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Simple Summary: This systematic review demonstrated that artificial intelligence (AI) can help
detect metastatic prostate cancer with or without lymph node involvement on prostate-specific
membrane antigen (PSMA) PET scans with high accuracy. Additional benefits of AI include the
ability to estimate the volume of metastatic cancer, prognosticate, and differentiate bony metastasis
from post-radiotherapy bone changes. AI can also improve workflow by helping to standardize
reporting and automate time-consuming tasks. However, given the variable sensitivity and positive
predictive value of AI, it is recommended that an experienced nuclear medicine physician proofread
the final report. Larger studies producing more consistent results are needed before AI can be fully
integrated into PSMA reporting.

Abstract: Early detection of metastatic prostate cancer (mPCa) is crucial. Whilst the prostate-specific
membrane antigen (PSMA) PET scan has high diagnostic accuracy, it suffers from inter-reader
variability, and the time-consuming reporting process. This systematic review was registered on
PROSPERO (ID CRD42023456044) and aims to evaluate AI’s ability to enhance reporting, diagnostics,
and predictive capabilities for mPCa on PSMA PET scans. Inclusion criteria covered studies using AI
to evaluate mPCa on PSMA PET, excluding non-PSMA tracers. A search was conducted on Medline,
Embase, and Scopus from inception to July 2023. After screening 249 studies, 11 remained eligible
for inclusion. Due to the heterogeneity of studies, meta-analysis was precluded. The prediction
model risk of bias assessment tool (PROBAST) indicated a low overall risk of bias in ten studies,
though only one incorporated clinical parameters (such as age, and Gleason score). AI demonstrated
a high accuracy (98%) in identifying lymph node involvement and metastatic disease, albeit with
sensitivity variation (62–97%). Advantages included distinguishing bone lesions, estimating tumour
burden, predicting treatment response, and automating tasks accurately. In conclusion, AI showcases
promising capabilities in enhancing the diagnostic potential of PSMA PET scans for mPCa, addressing
current limitations in efficiency and variability.

Keywords: artificial intelligence; convolutional neural network; deep learning; machine learning;
prostate cancer; PSMA PET

1. Introduction

Prostate cancer (PCa) represents one of the leading causes of cancer-related mortal-
ity [1–3]. At diagnosis, 13% of PCa patients will have regional lymph node involvement,
and 8% will have distant metastasis [1]. The most common site of metastatic PCa (mPCa)
involvement is the bone, accounting for up to 90% of mPCa. Visceral organ involvement,
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such as in the lung, liver, adrenal, and brain, is less common [4]. When compared to local-
ized PCa, the 5-year survival rate of mPCa declines significantly from 100% to 34.1% [1].
Early detection of mPCa is crucial for treatment institutions. Previous Cochrane reviews
have demonstrated that early administration of androgen deprivation therapy (ADT) in
mPCa improves the time to death from any cause of mortality, and decreases the rate of
skeletal fractures [5].

Prostate-specific membrane antigen (PSMA) is a transmembrane glycoprotein that is
upregulated in PCa [6]. The use of radiotracers with an affinity to PSMA in whole-body PET
scans (PSMA PET) enables the detection of mPCa with high diagnostic accuracy. Currently,
two PSMA tracers have received U.S. Food and Drug Administration (FDA) approval:
Gallium 68 PSMA-11 (Ga 68 PSMA-11) and Pylarify (piflufolastat F 18) [7,8]. Conventional
staging scans of PCa involve a computerized tomography of the abdomen and pelvis (CT
AP) combined with a whole-body bone scan (WBBS). However, the ProPSMA trial show-
cased the superiority of PSMA PET-CT which has since displaced conventional staging
scans [9]. A recent meta-analysis further cements the excellent diagnostic performance
of PSMA PET for lymph nodes and bony metastasis, with the area under curves (AUC)
of 0.95 and 0.99 respectively [10]. However, similar to other forms of medical imaging,
reporting of PSMA PET is susceptible to inter-reader variability [11]. The efforts to stan-
dardize reporting with tools such as the prostate cancer molecular imaging standardized
evaluation (PROMISE) criteria, the European Association of Nuclear Medicine (EANM) cri-
teria, and the PSMA reporting and data system (PSMA-RADS) have improved inter-reader
reproducibility [12]. Nevertheless, these tools can be labour-intensive and time-consuming.

There is considerable interest in integrating artificial intelligence (AI) into medical
imaging given its ability to automate and its potential to leverage radiomics, which may be
imperceptible to the naked eye. These complex AI algorithms have demonstrated improved
diagnostic accuracy for staging in colorectal and lung cancer [13,14]. In prostate cancer,
the automated PROMISE (aPROMISE) deep learning (DL) software developed by EXINI
Diagnostics AB based on the PROMISE criteria has gained FDA approval [15,16]. The
aPROMISE software first analyses the CT component of the PSMA PET-CT to automatically
segment it into anatomical regions. Subsequently, the PSMA PET image is analyzed to
detect metastasis. aPROMISE then merges the anatomical information and quantifies the
tracer uptake to generate the miPSMA score. The miPSMA score was initially proposed
in the original PROMISE criteria to assist in standardized reporting of PSMA expression
in relation to blood pool, parotid gland, liver, or spleen [15]. Therefore, by leveraging DL,
aPROMISE automates the labour-intensive task of anatomical segmentation and PSMA
uptake quantification.

Belal et al.’s literature review has provided an excellent overview of the various
applicability of AI in PSMA PET scans [17]. However, there is a lack of systematic review
providing an in-depth analysis of how AI can be used on PSMA PET scans for PCa staging.
This systematic review aims to evaluate the current role of AI in evaluating PSMA PET
scans for PCa with distal metastasis and/or lymph node involvement.

2. Materials and Methods
2.1. Literature Search Strategy

This systematic review was registered on PROSPERO (international prospective reg-
ister of systematic reviews) under the ID CRD42023456044. The preferred reporting
items for systematic reviews and meta-analyses (PRISMA) guidelines were used (see
Supplementary Materials). A comprehensive literature search was performed on Medline,
Embase, and Scopus. Key search terms used include artificial intelligence, machine learning,
deep learning, prostate cancer, and PSMA PET.

2.2. Eligibility Criteria

The population, intervention, comparator, and outcome (PICO) criteria were used to
guide this systematic review. The population included all PCa patients who underwent
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a PSMA PET scan for staging of lymph node and distal metastasis. The intervention in
question is the use of AI to evaluate PSMA PET. This includes machine learning (ML) which
is a subset of AI. ML consists of complex algorithms which learn from experience (data) to
recognise patterns and make predictions [18]. These data could be provided in the early
development stage as training data, or later in the development after the training phase as
validation data to fine-tune the algorithm. Testing data is the final data set used to evaluate
the algorithm’s performance. DL is a subset of ML which uses many layers of the network
to mimic the brain’s neuron network to learn and make decisions [19]. Convolutional
neural networks (CNN) are a specific type of DL which processes visual data [20].

The comparator will either be against benign lesions or a nuclear physician report. The
primary endpoint of this systematic review was to evaluate the ability of AI to improve the
reporting of metastatic PCa (mPCa) or lymph node involvement on PSMA PET scans. Areas
of PSMA PET scan reporting of interest include diagnostic accuracy, sensitivity, ability to
differentiate from benign lesions, and standardization of reporting. The definition of metas-
tasis and lymph node (regional versus non-regional) was according to the Tumour, Node,
Metastasis (TNM) classification by the Union for International Cancer Control (UICC) 8th
edition, 2017 [21]. The secondary endpoint of this study was to assess if AI could assess
metastatic disease on PSMA PET-CT for prognosis or treatment response. All English
language original articles published from inception to July 2023 were considered. The
following types of studies were excluded: studies utilising only non-PSMA based radiotrac-
ers, studies utilising only the CT component of PSMA PET-CT without incorporating PET
component, studies evaluating intra-prostatic lesions only, case reports, reviews, letters to
journals, and conference abstracts.

2.3. Screening and Study Selection

Titles, abstracts, and full-text screening were performed independently by two authors
(J.L and T.C) and any unresolved conflicts were resolved by the senior author. Relevant
articles found in citations of included articles but not during the initial search will be
included if eligibility criteria are met. The only automation tool used was Covidence to
assist in the screening process and removal of duplicated articles. No artificial intelligence
tools or software were used in the writing of this systematic review.

2.4. Quality and Risk of Bias Assessment

The standardized reporting of machine learning applications in urology (STREAM-URO)
26-item checklist was used to assess the quality of each article [22]. The STREAM-URO
framework was created to ensure the quality of studies published, improve reproducibility
and interpretation of results, and increase engagement and literacy of machine learn-
ing within the urological community. The prediction model risk of bias assessment tool
(PROBAST) was used to assess the risk of bias (ROB) and the applicability of diagnostic
and prognostic prediction model studies [23].

3. Results
3.1. Screening Process

The search yielded 249 articles, 80 of which were duplicates (see Figure 1). After
the exclusion of 141 articles during the title and abstract screening, 28 studies remained
for full-text review. Eighteen studies were excluded during the full-text review due to
insufficient sample size (n = 1), wrong intervention (n = 4), and wrong outcome (n = 13).
During the full-text review, one additional eligible study by Nickols et al. [24] was found
from the citations of the included studies. This study was absent from the original search
most likely due to the absence of any AI-related medical subject headings (MeSH) terms in
its title and abstract.
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3.2. Characteristics of Included Studies

Of the 11 included studies, only one study by Kendrick et al. [25] was prospective, the
remaining 10 were retrospective in nature (see Table 1). Tracers being used were 18F-PSMA
(n = 5) and 68Ga-PSMA (n = 6). The types of AI algorithms used were as follows: ML (n = 5),
DL (n = 2), and CNN (n = 4). The study by Moazemi et al. [26] was the only AI model
which incorporated clinical parameters (such as age, Gleason score, and prostate-specific
antigen (PSA)). The remaining 10 studies used AI models developed using radiological
parameters only.

The objectives of the included studies were to assess the ability of AI to do the follow-
ing: reduce inter-reader variability (n = 2), detect suspicious lesions only (n = 3), detect
suspicious lesions and classify them anatomically (n = 1), detect and quantify tumour bur-
den (n = 1), differentiate bony metastasis from sclerotic bone lesion which has completely
responded to treatment (n = 1), predict treatment response to 177Lu-PSMA (n = 1), quantify
treatment response of metastatic disease and correlate to PSA (n = 1), extract prognostic
biomarkers (n = 1).
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Table 1. Characteristics and results of included studies.

Author and Year Study Objective AI Model and
Study Design

PSMA Tracer
Used Inclusion Criteria Sample Size of

(Training/Validation/Test) Data Input Comparator Algorithm Performance Strength Limitations

Nickols et al.,
2021 [24]

Evaluate aPROMISE’s
ability to reduce

inter-reader variability of
PSMA PET-CT

DL

Multi-centre

Retrospective

18F- PSMA
PET-CT

veterans with intermediate-
or high-risk PCa who

underwent PSMA scan

NR/NU/109

No cross-validation
NR Between two nuclear

medicine physicians

Cohen pairwise k-agreement
for PCa staging between two

readers was high (0.82 for
miN0M0, 0.90 for miN1M0,

0.77 for miN0M1b.)

Moderate sample size

Using external data to
evaluate an existing

DL software

Retrospective

Selective study population
(only veterans)

Johnsson et al.,
2022 [27]

Based on aPROMISE,
evaluate the sensitivity of

automated detection of
potential lesions

DL

Multi-centre

Retrospective

18F-PSMA
PET-CT

1. high-risk PCa planned
for RP with PLND)

2. radiologic evidence of
recurrent or metastatic PCa

and considered feasible
for biopsy

NR/235/295

No cross-validation

PSMA PET-CT scans
annotated by experienced
nuclear medicine readers

for location, SUVmax,
SUVpeak, SUVmean, and

uptake volume.

NR

Sensitivity of detecting lesion
with metastasis:

91.5% for regional lymph
node

90.6% for all lymph node
86.7% for bone

Large sample size

Using external data to
evaluate an existing

DL software

Retrospective

Demographic and
clinicopathological

characteristics of included
patients were not reported.

No cross-validation

Leung et al., 2022
[28]

Develop an ML to perform
classification of PSMA
uptake and correlate to

PSMA-RADS

DL

Multi-centre

Retrospective

18F-PSMA
PET-CT

Patients who underwent
18F-PSMA PET-CT

267 patients had 3794
lesions divided into:

2302/760/732

Scans were segmented by
four nuclear medicine
physicians then CNN

extracted radiomic features
and tissue-type

information

Probability score
compared against

PSMA-RADS
categories on a t-SNE

scatter plot

PSMA-RADS classification at
lesion level AUROC 0.87 and
accuracy of 0.52. Patient level

AUROC 0.9 and accuracy
of 0.77.

Probability score of
PSMA-RADS-1 and 2 was

0.19, PSMA-RADS-3 was 0.5,
PSMA-RADS-4 and 5 was 0.86

Large sample size

Has both training and
validation set

Retrospective

Demographic and
clinicopathological

characteristics of included
patients were not reported.

Demographic and
clinicopathological

characteristics of included
patients were not reported.

Trägårdh et al.,
2023 [29]

Develop and validate a
CNN for detecting and

quantifying tumour
burden (TLV and TLU) of
lymph node metastases

and bone metastases

CNN

Single-centre

Retrospective

18F-PSMA
PET-CT

initial staging of high-risk
prostate cancer

or for the detection of sites
of suspected

recurrent disease.

420/120/120

No cross-validation

One independent nuclear
medicine physician

segmented and annotated
the scan. Three main

inputs include CT image,
PET image, and

multi-channel organ mask

Sensitivity of nuclear
medicine physicians
for detecting lymph

nodes (78%) and
bone metastasis

(59%)

Sensitivity of CNN for
detecting lymph nodes (79%)

and bone metastasis (62%)

correlations of TLV and TLU
between CNN and nuclear

medicine physicians were all
statistically significant and

ranged from R = 0.53 to
R = 0.83.

Large sample size

Data set for testing
separate from
training data

Compared to several
nuclear medicine

physicians

Single center

The same data set is for
training and validation.

Demographic and
clinicopathological

characteristics of included
patients were not reported.

Capobianco et al.,
2021 [30]

Develop and evaluate
CNN to classify PSMA
uptake into anatomical

location and determine if it
is suspicious for cancer

CNN

Single-centre

Retrospective

68Ga-PSMA
PET-CT

1. Primary staging of PCa
or for assessment of BCR

2. PSMA-ligand PET-CT
for all other indications

of PCa.

121/NU/52

4-fold cross-validation

Nuclear medicine
physician labelled PSMA
uptake into anatomical

location and suspicion for
PCa. Data from 18F-FDG
PET-CT scans was added

to determine if
improved CNN

Compared to nuclear
medicine

physician assessment

CNN had an average
precision of 80.4%

[CI: 71.1–87.8] for suspicious
uptake identification, 77%
(CI: 70.0–83.4) accuracy for
anatomical classification of

suspicious findings,
agreement for identification of

regional lymph node
involvement (81%) and
metastatic stage (77%)

Demonstrated
combining training
information from

18F-FDG PET/CT and
68Ga-PSMA-11 PET/CT

led to
improved accuracy

Single center

Small data set for testing and
no separate data set

for validation

Demographic and
clinicopathological

characteristics of included
patients were not reported.

Erle et al., 2021
[31]

Comparing and validating
ML algorithms in

classifying pathological
uptake in PCa

ML

Single-centre

Retrospective

68Ga-PSMA
PET-CT

PCa patients who
underwent PSMA PET-CT

for either staging or
treatment control

72/NU/15

3-fold cross-validation

77 radiomics features
calculated using InterView

FUSION software from
2452 manually delineated

hotspots on PSMA PET-CT

Testing with a
hold-out set of

15 patients

AUC = 98%
Sensitivity = 97%
Specificity = 82%

A detailed explanation
of radiomics features

used in the
development

Small sample size

No histopathological
confirmation of metastasis

Moazemi et al.,
2020 [32]

Develop and evaluate ML
algorithm in differentiating

non-specific from
malignant PSMA uptake

ML

Single-centre

Retrospective

68Ga-PSMA
PET-CT

Follow-up staging or
consideration of

radionuclide therapy for
PCa patients who

previously underwent
treatment (active or
systemic treatment)

48/24/NU

5-fold cross-validation

40 textural features
calculated using InterView

FUSION software from
2419 hotspots determined

by nuclear medicine
physicians on PSMA

PET-CT

Compared to nuclear
medicine physician

assessment

AUC = 98%
Sensitivity = 94%
Specificity = 89%

A detailed explanation
of radiomics features

used in the
development

Developed and
compared five different

ML algorithms

Small sample size

Patients underwent various
treatments (hormonal
versus chemotherapy
versus radiotherapy)
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Table 1. Cont.

Author and Year Study Objective AI Model and
Study Design

PSMA Tracer
Used Inclusion Criteria Sample Size of

(Training/Validation/Test) Data Input Comparator Algorithm Performance Strength Limitations

Kendrick et al.,
2022 [25]

Develop and evaluate a
CNN to extract prognostic
biomarkers (TLV and TLU)

from PSMA PET-CT

CNN

Single-centre

Prospective

68Ga-PSMA
PET-CT

BCR PCa following active
treatment who received
PSMA PET-CT before

further surgery,
radiotherapy, or systemic

treatment. follow up scans
6 months later

262 */NU/75
* 53 negative scans used

as control

5-fold cross-validation

Lesions for each patient
scan were manually

delineated by an expert
Nuclear

Medicine Physician

Testing with a
hold-out set of

75 patients.

Accuracy = 94.5%
Sensitivity = 93.3%
Specificity = 96.2%

TLV and TLU from CNN were
associated with overall

survival (both p < 0.005)

Large sample size

Prospective

Used negative scans as
a control

Single center

Acar et al., 2019
[33]

Develop ML to
differentiate PCa bony

metastatic versus sclerotic
(responded to treatment)

on PSMA PET-CT

ML

Single-centre

Retrospective

68Ga-PSMA
PET-CT

PCa with known bone
metastasis and who were

previously treated

75/NU/NU

10-fold cross-validation

Lesion marked by nuclear
medicine physician on
LifeX software analysis
which extracted HU, 5

histogram data, 3
shape-based data, and 32
s-order textural analysis

data

Results from
cross-validation

AUC = 76%
Accuracy = 73.5%
Sensitivity = 73.5%
Specificity = 73.7%

Weighted KNN ML algorithm
could differentiate metastasis

bony from completely
responded lesions

Used completely
responded sclerotic

lesions as control

Retrospective

Small sample size

Duriseti et al.,
2023 [34]

Quantifying treatment
response by correlating
changes in aPROMISE

PSMA score to
PSA changes

CNN

Site NR

Retrospective

18F-PSMA
PET-CT

csPCa who underwent
PSMA PET-CT before and

3 months or more after
surgery, radiotherapy,

and/or ADT

NR/NU/30

No cross-validation

aPROMISE was used to
identify, quantify, and

calculate changes in PSMA
tracer avid disease

Compared to
post-treatment
PSMA PET-CT

Baseline prostate bed PSMA
scores were correlated with

baseline PSA (p < 0.001).
Nodal (p = 0.53) and bony
(p = 0.65) baseline PSMA

scores did not correlate with
baseline PSA.

Changes in PSMA scores were
significantly correlated with
corresponding decreases in

PSA for composite and nodal
disease, but not for prostate

bed or bony disease

Clinicopathological
characteristics of

included
patients reported.

Small sample size

No separate data set for
development and testing

Moazemi et al.,
2021 [26]

Develop ML to predict
response to 177Lu-PSMA

treatment using
Baseline PSMA-PET-CT

scans and clinical
parameters

ML

Single-centre

Retrospective

68Ga-PSMA
PET-CT

Advanced PCa scheduled
for treatment with

177Lu-PSMA

56/27/NU

3-fold cross-validation

14 clinical parameters
And 73 radiomics features

were calculated using
InterView FUSION

software from a 2070
hotspot determined by a

nuclear medicine physician
on PSMA PET-CT

a permutation test
(null hypothesis =

permuted
distribution of

ground truth labels
could have resulted

in similar
prediction scores)

AUC = 80%
Sensitivity = 75%
Specificity = 75%

Radiomics features (PET_Min,
PET_Correlation, CT_Min,

CT_Busyness and
CT_Coarseness) and clinical
parameters such as Alp1 and
Gleason score showed best
correlations with change

in PSA

Included clinical
parameters in the

development of the AI
model

A detailed explanation
of radiomics features

used in the
development

Small sample size

Single center

Acronyms: automated Prostate Molecular Imaging Standardized Evaluation (aPROMISE), Prostate-specific Membrane Antigen Reporting and Data System (PSMA-RADS), Convolutional
neural network (CNN), Deep learning (DL), Prostate cancer (PCa), Castration-sensitive prostate cancer (csPCa), Biochemical recurrence (BCR), Radical prostatectomy (RP), Pelvic lymph
node dissection (PLND), Androgen deprivation therapy (ADT), Chemotherapy or ADT (systemic therapy), Confidence interval (CI), T-distributed stochastic neighbour embedding
(t-SNE) Hounsfield unit (HU), Total lesion volume (TLV), Total lesion uptake (TLU), Area under the curves (AUCs), Area under the receiver operating characteristic curve (AUROC),
Positive predictive value (PPV), NR (not reported), NU (not used) * indications for ePLND in Cysouw et al. study were either an ≥8% risk score of LNI based on the Memorial Sloan
Kettering Cancer (MSKCC) nomogram or any high-risk feature (≥T3, Gleason > 7, PSA > 20 ng/mL).
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3.3. Quality and Risk of Bias Assessment of Included Studies

The mean STREAM-URO score of the 11 studies was 21 out of 28 (see Figure 2). The
main areas where studies scored the least were cohort characteristic (n = 4) as only four
studies described the age and PSA of the included patients [24–26,33] and eligibility criteria
(n = 1) as only one of the included studies described their exclusion criteria [33].

PROBAST assessment showed low overall ROB in ten studies and low overall ap-
plicability concerns in seven studies (see Table 2). One study had both high concerns for
overall ROB and applicability as they did not use any separate dataset for validation or
testing [33]. Another study had high concerns about applicability due to the inclusion of
both PSMA PET and FDG PET scans in their training data [30]. The third study had unclear
applicability as it aimed to evaluate if AI reduces inter-reader variability, but they did not
compare their finding with inter-reader variability without AI [24]. Another study had
unclear applicability as it was evaluating treatment response but included a heterogeneous
group of patients being treated with surgery, radiotherapy, or ADT [34].
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Table 2. The prediction model risk of bias assessment tool (PROBAST) of included studies.

Study ROB Applicability Concerns Overall

Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability

Nickols et al., 2021 [24] Low Low Low Low Low Unclear Unclear Low Unclear
Johnsson et al., 2022 [27] Low Low Low Low Low Low Low Low Low

Leung et al., 2022 [28] Unclear Low Low Low Unclear Low Low Low Low
Trägårdh et al., 2023 [29] Low Low Low Low Low Low Low Low Low

Capobianco et al., 2021 [30] Low Low Low Low High Unclear Unclear Low High
Erle et al., 2021 [31] Low Low Low Low Low Low Low Low Low

Moazemi et al., 2020 [32] Low Low Low Low Low Low Low Low Low
Kendrick et al., 2022 [25] Low Low Low Low Low Low Low Low Low

Acar et al., 2019 [33] Low Low Unclear High Low High Low High High
Duriseti et al., 2023 [34] Unclear Low Low Low Unclear Unclear Unclear Low Unclear

Moazemi et al., 2021 [26] Low Low Low Low Low Low Low Low Low

ROB = Risk of bias.

3.4. AI’s Ability to Standardise Staging of PCa on PSMA PET Scans

aPROMISE was used in three of the studies. Nickols et al. [24] demonstrated aPROMISE
assisted reading resulted in low inter-reader variability between two nuclear medicine
physicians in terms of PCa staging. Cohen pairwise k-agreement between the two nuclear
medicine physicians were 0.82 for miN0M0, 0.90 for miN1M0 (presence of regional lymph
node disease only), 0.77 for miN0M1b (presence of bony metastatic disease only). The study
by Johnnson et al. [27], also demonstrated the high accuracy of segmentation by aPROMSIE
when compared to manual segmentation by experienced nuclear medicine physicians. The
Dice scores were as follows: bone segmentations (ranging from 0.88 to 0.95), thoracic aorta
(0.89), and liver (0.97). Capobianco et al. [30] developed a CNN independent of aPROMISE
which demonstrated an accuracy of 77% (CI: 70.0–83.4) for anatomical location classification
of suspicious findings.

Leung et al. [28] developed a DL algorithm based on radiomic and anatomical tissue
type information to categorise lesions into PSMA-RADS scores. PSMA-RADS is another
tool used to standardise reporting of PSMA PET scans by utilising anatomy and PSMA
avidity to classify lesions into a five-point scale which reflects the likelihood of the presence
of PCa [35]. The DL by Leung et al. could assign a PSMA-RADS score at a patient level with
a relatively high area under the receiver operating characteristic curve (AUROC) of 0.9, and
an accuracy of 0.77. The findings were not as accurate at a lesion level with an AUROC of
0.87, and accuracy of 0.52. PSMA-RADS were further subdivided into three groups Group
1 (PSMA-RADS-1 and -2), Group 2 (PSMA-RADS-3), Group 3 (PSMA-RADS-4 and -5) and
their mean probability scores were 0.19, 0.75, 0.86, respectively.

3.5. AI’s Role in Diagnosing Metastasis Disease on PSMA Pet Scans

In terms of detecting bony metastasis by DL, aPROMISE had 86.7% sensitivity [27],
and another DL algorithm developed by Trägårdh et al. [29] only had a 62% sensitivity.
Although the sensitivity of the DL algorithm by Trägårdh et al. was lower than aPROMISE,
in its own analysis, the DL algorithm had a higher sensitivity of detecting bony metastasis
as compared to the nuclear medicine physician (62% versus 59%). However, the DL by
Trägårdh et al. does have a lower positive predicting value (PPV) of 40.5% as compared to
the nuclear medicine physician of 58.7%.

Two of the included studies described the ability of their ML to detect all types of sus-
picious uptake outside of the prostate without differentiating between non-regional lymph
nodes or non-lymphatic distal metastasis. The area under the curve (AUC), sensitivity, and
specificity by Erle et al. [31] were 0.98, 97%, and 83%, and the study by Moazemi et al. [32]
was 0.98, 94%, and 89%, respectively. The study by Capobianco et al. [30] developed a CNN
to detect any suspicious uptake on 68Ga-PSMA PET-CT found to have an average precision
of 80.4% [CI: 71.1–87.8], sensitivity of 81.1%, and positive predicting value of 66.8%.
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3.6. AI’s Role in Diagnosing Lymph Node Involvement on PSMA PET Scans

Only two studies designed their AI to identify regional lymph nodes. Firstly, it was
Capobianco et al.’s [30] CNN which demonstrated an 81% agreement for identified regional
lymph nodes when compared to the expert reviewer. The study by Johnsson et al. [27]
demonstrated that aPROMISE was able to identify suspicious regional lymph nodes with
a 91.5% sensitivity. In a separate analysis by Johnsson et al. aPROMISE had a 90.6%
sensitivity for detecting all types of lymph nodes (both regional and non-regional). The
DL by Trägårdh et al., 2023 could identify all types of lymph nodes with a sensitivity of
79.1%, and PPV of 39.2% (as compared to 77.9% sensitivity and 78.3% PPV by nuclear
medicine physician).

3.7. Estimating Tumour Burden and Prognosis

In addition to detecting lymph node, and bony metastasis, the DL developed by
Trägårdh et al. [29] could also detect local or intraprostatic PCa recurrence. This is out-
side the scope of this systematic reference, but the sensitivity of detecting prostate/local
recurrence was 78.7%. Subsequently, the DL was taught to measure markers of tumour
burden which included total lesion volume (TLV) and total lesion uptake (TLU). TLV was
the combination of the volume of all positive voxels. The TLU was first calculated for each
lesion by dividing the mean standardized uptake values (SUVmean) by the TLV. The total
TLU is the summation of all the TLU per lesion in each patient. The estimated tumour
burden by the DL was very similar to the three nuclear medicine physicians’ calculation
with statistical significance on the Spearman rank correlation test (ranging from R = 0.53 to
R = 0.83).

Kendrick et al. [25] also developed a CNN to predict TLV and TLU but the CNN
was trained on scans of patients with biochemically recurrent (BCR) PCa after definitive
treatment. At the patient level, the accuracy, sensitivity, specificity, and PPV were 94.5%,
93.3%, 96.2%, and 97.2%, respectively. However, when compared to manual calculations,
the CNN tended to underestimate both TLV (0.43 cm3 versus 0.398 cm3, p < 0.005) and TLU
(32.89 versus 40.93, p = 0.049). Kaplan–Meier analysis demonstrated that the TLV and TLU
calculated automatically by the CNN significantly correlated with patient overall survival
(both p < 0.005).

3.8. Assessing Treatment Response based on PSMA PET Scans

Acar et al. [33] developed and compared a few different methods of ML to differen-
tiate active bone metastasis from post-treatment (chemotherapy, ADT, radiotherapy, or
177LU-psma) sclerotic bone lesions in PCa patients. Data being input into the ML includes
hounsfield unit (HU), histogram data, shape-based data, and second-order textural analysis
data. Acar et al. demonstrated that the weighted KNN ML algorithm had the highest
accuracy (73.5%) and area under the curve (76%) to differentiate sclerotic lesions from
metastasis with 73.5% sensitivity and 73.7% specificity.

Duriseti et al. [34] assessed castration-sensitive PCa (csPCa) patients who underwent
ADT with or without local intervention such as radiotherapy or surgery. These patients
underwent PSMA PET-CT before treatment and three months or more after treatment.
aPROMISE was employed to automatically calculate a PSMA score which considers lesion
volume and SUV. The baseline median PSMA score for each anatomical site was as fol-
lows: prostatic bed (21.6), lymph nodes (5.3), bone (2.2), and composite (9.7). The median
PSMA score for all anatomical areas decreased to zero post-treatment. The decrement in
median PSA post-treatment was 100% (range: 68–100%). There was a significant association
between the change in PSMA score and post-treatment PSA, which led to their postula-
tion that PSMA score measured by aPROMISE post-treatment can be used to quantify
treatment response.

Moazemi et al. [26] developed an ML trained on pre-treatment PSMA PET-CT radionics
and clinical parameters of metastatic PCa patients planned for 177Lu-PSMA. He found that
radiomics features (PET_Min, PET_Correlation, CT_Min, CT_Busyness and CT_Coarseness)
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and clinical parameters (ALP1 and Gleason score) showed best correlations with changes
in PSA level post-treatment. The ML algorithm could predict response to 177Lu-PSMA
treatment with 80% AUC, 75% sensitivity, and 75% specificity.

4. Discussion

This systematic review comprehensively analyses the current state of AI’s ability to
assess mPCa with or without lymph node involvement. All the included studies were
published within the last four years underscoring the growing interest in incorporating AI
into the assessment of medical imaging.

Previous studies have demonstrated variations in the performance and reporting of
PSMA PET-CT [11]. Standardization of radiological reporting is crucial to ensure that
the results are reproducible, consistent, and comprehensible [36]. Standardized reporting
will facilitate the interpretation of data in both clinical and research settings. Efforts to
standardize PSMA PET reporting have been promising, but labour and time-intensive [12].
The current systematic review demonstrated that AI could help standardize the report-
ing of PSMA-PET CT as guided by the PROMISE criteria and maintain low inter-reader
variability [24] whilst reducing the workload by automation of organ segmentation [27]
and anatomy allocation [30]. In future studies, it will be interesting to have a head-to-
head comparison of PSMA PET reporting with and without AI to evaluate the following
outcomes: inter-reader variability, intra-reader-variability, learning curve for a nuclear
medicine trainee, time needed to complete a PSMA PET report, changes in capacity and
workload with the use of AI, and analysis of the influence of AI on nuclear medicine
decision to elucidate any bias AI may introduce in the final reporting.

This systematic review also demonstrated the relatively high sensitivity
(between 62 and 97%) and accuracy (AUC up to 98%) of AI’s ability to detect all types of
metastatic disease [30–32]. Although it may outperform nuclear medicine physicians in
some instances, it does carry a low and widely variable PPV (between 39.2 and 66.8%) [29].
This supports the idea that AI tools are just an adjunct and not meant to replace nuclear
medicine physicians. Perhaps these tools should not be utilised by trainees for formal
reporting, but by experienced nuclear medicine physicians who can proofread these
AI-generated reports. These AI tools may still be used as educational tools during practice
to help trainees with their detection of positive sites. An additional benefit of such a
utilisation model is that corrections from an experienced nuclear medicine physician will
further improve the diagnostic capability of AI algorithms through internal feedback
mechanisms [37]. It is unclear why there is a large variation in outcomes between included
papers. Possible explanations could stem from variations in developmental data (for
example favoring low-volume metastasis), usage of different PSMA tracers, or variations in
scan acquisitions. The decision-making process of an AI algorithm is often not transparent
and has been described as a black box [38]. Until AI models become more interpretable and
explainable, the lack of transparency may present a barrier to its integration into clinical
practice. Long-term follow-up studies are also needed to understand if this improved
detection of metastatic disease translates into changes in long-term oncological outcomes.
An area that has not been explored by the included papers is whether AI could accurately
quantify the number of hotspots.

The study by Johnsson et al. [27] demonstrated that aPROMISE was able to identify
suspicious regional lymph nodes with a 91.5% sensitivity. The ability to distinguish ma-
lignant from benign lymph nodes is important in the decision-making of PCa treatment.
Especially given the current landscape where we are widely adopting PSMA PET as the
pre-treatment staging modality. Due to the limitation of time, our existing literature guiding
treatment is from the conventional staging (CT AP and WBBS) era. It is a dilemma as to how
to manage patients with positive regional lymph nodes on PSMA PET-CT that were nega-
tive on conventional staging. In this instance, AI could bridge the gap between evolving
imaging technologies and treatment strategies. If the AI algorithm can non-invasively de-
termine that a regional lymph node has a very low likelihood of being malignant on PSMA
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PET, the patients be able to avoid the morbidity associated with lymph node dissection or
extended field radiation. Similarly, if the AI algorithm can determine that a non-regional
lymph node that was PSMA avid has a very low likelihood of malignancy, the patient may
still benefit from active treatment (prostatectomy or radiotherapy). Further research into
this area is required. One of the limitations of PSMA PET is its false negative rate of 12%
and false positive rate of 3% when evaluating pelvic lymph node metastases [39]. The lower
detection rate appears to be related to the smaller metastatic lymph node, with up to 91%
of undetected metastatic lymph nodes being less than 5 mm. It will be interesting if future
studies can evaluate AI’s ability to improve the detection of these small lymph nodes.

We appreciate there are limitations to the included studies. Firstly, many of the studies
were retrospective, with small sample sizes, and did not describe the demographic or
clinicopathological information of the included patients. Exclusion criteria were also not
mentioned in most of the included studies. Separate data sets for validation and training
were not used in some studies. Additionally, the only study which compared different
types of ML models was by Moazemi et al. [26]. Therefore, no recommendations can be
made at this stage regarding which subtype of AI algorithm is optimal for evaluating mPCa
on PSMA PET-CT. Lastly, the heterogeneity of included patients and outcomes precluded a
meta-analysis.

We should be cautious of the limitations and shortcomings of AI, particularly in
clinical use. The AI models are only as good as the data it is trained on, if the data set is
not representative of a diverse patient population, a bias may arise [40]. Additionally, AI
models are often trained on controlled data sets which may not be representative of real-life
scenarios where there are variations in scan equipment, acquisition time of scans, and type
of PSMA tracer given [41,42]. Lastly, biopsy is the current gold standard for confirmation
of metastatic disease, however, performing multiple biopsies in patients with high-volume
metastatic disease is not feasible. Therefore, the ground truth used in the development of
these AI models is limited by visual diagnosis by experienced nuclear medicine physicians.
Therefore, results and analysis (such as sensitivity and accuracy) are dependent on the
diagnostic accuracy of the nuclear medicine physician to differentiate between benign
versus metastatic lesions on the PSMA PET scans.

As we head towards an era of personalised medicine, future studies could consider
combining radiomics with clinicopathological factors (such as PSA or Gleason score) in
their AI algorithms to see if it improves diagnosis. Two of the included studies assessed
the capability of AI to evaluate metastatic disease and predict its response to treatment;
however, more studies are needed before we can determine whether AI could influence
treatment decisions. Future studies should also differentiate between low and high-volume
mPCa during the development of AI models as they may present differently radiologically
with a worse disease state having higher PSMA avidity [43,44] Another area where AI
could be implemented in the future is to to improve image acquisition and processing
quality [45]. Ongoing studies also present interesting applications of AI on PSMA PET
scans such as guiding theranostics [46,47].

5. Conclusions

AI can detect lymph node involvement and metastatic disease with high accuracy (area
under the curve of 98%) and sensitivity (between 62 and 97%). Additional benefits of AI in-
clude differentiating metastatic bone lesions from post-treatment bony sclerosis, estimating
tumour burden for prognostic purposes, predicting treatment response of mPCa, automat-
ing time-consuming tasks with high accuracy (such as organ segmentation and anatomical
allocation of lesions), and reducing inter-reader variability during reporting. Although the
preliminary findings appear promising, larger prospective studies with reproducible results
are needed before AI can be considered for assimilation into clinical practice.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers16030486/s1. Reference [48] is cited in the Supplementary Materials.
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