. For instance, neutrophils
could promote tumorigenesis via reactive oxygen species (ROS) induced DNA damage in a
lung cancer model [9], whereas it could also attack tumor cells by a neutrophil-dependent
cytotoxic effect via a phagocytosis signaling of signal regulatory protein-α (SIRPα)–CD47
interaction [10,11]. However, given the multifaceted roles and varied phenotypes of neu-
trophils, the current research on the connection between neutrophils and lung cancer
is limited.

Neutrophils and tumor-associated neutrophils (TANs) are associated with key features
of resistance to immune checkpoint inhibition, such as adaptive immune cell polarization
and suppression, tumor neoangiogenesis, immune exclusion, and cancer-cell-intrinsic
characteristics [11–15]. Also, multiple studies have shown that neutrophil-to-lymphocyte
ratio (NLR) can predict the clinical response of ICI treatment [12,13]. In clinical practice,
the balance of inflammatory and immune responses is frequently reflected by the NLR in
peripheral blood [14]. It has emerged as a prognostic factor for the survival and treatment
responses in several cancers [15]. NLR is also reported as a promising predictive biomarker
for immune checkpoint inhibition in NSCLC patients [14]. However, the diagnostic value
of NLR in NSCLC and its underlying mechanisms are yet to be extensively studied.

Depending on the context, neutrophils play a dual role in tumor development. They
promote inflammation through the release of ROS or proteases, and promote tumor dis-
semination and metastasis by facilitating immune suppression, angiogenesis, cancer cell
motility, and epithelial-to-mesenchymal transition (EMT) [8,16]. Recent investigations
have highlighted the critical role of NETs in tumor initiation and metastasis [16]. Mean-
while, neutrophils can restrict cancer growth through cytotoxic activities, such as the
release of iNOS, which exerts cytotoxic effects on cancer cells. Moreover, they can in-
hibit tumor metastasis through mechanisms mediated by H202 or TSP1 [5,16]. TANs
could impact anti-tumor immunity via secreting cytokines crosstalk with CD8+ T cells.
TANs could produce proinflammatory factors such as monocyte chemoattractant protein-1,
interleukin-8, macrophage inflammatory protein-1 alpha, interleukin-6 (IL-6), and anti-
inflammatory interleukin 1 receptor antagonist (IL-1RA), thereby bolstering anti-tumor
immunity in early-stage lung cancer [17]. Also, other cytokines, including interleukins (ILs),
colony-stimulating factor (CSF), interferon (IFN), and chemokines, demonstrated signifi-
cant associations with tumorigenesis in terms of modulating intercellular interactions and
regulating immune responses [18–20]. Understanding the multifunctionality of neutrophils,
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their diverse phenotypes in different environments, and the potential for reprogramming
has significant implications for understanding cancer initiation and progression [5,21].
Monitoring neutrophil-associated cytokines throughout disease progression may serve as a
predictive tool for disease onset and development. However, until now, no comprehensive
study has been implemented to systematically illustrate their impact on lung cancer risk.

We carried out a multi-phase study to investigate the potential diagnostic value of
neutrophil-related biomarkers in NSCLC development. In the first phase, we explored the
predictive efficacy of NLR as an auxiliary biomarker in diagnosing NSCLC in a large cohort
encompassing lung cancer patients and healthy controls. In the second phase, we further
included 132 patients from the lung cancer cohort and 66 matched healthy individuals and
investigated the association between eleven novel blood neutrophil-related biomarkers
and the risk of NSCLC. In the third phase, we developed predictive models incorporating
classic and novel neutrophil-related biomarkers and clinical variables for the diagnosis
of NSCLC.

2. Materials and Methods
2.1. Study Population and Data Collection

In the first phase of this study, a case–control design was adopted to explore the
associations between classic blood neutrophil-related biomarkers (NLR, absolute neutrophil
counts (NEU), absolute lymphocyte counts (LYM)), and the risk of NSCLC. From an ongoing
cohort study begun in 2020 at The Second Affiliated Hospital Zhejiang University School
of Medicine (SAHZU), a total of 3942 NSCLC patients were recruited. And 6791 healthy
controls were drawn from the concurrently recruited healthy controls who had health
check-up examinations in the general practice clinic at the SAHZU. In the second phase of
the study, we further measured 11 novel blood neutrophil-related biomarkers in 132 cases
and 66 healthy controls, which were individually matched on sex and age (±5 years).

The inclusion criteria for the case group are as follows: (1) with clinically and histopatho-
logically confirmed NSCLC; (2) the patient has provided informed consent or waived
consent; and (3) with data on classic blood neutrophil-related biomarkers. The exclusion cri-
teria for the case group are as follows: (1) multiple cancers; and (2) any previous treatment
undertaken by the patient at the point of enrollment.

The inclusion criteria for the healthy control group are as follows: (1) regular health
examination participants from the SAHZU; and (2) participants have provided informed
consent or waived consent. The exclusion criteria are as follows: (1) suffering from severe
lung disease; and (2) diagnosis of any malignant neoplasm.

This study has received approval from the Institutional Review Board of SAHZU. Clinical
pathological information was derived from detailed chart reviews. Concentrations of NEU,
LYM, and carcinoembryonic antigen (CEA) in the blood were quantified at NSCLC diagnosis
for cases or during routine health examinations for the controls. The staging of lung cancer
patients was carried out by the attending physicians and pathologists in accordance with the
NCCN Clinical Practice Guidelines Non-small-cell lung cancer v1, 2022.

Staff members gathered epidemiological information through face-to-face interviews.
The participants’ weight, height, history of hypertension (yes or no), history of diabetes (yes
or no), and smoking status were recorded upon enrollment. The body mass index (BMI) was
derived by taking the ratio of weight to the square of the height (kg/m2). According to the
WHO guidelines, we divided BMI into two categories: underweight/normal (<25 kg/m2)
and overweight/obese (≥25 kg/m2). The categorization of smoking status depends on
whether the subject had ever smoked (defined as having smoked at least 100 cigarettes in
their lifetime) [22,23].
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2.2. Detection of Novel Neutrophil-Related Biomarkers via Luminex Assays

In stage 2, venous blood samples of 20 mL were collected from 198 participants using
ethylenediaminetetraacetic acid tubes and promptly delivered to the SAHZU laboratory.
Prior to the initiation of the experiment, plasma was isolated, divided into aliquots, and
preserved at −80 ◦C. Plasma samples were defrosted on ice [23]. The concentrations of
11 novel neutrophil-related biomarkers (IL-1α, IL-1β, IL-1RA, IL-6, IL-17, G-SCF, GM-CSF,
CXCL2, CXCL5, IFN-α, and S100B) in the plasma samples were quantitatively determined
utilizing the Luminex Discovery Assay—Human Premixed Multi-Analyte Kit (R&D Sys-
tems, Minneapolis, MN, USA, LXSAHM-11), strictly adhering to the protocol provided by
the manufacturer [24]. To ensure the reliability and accuracy of the measurements, each
sample was assayed in duplicates on a 96-well plate using a Luminex FLEXMAP 3D system
(Luminex Corp, Austin, TX, USA), utilizing undiluted plasma. Each plate incorporated
both positive and negative controls, as well as samples for the purpose of generating the
standard curve [23,25]. Laboratory personnel were completely blinded to the case and
control status. The assay was performed in alignment with the manufacturer’s instructions.

We selected 11 novel blood neutrophil-related biomarkers based on comprehensive
literature reviews and the feasibility of using Luminex assays. G-CSF is a critical regu-
latory agent in the biological genesis of neutrophils, with its receptors being expressed
throughout the entire bone marrow lineage, ranging from early stem cells and progenitor
cells to the mature status of neutrophils [26]. GM-CSF and IL-6 are both acknowledged
as cytokines involved in granulocyte formation and neutrophil proliferation in various
types of cancer [26]. IL-1, once activated, functions as a robust pro-inflammatory cytokine
locally, instigating vasodilation and recruiting monocytes and neutrophils to the stress
location [27]. The generation of active IL-1β is facilitated by inflammasomes or neutrophil
proteases through cleaving pro-IL-1β, a process mediated by caspase-1 [27]. IL-1α triggers
sterile inflammation through the induction of neutrophil mobilization in reaction to cell
death. IL-1 RA, which can be released by neutrophils, binds and blocks IL-1 Receptor Type
1, competitively inhibiting the pro-inflammatory action of IL-1 [28]. IL-17, generated by
neutrophils, T cells, innate lymphoid cells, natural killer cells, macrophages, and so on,
exerts a crucial role in the recruitment of neutrophils [29]. CXCL2 plays a crucial role in
neutrophil recruitment by interacting with CXCR2 on neutrophils [30]. CXCL5 can enhance
the immunosuppressive features of the tumor microenvironment by stimulating immune
cell migration to the tumor and recruiting vascular endothelial cells for angiogenesis, thus
promoting tumor progression [31]. By targeting both tumor cells as well as immune cells,
type I interferons have demonstrated a pivotal role in inhibiting tumor growth [32,33]. The
S100 family proteins also hold vital value in natural immunity and act as mediators in
inflammatory responses. Neutrophils, among other immune cells, can produce consider-
able amounts of S100 A8/A9, which control inflammation by triggering the discharge of
cytokines and ROS. S100B is one of the most active members of the S100 family [34,35].
Among the 11 biomarkers, 10 (except S100B) are produced by neutrophils under certain
circumstances. In general, IL-1RA, IFN-α, G-CSF, and GM-CSF are considered anti-tumor
biomarkers, while the remaining factors are considered pro-tumor biomarkers.

2.3. Statistical Analysis

Categorical variables are characterized by frequencies with percentages. Statistical
differences between groups were compared using chi-square tests or Fisher’s exact proba-
bility method. Continuous variables are depicted using mean ± standard deviation (SD)
or median [25th and 75th percentiles (Q1–Q3)] depending on the distribution type. A
comparison of groups for statistical differences was conducted using t-tests (for normal
distributions), Kruskal–Wallis tests or Wilcoxon rank-sum tests (for non-normal distribu-
tions). For the matched paired samples in stage 2, the comparison of measurement data
between the two groups was conducted using the paired samples t-test or non-parametric
test, while the comparison of categorical data was performed using the paired chi-square
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test or non-parametric test. Furthermore, we conducted a sensitivity analysis in stage 1
with cases and controls being individually matched on sex and age (±5 years).

All biomarkers were further processed as categorical variables to minimize skewness.
Using the median value in the control group as the cutoff, the values of NLR, NEU,
LYM, IL-6, CXCL2, IL-1RA, IL-1α, and CXCL5 were classified into low and high groups.
Meanwhile, the values of S100B and GM-CSF were divided into low and high groups, with
the experimental detection limit serving as the cutoff because a substantial of individuals
had levels under the experimental detection limit. The CEA value was divided into normal
and abnormal groups using the threshold of 5 ng/mL.

In stage 2, given the matched case–control design, the associations between novel
neutrophil-related biomarkers and NSCLC risk were examined by conditional logistic
regression. We first performed a univariate analysis for the 11 measured novel markers,
followed by a multivariate analysis adjusting for epidemiological variables, NLR, and
CEA, founded on the univariate analysis results and prior knowledge. The model outputs
the odds ratio (OR) and its 95% confidence interval (CI) to estimate the strength of the
association between the novel biomarkers and NSCLC risk.

In stage 3, we developed the predictive models by sequentially adding variables of
interest in the study population from stage 2. The risk prediction model was initially built
based on health history (model 1: BMI + smoking status). Then, we included relevant
clinical biomarkers (model 2: model 1 + NLR + CEA). Further, two newly identified novel
blood neutrophil-related biomarkers were incorporated (model 3: model 2 + IL-6 + IL-1RA).
We applied the receiver operating characteristic (ROC) curve and the area under the curve
(AUC) to evaluate the discriminative capacity of different models for NSCLC risk. Delong’s
test was used to test whether the differences in model performance across different models.
Additionally, the true positive rate (TPR) and false positive rate (FPR) were calculated. To
evaluate whether the predictive performance of models was enhanced after the addition of
more predictors, we calculated the net reclassification improvement (NRI) and integrated
discrimination improvement (IDI) metrics.

The collection of data and the presentation of tables were conducted in Excel (Microsoft
Office 2021 version). R software (v4.2.1) was utilized for all data analysis and visualiza-
tion. Specifically, the R software packages “readxl”, “readr”, “plyr”, “dplyr”, “data.table”,
“tableone”, “table1”, “stringr”, “forcats”, “reshape2”, “broom”, “tidyverse”, and “tidyr” were
used for data preparation (including reading, cleaning, data transformation, etc.). The R
package “Hmisc” was applied for the correlation analysis and the “pROC” for the ROC
curve. The restricted cubic spline analysis used the R packages “rms”, “Hmisc”, “car”, and
“smoothHR”. The comparative analysis was carried out by the R package “rstatix”. The
values of NRI and IDI were calculated using the R packages “nricens” and “PredictABEL”. In
order to visualize our results, the R packages “pheatmap”, “ggpubr”, “ggplot2”, “ggthemes”,
“grid”, “gridExtra”, and “forestploter” were employed. The R packages used for the logistic
regression analysis were “pubh”, “rms”, “survival”, “car”. All R packages and their instruc-
tions used in our study can be found in the link (https://cran.r-project.org/web/packages/
available_packages_by_name.html (accessed on 25 September 2023). All statistical tests were
two sided, setting the significance level at 0.05.

3. Results
3.1. Stage 1

Table S1 presents the baseline characteristics of all subjects in stage 1. More than half
of the healthy participants were female, while nearly two-thirds of patients were male. The
age of the subjects increased with disease status and severity. The proportion of smokers
was higher among patients with invasive adenocarcinoma (IAC), which includes early-
stage and late-stage NSCLC. The majority of patients did not present with either lymph
node metastasis or distant metastasis at the time of enrollment.

https://cran.r-project.org/web/packages/available_packages_by_name.html
https://cran.r-project.org/web/packages/available_packages_by_name.html
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The restricted cubic spline analysis revealed a positive association between NEU and
NSCLC risk, while an inverse association was seen with LYM (Figure 1B,C). NLR showed a
strong non-linear positive association with the risk of NSCLC (Figure 1A).
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Figure 1. The associations between classic neutrophil-related blood biomarkers (NLR, NEU, and LYM)
and NSCLC risk based on restricted cubic splines (A–C) and the inter-group comparisons of classic
biomarkers’ distribution across four groups (control, Tis, early-stage NSCLC, and late-stage NSCLC)
(D–F). (A) The associations between the plasma level of NLR and NSCLC risk. (B) The associations
between the plasma concentration of NEU and NSCLC risk. (C) The associations between the plasma
concentration of LYM and NSCLC risk. (D) The distribution of plasma concentration of NLR across
four groups. (E) The distribution of plasma concentration of NEU across four groups. (F) The
distribution of plasma concentration of LYM across four groups. Tis, carcinoma in situ; NSCLC,
non-small-cell lung cancer; NLR, neutrophil-to-lymphocyte ratio; NEU, absolute neutrophil counts;
LYM, absolute lymphocyte counts; OR, odds ratio; CI, confidence interval. Early stage included
stage 1 and 2 diseases. Late stage included stage 3 and 4 diseases. The reference value (ref. value)
means the level of the biomarker when the corresponding OR is 1 (the horizontal dotted line). The
p-overall indicates the statistical significance of the association between the biomarker and NSCLC
risk, with p-overall < 0.05 indicating a statistically significant association. The p-non-linear value
indicates whether there is a nonlinear relationship between the biomarker and NSCLC risk, with
p-non-linear < 0.05 indicating that the association between the biomarker and NSCLC risk could
not be fully explained by a linear relationship; in other words, there was a non-linear association.
**** p < 0.0001.

The unconditional univariate logistic regression analysis indicated significant correla-
tions between classic blood biomarkers and NSCLC risk (Table S2 and Figure 2). Elevated
levels of NLR and NEU were associated with increased risk of NSCLC (ORNLR = 2.983
(95% CI: 2.737, 3.252), ORNEU = 1.755 (95% CI: 1.620, 1.902)), whereas a high blood con-
centration of LYM was associated with decreased risk of NSCLC (OR = 0.434, 95% CI:
0.399, 0.471). After adjusting for age, sex, BMI, and smoking status, compared with the
low-level groups, the high-level groups of NLR and NEU were associated with higher risks
of NSCLC (ORNLR = 2.608 (95% CI: 2.333, 2.918), ORNEU = 2.222 (95% CI: 1.994, 2.477)),
while the higher LYM was associated with a lower NSCLC risk (ORLYM = 0.650 (95% CI:
0.583, 0.724)) (all p values were less than 0.05). Stratified analysis by age, sex, BMI, and
smoking status also revealed significant and highly consistent associations between these
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three indicators and NSCLC risks (Figure 2). In addition, our sensitivity analysis indicated
the results were notably consistent after matching the cases and controls on age and sex.

Cancers 2024, 16, x FOR PEER REVIEW 7 of 16 
 

 

 

Figure 2. The overall and stratified associations between classic blood neutrophil-related biomarkers 

(NLR, NEU, and LYM) and NSCLC risk in a large clinical cohort. (A) The univariate (left) and multiple 

(right) logistic regression analysis of NLR and the stratified analysis. (B) The univariate (left) and mul-

tiple (right) logistic regression analysis of NEU and the stratified analysis. (C) The univariate (left) and 

multiple (right) logistic regression analysis of LYM and the stratified analysis. NLR, neutrophil-to-

lymphocyte ratio; NEU, absolute neutrophil counts; LYM, absolute lymphocyte counts; BMI, body 

mass index; OR, odds ratio; CI, confidence interval. * shows the OR (95%CI) and p values of the uni-

variate conditional logistic regression analysis. ** shows the OR (95%CI) and p values of the multiple 

conditional logistic regression analysis. 

  

Figure 2. The overall and stratified associations between classic blood neutrophil-related biomarkers
(NLR, NEU, and LYM) and NSCLC risk in a large clinical cohort. (A) The univariate (left) and
multiple (right) logistic regression analysis of NLR and the stratified analysis. (B) The univariate
(left) and multiple (right) logistic regression analysis of NEU and the stratified analysis. (C) The
univariate (left) and multiple (right) logistic regression analysis of LYM and the stratified analysis.
NLR, neutrophil-to-lymphocyte ratio; NEU, absolute neutrophil counts; LYM, absolute lymphocyte
counts; BMI, body mass index; OR, odds ratio; CI, confidence interval. * shows the OR (95%CI)
and p values of the univariate conditional logistic regression analysis. ** shows the OR (95%CI) and
p values of the multiple conditional logistic regression analysis.



Cancers 2024, 16, 513 8 of 16

We further analyzed the differences in NEU, LYM, and NLR across the control, car-
cinoma in situ (Tis), early-stage, and late-stage groups (Table 1). The concentrations of
NEU in cancer groups were significantly higher while LYM was lower in comparison to
the control group. The NLR was observed to be higher in the NSCLC groups. However,
the difference between the Tis and early-stage groups among these three indicators was
not significant. Compared to early-stage patients, late-stage patients had higher NLR and
NEU levels, while the difference was not significant in LYM level. Figure 1D–F graphically
illustrates the differences across those groups.

Table 1. The distribution of classic blood neutrophil-related biomarkers by disease status in stage 1.

Markers
Control (n = 6791)
Median [Q1–Q3]

NSCLC (n = 3942)
Median [Q1–Q3] * p ** p *** p **** p

Tis (n = 450) Early (n = 3376) Late (n = 116)

NLR 1.657 [1.315–2.090] 2.179
[1.670–2.962]

2.142
[1.644–2.911]

2.436
[1.972–3.102] <0.001 <0.001 0.332 <0.001

NEU
(109/L) 3.310 [2.690–4.020] 3.750

[3.020–4.710]
3.715

[2.970–4.660]
4.120

[3.248–5.115] <0.001 <0.001 0.670 0.005

LYM
(109/L) 1.990 [1.650–2.380] 1.645

[1.333–2.060]
1.710

[1.388–2.080]
1.600

[1.305–2.053] <0.001 <0.001 0.360 0.142

Early stage indicates stage 1 and 2 diseases, late stage indicates stage 3 and 4 diseases, the staging criteria according
to NCCN Clinical Practice Guidelines Non-small-cell lung cancer v1, 2022. NSCLC, non-small-cell lung cancer;
Tis, carcinoma in situ; NLR, neutrophil-to-lymphocyte ratio; NEU, absolute neutrophil counts; LYM, absolute
lymphocyte counts. * p indicates control vs. NSCLC. ** p indicates control vs. Tis. *** p indicates Tis vs. early stage.
**** p indicates early stage vs. late stage.

Figure S1 depicts the comparison of classic blood biomarkers across various clinical
features among the healthy controls.

3.2. Stage 2

Table S3 shows the host characteristics of the subset of the study participants with
measurements of 11 novel blood neutrophil-related biomarkers. This phase included a total
of 198 participants, 132 of whom were NSCLC patients and 66 were healthy controls. In the
NSCLC group, there were 90 cases of invasive cancer (68.18%). Subsequent analyses did
not include IL-1β, IFN-α, IL-17, and G-CSF due to excessive missing assay values.

The differences in NLR, NEU, and LYM between cases and controls in stage 2 were
consistent with those in stage 1 (Table S4). In terms of novel blood neutrophil-related
biomarkers, the IL-6 and IL-1RA levels in the controls were significantly lower than in the
cases (p < 0.001) (Table S4 and Figure S2).

Figure S3 presents the pairwise correlations among the novel blood neutrophil-related
biomarkers. IL-1α and CXCL5 have a correlation coefficient of 0.9, indicating a strong cor-
relation. The correlation coefficients for the remaining factors were all below 0.5, indicating
weaker correlations.

In univariate analysis (Table 2), among the analyzed novel blood neutrophil-related
biomarkers, higher levels of IL-6 and IL-1RA were significantly associated with increased
risk of NSCLC, with OR values of 9.339 (95% CI: 3.882, 22.646) and 7.535 (95% CI: 3.293,
17.244), respectively. In multivariate conditional logistic regression analysis conducted on
IL-6, CXCL2, IL-1RA, IL-1α, CXCL5, S100B, and GM-CSF, we found that after adjusting
for BMI, smoking status, NLR, and CEA, higher plasma levels of IL-6 and IL-1RA were
associated with substantially elevated risk of NSCLC. The risk of NSCLC in individuals
with higher plasma levels of IL-6 was 10.687 times (95% CI: 3.875, 29.473) that of the low-
level group, and similarly, the risk was 8.113 times (95% CI: 3.182, 20.689) higher for those
with high levels of IL-1RA. The forest plots of the univariate and multiple conditional
analysis are shown in Figure S4.
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Table 2. The associations between novel blood neutrophil-related biomarkers and NSCLC in stage 2.

Markers Control (n = 66) NSCLC (n = 132) OR (95% CI) * p Value * OR (95% CI) **, a p Value **, a

IL-6
Low 34 (51.52) 15 (11.36) 1 (ref)

<0.001
1 (ref)

<0.001High 32 (48.48) 117 (88.64) 9.339 (3.882, 22.464) 10.687 (3.875, 29.473)
CXCL2

Low 33 (50.00) 52 (39.39) 1 (ref)
0.151

1 (ref)
0.196High 33 (50.00) 80 (6.61) 1.570 (0.848, 2.907) 1.824 (0.903, 3.683)

IL-1RA
Low 33 (50.00) 17 (12.88) 1 (ref)

<0.001
1 (ref)

<0.001High 33 (50.00) 115 (87.12) 7.535 (3.293, 17.244) 8.113 (3.182, 20.689)
IL-1α

Low 33 (50.00) 64 (48.48) 1 (ref)
0.849

1 (ref)
0.615High 33 (50.00) 68 (51.52) 1.056 (0.603, 1.850) 1.314 (0.700, 2.466)

CXCL5
Low 33 (50.00) 62 (46.97) 1 (ref)

0.703
1 (ref)

0.594High 33 (50.00) 70 (53.3) 1.116 (0.636, 1.958) 1.371 (0.719, 2.613)
S100B

Low 42 (63.64) 70 (53.3) 1 (ref)
0.184

1 (ref)
0.531High 24 (36.36) 62 (46.97) 1.481 (0.830, 2.645) 1.287 (0.663, 2.501)

GM-CSF
Low 52 (78.79) 100 (75.76) 1 (ref)

0.633
1 (ref)

0.611High 14 (21.21) 32 (24.24) 1.191 (0.582, 2.436) 1.294 (0.563, 2.977)

The values of IL-6, CXCL2, IL-1RA, IL-1α, and CXCL5 were divided into low and high groups based on the
median value in the control group as the cutoff. The values of S100B and GM-CSF were divided into low and
high groups, with the experimental detection limit serving as the cutoff. a Adjusted factors: BMI + smoking
status + NLR + CEA. * shows the OR (95% CI) and p values of the univariate logistic regression analysis. ** shows
the OR (95% CI) and p values of the multiple logistic regression analysis. NSCLC, non-small-cell lung cancer;
BMI, body mass index; IL-6, Interleukin 6; IL-1α, Interleukin 1 alpha; IL-1RA, Interleukin-1 receptor antagonist;
GM-CSF, Granulocyte-macrophage colony-stimulating factor; CXCL2, C-X-C Motif Chemokine Ligand 2; CXCL5,
C-X-C Motif Chemokine Ligand 5; S100B, S100 Calcium-binding Protein B; NLR, neutrophil-to-lymphocyte ratio;
CEA, carcinoembryonic antigen; OR, odds ratio; CI, confidence interval. Values are presented as n (%) unless
otherwise specified.

3.3. Stage 3

Table S5 shows the comparison of the discrimination ability of different predictive
models. In Model 1, which only included the epidemiological predictors (BMI and smoking
status), the AUC value was 0.603 (95% CI: 0.527, 0.678). After adding NLR and CEA, the
AUC value of Model 2 increased to 0.716 (95% CI: 0.637, 0.794). Upon the addition of IL-6
and IL-1RA to Model 2 to create Model 3, the best performance was achieved with an AUC
value of 0.851 (95% CI: 0.793, 0.908), a TPR of 0.856, and a FPR of 0.333. The differences in
AUCs from the three models were statistically significant. The visualized ROC curves for
Models 1, 2, and 3 are shown in Figure 3.

We employed NRI and IDI to measure the improvement of the predictive performance
of models after the inclusion of new risk factors, enabling the comparison among models
(Table 3). Initially, we compared Model 2 (Model 1 + NLR + CEA) with Model 1 (baseline
model incorporating only epidemiological indicators: BMI + smoking status). The results
indicated a noteworthy enhancement in the predictive performance of Model 2 in contrast
to Model 1. The NRI reached 59.85% (95% CI: 0.331, 0.935), and the IDI was 0.128 (95% CI:
0.079, 0.176), both differences being statistically significant. By incorporating IL-6 and IL-
1RA into Model 2, the NRI for Model 3 increased to 97.73%, signifying that the integration
of IL-6 and IL-1RA could escalate the accurate reclassification proportion of the model by
97.73% (95% CI: 0.667, 1.279). The extent of improvement was also significantly increased,
with an IDI of 0.198 (95% CI: 0.137, 0.259).
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Figure 3. Comparison of ROC curves for different models. The AUC value of Model 1 was only 0.603
based on epidemiological variables (BMI and smoking status) data. In Model 2 (added NLR and CEA),
the AUC value increased to 0.716. Model 3 (added IL-6 and IL-1RA) showed the best performance,
with an AUC value of 0.851. IL-6, Interleukin 6; IL-1RA, Interleukin-1 receptor antagonist; NLR,
neutrophil-to-lymphocyte ratio; CEA, carcinoembryonic antigen; BMI, body mass index; ROC,
receiver operating characteristic; AUC, area under the curve.

Table 3. The comparative efficacy of predictive models.

Models NRI 95% CI a * p Value IDI 95% CI b ** p Value

Model 1 vs. Model 2 59.85% 0.331, 0.935 <0.001 0.128 0.079, 0.176 <0.001
Model 2 vs. Model 2 + IL-6 75.00% 0.319, 1.022 <0.001 0.148 0.092, 0.203 <0.001

Model 2 vs. Model 2 + IL-1RA 61.36% 0.122, 0.962 0.003 0.122 0.068, 0.176 <0.001
Model 2 + IL-6 vs. Model 3 16.67% −0.055, 0.779 0.423 0.050 0.012, 0.088 0.010

Model 2 + IL-1RA vs. Model 3 29.55% −0.001, 0.866 0.227 0.076 0.033, 0.119 0.001
Model 2 vs. Model 3 97.73% 0.667, 1.279 <0.001 0.198 0.137, 0.259 <0.001

Model 1: epidemiology variables: BMI + smoking status. Model 2: epidemiology variables + NLR + CEA.
Model 3: epidemiology variables + NLR + CEA + IL-6 + IL-1RA. BMI, body mass index; IL-6, Interleukin 6;
IL-1RA, Interleukin-1 receptor antagonist; NLR, neutrophil to lymphocyte ratio; CEA, carcinoembryonic antigen;
NRI, net reclassification improvement; IDI, integrated discrimination improvement; CI, confidence interval.
a shows the 95% CI on NRI. b shows the 95% CI on IDI. * indicates the p value on the difference of NRI. ** indicates
the p value on the difference of IDI.

4. Discussion

Our findings indicated a significant association between NLR and NSCLC risk. Plasma
IL-6 and IL-1RA also emerged as independent risk factors for NSCLC. These mean high lev-
els of NLR, IL-6, and IL-1RA signaling a dramatically increased NSCLC risk. Moreover, we
established a model incorporating NLR and novel blood neutrophil-related biomarkers to
aid in predicting NSCLC diagnosis in the clinic, outperforming models reliant on the classic
cancer marker CEA. Thus, our research underscores the importance of neutrophil-related
biomarkers in predicting NSCLC risk, offering valuable assistance in clinical diagnosis.
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NLR, a parameter derived from the NEU divided by the LYM, is one of the most widely
investigated features based on blood cell counts and serves as an indicator of systemic
inflammation [36]. NLR captures the balance between the detrimental effects of increased
neutrophils and the beneficial roles of adaptive immunity mediated by lymphocytes [37].
In the field of cancer research, NLR serves as an effective indicator of the dynamic balance
between pro-tumor and anti-tumor responses in the body. Most published studies have
mainly focused on the correlation between NLR and the prognosis of NSCLC [36–40], with
little attention paid to its association with disease risk. Therese Haugdahl Nøst et al. con-
ducted a study on approximately 440,000 participants based on data from the UK Biobank,
evaluating the longitudinal relationships between four systemic inflammation indicators
(NLR, systemic immune-inflammation index, platelet-to-lymphocyte ratio, lymphocyte-to-
monocyte ratio) and the risk of 17 cancer sites diagnosed clinically in the years preceding
the study [41]. The study found that NSCLC patients exhibited higher NLR values, which
was particularly apparent in the year before diagnosis, possibly driven by an elevated
neutrophil count.

IL-6, a multifunctional cytokine, exhibits both pro-inflammatory and anti-inflammatory
properties [42]. Under cancerous conditions, IL-6 can participate in various processes such
as tumor formation, cancer cell proliferation, epithelial–mesenchymal transition, interac-
tions between tumor cells and the matrix environment, tumor dissemination, and drug
resistance. By releasing chemokine receptors including CXCR3/4 and CCR5/7, and secret-
ing pro-inflammatory cytokines, notably IL-6, TANs play a pivotal role in the pathogenesis
of lung cancer [43]. Currently, the predictive capabilities evaluation of IL-6 in cancer mostly
focuses on treatment outcomes or survival status [44–50], making it one of the most dis-
cussed prognostic markers for NSCLC patients. However, studies dedicated to evaluating
associated risks remain sparse. In a case–control study conducted at the National Cancer
Institute in Maryland, Sharon R. Pine and colleagues analyzed the association between IL-6
and lung cancer in six pairs of patients and controls. They discovered a notable association
between lung cancer and the highest quartile of serum IL-6 levels (OR = 3.29, 95% CI:
1.88–5.77) [51]. In a subsequent verification within the prospective Prostate, Lung, Col-
orectal, and Ovarian Cancer Screening Trial, they found that an increase in IL-6 levels was
exclusively connected to lung cancer cases diagnosed within two years of blood sampling.
A nested case–control study including 224 cases and 644 controls indicated higher blood
IL-6 was associated with rising hepatocellular carcinoma (HCC) risk [52]. The relative risk
was 5.12 (95% CI: 1.54–20.1) for HCC in the top tertile of IL-6 levels. This result was not
influenced by variables such as hepatitis virus infection, lifestyle-related elements, and
radiation exposure. Scholars have underscored the importance of early monitoring of IL-6
levels. Further gene expression analysis showed an increased expression of IL-6 in patients
compared to controls. The latest research on the Lung Cancer Cohort Consortium, an
international cohort with over two million participants from North America, Europe, Asia,
and Australia, identified 36 proteins independently and reproducibly associated with the
imminent risk of being diagnosed with lung cancer. IL-6 was found a robust correlation
with lung cancer within the first year following diagnosis (OR = 2.56, 95% CI: 1.92–3.41) [34].
Therefore, the measurement of IL-6 in plasma can serve as an early auxiliary diagnostic
indicator for NSCLC, providing predictive value for clinical work.

IL-1RA, a component of the IL-1 family, operates as a competitive binding factor
that can inhibit the signal cascade response and suppress the pro-inflammatory signal
transduction activated by IL-1α and IL-1β [53]. IL-1RA is commonly generated by the cells
that concurrently produce IL-1α or IL-1β, notably monocytes, macrophages, dendritic cells,
neutrophils, and so on. An increase in IL-1 production is often paired with a raised IL-1RA
level. Even though IL-1RA does not trigger a biological response, it is described as an
anti-inflammatory molecule due to its capacity to impede the pro-inflammatory activities
of IL-1α and IL-1β [53]. The expression of IL-1RA has been investigated in many human
diseases, such as inflammatory diseases, immune-related diseases, and numerous kinds of
cancer. Generally, IL-1RA in cancer is considered to exert a tumor-suppressive effect due
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to its ability to inhibit pro-tumor cytokines [54]. Post myocardial infarction, animals with
high expression of IL-1RA displayed decreased symptoms of inflammation, less neutrophil
infiltration, and reduced ventricular expansion [55]. In a range of diseases, increased levels
of circulating IL-1RA have been reported, such as chronic arthritis, inflammatory bowel
disease, rheumatoid arthritis, and Acute Respiratory Distress Syndrome [56]. Synthesized
research suggested that the balance between IL-1RA and the pro-inflammatory cytokine IL-
1 was associated with increased risks of various cancers, including NSCLC [57]. Elevated
serum IL-1RA concentrations had been observed in patients with Hodgkin’s disease,
lung cancer, colorectal cancer, cervical cancer, and endometrial cancer, underscoring the
critical function of IL-1RA throughout the formation and advancement of tumors [54].
In 2013, a nested case–control study was performed on 526 lung cancer patients and
592 control subjects [20]. Using the Luminex beads-based experimental method, more
than 70 serum inflammation markers were examined. The researchers found a correlation
between increased serum IL-1RA levels and a decreased risk of lung cancer (OR = 0.71,
95% CI: 0.51–1.00). Genetic research in humans also showed that the genetic variability of
IL-1α, IL-1β, and IL-1RA correlated with elevated risks of tumors, including NSCLC [58].
Although IL-1RA was discovered almost concurrently with IL-1α and IL-1β, its value in
cancer remains relatively uncertain compared to the other two. Current research on IL-1RA
in tumors mostly reports its anti-inflammatory role. However, some scholars have reported
that the role of IL-1RA in cancer is not limited to suppressing inflammation, but it can also
promote the growth of malignant tumors [53].

We acknowledge that there are several limitations. First, several novel factors that
were to be tested in the samples inherently had low expression levels, which made their
detection difficult. They were excluded from data analysis due to numerous undetected
values, despite our meticulous handling of the samples, including storage at −80 degrees
Celsius, prevention of repeated freeze–thaw cycles, and strict adherence to the instructions
during the procedures. Second, as a cross-sectional study, we were unable to determine
causality. Further rigorous validation work along with an increase in sample size is needed.
Third, our research focused on studying the NSCLC population. However, the significant
variations among different cancers and subtypes limit the generalizability of our findings.

5. Conclusions

Our study suggests that IL-6 and IL-1RA play key roles in lung carcinogenesis and
progression. NLR, IL-6, and IL-1RA in the blood can serve as biomarkers for diagnosis
of NSCLC. Combining these with patients’ clinical features and tumor markers (for ex-
ample, CEA) may enhance the effectiveness of diagnosing NSCLC, potentially providing
heightened early warning at pre-diagnosis and diagnosis.
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