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Simple Summary: A group of experts was invited to speak at the first Immune Assessment sympo-
sium held in Chicago, IL in early October of 2023. The combined knowledge presented, including
new findings presented by young investigators, offered deep insight into the importance of moni-
toring immune responses in (cancer) patients, the history of biomarker development and the latest
technologies available to measure responses to treatment beyond clinical improvement.

Abstract: As part of a symposium, current and former directors of Immune Monitoring cores and
investigative oncologists presented insights into the past, present and future of immune assessment.
Dr. Gnjatic presented a classification of immune monitoring technologies ranging from universally
applicable to experimental protocols, while emphasizing the need for assay harmonization. Dr. Obeng
discussed physiologic differences among CD8 T cells that align with anti-tumor responses. Dr. Lyerly
presented the Soldano Ferrone lecture, commemorating the passionate tumor immunologist who
inspired many, and covered a timeline of monitoring technology development and its importance
to immuno-oncology. Dr. Sonabend presented recent achievements in glioblastoma treatment,
accentuating the range of monitoring techniques that allowed him to refine patient selection for
clinical trials. Dr. Guevara-Patiño focused on hypoxia within the tumor environment and stressed
that T cell viability is not to be confused with functionality. Dr. Butterfield accentuated monitoring
of dendritic cell metabolic (dys)function as a determinant for tumor vaccine success. Lectures were
interspersed with select abstract presentations. To summarize the concepts, Dr. Maecker from
Stanford led an informative forum discussion, pointing towards the future of immune monitoring.
Immune monitoring continues to be a guiding light towards effective immunotherapeutic strategies.
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1. Introduction

On 5 and 6 October 2023 an Immune Assessment Symposium was held in Chicago,
IL, USA. The meeting was held to promote cross-disciplinary exchanges and discuss
current standards in immune monitoring and immunotherapy assessment for clinical
and translational studies. The goal was to establish a forum uniting scientists studying
immunotherapies and immune responses, to review the current immune monitoring tech-
niques and establish a common framework for leveraging future technologies to precisely
evaluate immunologic responses in both basic and early stage clinical research settings. To
do this, we utilized the knowledge accumulated by diverse monitoring facilities equipped
with cutting edge equipment to measure immune responses with a wide range of protocols.
The insights gained from these facilities can be helpful for institutions nationwide and
internationally when designing a repertoire of assays covering tissue imaging, cell profiling,
sequencing and cytokine analytes. The goal was to align the assays with state-of-the-art
measures and standardized assays performed at the National Cancer Institute (NCI)’s
CIMACS or ‘cancer immune monitoring and analysis centers’ at Dana Farber Cancer In-
stitute, Icahn School of Medicine, MD Anderson Cancer Center and Stanford University.
These centers were established with support from the Cancer Moonshot initiative, that
also helped support the newly instated partnership for accelerating cancer therapies or
PACT. Expert speakers provided deep insight into the past, present, and future landscape
of immune monitoring (Figure 1).
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Figure 1. Symposium speakers Drs. S. Gnjatic, R. Obeng, K. Lyerly, A. Sonnabend, J. Guevara-
Patino, L. Butterfield. From left to right, top to bottom: Dr. Gnjatic is a professor of Oncological
Sciences, Medicine, Hematology and Medical Oncology and Pathology, and Molecular and Cell
Based Medicine at Icahn School of Medicine at Mount Sinai in New York, NY, USA. Dr. Obeng is an
Assistant Professor in the Department of Pathology at the School of Medicine at Case Western Reserve
University in Cleveland, OH, USA. Dr. Lyerly is a Professor of Surgery, Immunology, and Pathology
at Duke University School of Medicine in Durham, NC, USA. Dr. Sonabend is an Associate Professor
of Neurosurgery at Northwestern University. Dr Guevara-Patiño is a Professor of Immunology at
Moffit Cancer Center in Tampa, FL, USA. Dr. Butterfield is Adjunct Professor of Microbiology and
Immunology at the University California San Francisco and a Distinguished Scientist for Merck.

2. Multi-Omics and Cross-Trial Analyses

Dr. Sacha Gnjatic from the Icahn School of Medicine at Mount Sinai, New York
was the inaugural speaker addressing the audience. His research focuses on examining
human antigen-specific immune responses to tumor antigens [1], development of cancer
immunotherapies [2] and characterization of the tumor-immune microenvironment [3–5].
At Mount Sinai he co-directs the Human Immune Monitoring Center, a vital component
of the NCI-designated CIMACs. These CIMACs set standards for immune monitoring
by performing high level, multiplex assays to define immunological correlates for clinical
trials directed under the NCI cooperative agreements. First tier assays are recommended
to be applied to all trials on longitudinally collected tumor and blood specimens, while
Tier 2 and 3 assays cover more specialized technologies, allowing for deeper dives into
function and mechanism in selected studies or patient subsets (Table 1). The latter assays
were approved after extensive validation and may be performed ad hoc. Moving toward
approval, harmonization and proficiency testing involves sharing SOPs across CIMACs,
followed by interlaboratory testing and the development of a consensus SOP. At that
point proficiency testing continues with intermittent group review of protocols. There is
indeed a concerted effort to develop consistent biomarkers to help finetune diagnoses,
predict outcomes and understand therapy responses in cancer patients. For checkpoint
inhibitor therapy, FDA approved biomarkers of treatment eligibility [6] include tissue
PD-L1 expression, high tumor mutation burden and/or diminished DNA damage repair,
and lack of specific driver alterations. Emerging biomarkers include gut microbiome
composition [7], detection of cell-free or epigenetically modified tumor DNA, and gene
expression marking tumor-associated or peripheral immune cell subsets associated with
treatment responses or survival. In this respect, T cells are gaining in importance, prompting
an interest in understanding T cell clonality and antigen recognition, with TCR sequencing
becoming critical [8]. However, we must acknowledge that innovation and standardization
do not always align during assay development. Sacha further emphasized the importance
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of signal normalization and standardizing the process of registration, cell segmentation
and deconvolution for consistent tissue staining analysis [9], and of constant inter-assay
validation to support reproducibility of the results. Notably, there is growing interest in
bulk analytes in serum as markers of disease improvement. Examples from CIMAC/PACT
clinical trials include the predictive value of detecting IL-6 and IL-8 in serum samples
from muscle-invasive bladder cancer patients, which appeared to be predictive of tumor
responses to PD-1 blockade with chemotherapy [10], while reduced serum CXCL13 on
treatment was often associated with better responses, including in a study of non-small
cell lung cancer patients treated with combination of immune checkpoints (Parra et al., in
press). These immune monitoring approaches can also be applied to correlates of adverse
events associated with immunotherapies. An example is found in a study of patients
developing immune checkpoint-induced colitis, a major toxicity limiting the development
of drugs targeting CTLA-4 in particular. There, inflammatory signals in serum related to
Th1 and Th17 pathways [11]. Overall, the implementation of well-designed, sample-rich
studies assayed with harmonized multiparameter platforms should allow us to define
sets of biomarkers associated with clinical benefit, allowing eventual comparisons across
different treatment modalities and cancers. While this process is still in its early phase, the
ultimate goal is that composite biomarkers will emerge to guide better patient selection for
optimal therapies.

Table 1. CIMAC classification of immune monitoring protocols.

Tier 1 Recommended for all longitudinally
collected samples

Whole exome sequencing
RNAseq/panel-based RNA sequencing (Nanostring),

PD-L1 and multiplex immunohistology for tumor tissues,
TCRseq of β-chain variable regions (Adaptive),

CyTOF mass cytometry
Olink proximity extension assay of soluble analytes

ELISA to measure immunogenicity of tumor-associated
antigens from blood.

Tier 2 Other approved assays

scRNAseq and CITEseq
Spatial transcriptomics

scTCR and -BCRseq
Extracellular vesicle evaluation

Tier 3 May be performed

Specific analysis of functional markers, phosphorylation Measurements
and cytokine detection by CyTOF

ELISPOT to evaluate neoantigen expression
Tetramer analysis

Luminex/ELLA multiplex ELISA, seromics.

3. Biomarkers of Effective Treatment

The subsequent session focused on biomarkers of responsiveness. Arjun Kharel from
the laboratory of Dr. Weiguo Cui addressed the impact of PBAF function loss [12]. Loss of
PBAF was found to promote effector differentiation and limit CD8 T cell exhaustion, sug-
gesting that the chromatin remodeling complex can be a target for cancer immunotherapy.
Next, Victor Karwacinski from Dr. Daniel Brat’s lab described the connection between hy-
poxia and macrophage influx to tumors. This influx can promote a stem cell-like phenotype
and radioresistance among glioblastoma tumors [13]. Marihan Hegazy of Dr. Kathleen
Green’s laboratory showed a role for desmoglein-1 in epithelial differentiation by limiting
MAPK signaling and keratinocyte proliferation, and in inflammation by suppressing TNF-
induced expression of type 17 cytokines by epithelial cells [14]. William Nguyen, from Dr.
Alan Zhou’s lab, shared insights on cutaneous T cell lymphoma. The data revealed distinct
gut microbial profiles between controls and patients responsive to narrow-band UVB expo-
sure, with butyrate-producing Lachnospiraceae enriched among responders [15]. In the
final presentation of this session, Radhika Iyer from Dr. Deyu Fang’s group showed that
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ATXN3 serves as a positive regulator of PD-L1 as identified in a CRISPR screening. ATXN3
expression increased in several tumor types suggests its potential as a target for improving
ICI responses [16]. Collectively, these presentations provided an excellent overview of
emerging disease biomarkers with the potential for inclusion in future screening panels.

4. Predicting Responses to Immunotherapy

Dr. Rebecca Obeng discussed opportunities for using proliferative CD8 T cell re-
sponses in peripheral blood to predict responses to immunotherapy. As an Assistant
Professor of Pathology at Case Western Reserve University, Dr. Obeng aims to understand
how T cells differentiate and function within the tumor microenvironment [17]. Her work
explores the spatial relationships between individual CD8 T cell subsets and elements of the
tumor microenvironment, extending her research to tertiary lymphoid structures and their
role in antitumor immunity. Dr. Obeng is dedicated to developing predictive bio-markers
that can improve patient selection and provide a prognosis for the outcomes of cancer im-
munotherapy. Success metrics are informed in part by the type of therapy applied, broadly
classified as B cell targeted therapy, cytokine-based treatment, adoptive T cell transfer and
immune checkpoint inhibition. Initially, such predictors included evaluating immune infil-
tration to detect ‘hot tumors’ and measuring DNA repair activity to understand whether
mutations persist to form potential neoantigens [18]. Large-scale screening now allows for
the identification of biomarkers correlating with therapeutic responsiveness. While PD-L1
turned up as such a predictor molecule [19], questions remain about its relative importance
when expressed by the tumor versus expression of PD-L1 by tumor-infiltrating immune
cells. PD-1+ TCF-1+ Stem-like CD8 T cells are the primary targets of PD-1 checkpoint
blockade, resulting in the expansion of the population and differentiation into effector cells.
These responsive, stem-like cells are found in T cell-like zones within stroma-containing,
tertiary lymphoid-like structures observed in several tumor types [20]. Tumor infiltration
by stem-like PD-1+ TCF-1+ stem-like CD8 T cells proved to be a significant parameter of re-
sponsiveness. Early proliferative CD8 T cell responses after PD-1 blockade were predictive
of positive clinical outcomes, with proliferating cells having an effector-like phenotype [21].
These findings introduce new questions, such as whether the same biomarkers are also
reflective of side effects. Importantly, the transcriptional profile of the effector cells can be
modified to generate better effector CD8 T cells [20], thus revealing new ways of monitoring
immune responses to immunotherapy to improve clinical outcomes.

5. Assessment in (Pre)Clinical Trials

The discussion then shifted to examples of (pre)clinical trials where immune assess-
ment helps to define treatment efficacy. Expanding on research initiated in the Platanias lab,
Dr. Diana Saleiro showed that responses to checkpoint inhibitors are markedly enhanced
by inhibiting the Unk-51 like kinase 1 (ULK1) signaling pathway. This pathway is typically
involved in mediating immunosuppressive responses downstream of IFN-γ [22]. Sangeeta
Kowli then discussed CyTOF data from the Maecker laboratory to identify diagnostic or
prognostic factors in peripheral blood, revealing chronic activation of cytotoxic NK and T
cell subsets in melanoma patients [23]. Continuing the focus on melanoma-related research,
Rohan Shivde from the Le Poole lab compared outcomes for CAR T cells to bispecific T cell
engagers targeting a single melanoma surface molecule. This comparison revealed differing
cytokine profiles from participating T cells [24,25]. Hui Tang from Dr. Bin Zhang’s lab next
described opportunities to overcome resistance to immune checkpoint blockade [26] by
re-programming tumor-induced granulopoiesis through cysteinyl leukotriene receptor-1
inhibition. In the closing presentation of this session, Dr. Seth Pollack focused on the sig-
nificant role of a different T cell subset. He highlighted that TLR4 agonist glycopyranosyl
lipid A sensitizes the tumor microenvironment to radiation treatment, while driving clonal
convergence among tumor infiltrating CD4+ T lymphocytes [27]. Tyler Smith from the
laboratory of Dr. Jennifer Wu next emphasized the opportunities arising from NKG2D
co-stimulation, using antibody B10G5 to target its ligand (soluble) MIC, he demonstrated
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enhanced stemness of CD8 T cells in tumors from a MIC-transgenic mouse model of
prostate cancer [28]. April Bell from Dr. Derek Wainwright’s group revisited the topic of
glioblastomas. She described how senolytics target extra-tumoral senescent cells to boost
immunotherapy responses in older subjects [29].

6. Soldano Ferrone Lecture

Dr. Kim Lyerly was awarded the Soldano Ferrone lectureship and started his pre-
sentation by acknowledging the extensive contributions of Dr. Ferrone, who tragically
succumbed to the COVID pandemic in the early days of 2023. The speaker, Dr. Lyerly
is a Distinguished Professor of Immunology and a Professor of Surgery and Pathology.
He is an expert in cancer immunotherapy and was a long-standing member of the NCI
Cancer Advisory Board. Citing a summary by Drs. Whiteside and Zarour [30], Dr. Lyerly
highlighted Soldano’s ground-breaking work on HLA class I serotyping and the identifi-
cation of components of the antigen processing pathway, expression of MHC class II by
tumor cells, identification of tumor antigens at the crossroads of costimulatory pathways
and generating CAR T cells to target them. His passion for the field remains alive as the
torch has been passed to his children [31]. Dr. Lyerly then mentioned the excitement of
recognizing cytotoxic T cells as mediators of the anti-tumor response in the early days
of tumor immunology [32], and the recognition that HLA-dependent cytolysis correlated
with anti-tumor responses [33]. The Cancer Immunotherapy Trials Network advanced
these findings further [34], starting the path to the development of peptide MHC tetramer
technology [35], detecting cytokine-expressing cells by flow and performing single-cell
ELISPOT analysis of cytokine expression. These methods have allowed the comparison
of antigen-specific responses to anti-tumor vaccines and their correlation with clinical
outcomes [36], highlighting the importance of overcoming tumor immune suppression [37].
Kim then focused on the use of virus-like replicon particles and self-replicating RNA vec-
tors to elicit dose-dependent B and T cells responses to carcinoembryonic antigen [38,39],
especially after repeated immunization. Moving to discuss immune assessment [34], CD27
has emerged as a marker of antigen-specific memory T cells recognizing Her2 in breast
cancer [40], presenting opportunities to further enhance responses as a target of agonist
Abs [41]. The presentation then centered around precise immune monitoring opportunities,
showcasing the cancer rainbow (crainbow) mouse [42] to track HER2 isoform expression in
crypts of the mouse mammary gland. In this model, the HER2 gene is randomly floxed to
produce 3 different, individually labeled isoforms of the target molecule, allowing investi-
gators to follow cellular lineage. Summarizing the current state of immune assessment, Dr.
Lyerly concluded that characterizing regional and circulating immune responses to vaccines
will continue to be explored at single cell and antigen specific level, while functional assays
will likely remain exploratory. Dr. Lyerly underscored the importance of solid p-values and
biologically plausible effects, validated by external results as crucial elements for future
immune assessment efforts.

7. Refining Patient Selection

Drug delivery and refining patient selection were topics addressed by Dr. Adam
Sonabend in his presentation about improving outcomes for glioma immunotherapy [43,44].
Dr. Sonabend is a brain tumor neurosurgeon/scientist specializing in the care of brain tumor
patients. As an Associate Professor of Neurosurgery and Director of Translational Neuro-
Oncology at Northwestern University, he has been dedicated to predictive biomarker
discovery for glioblastoma immunotherapy in his research [45]. Given the immediate
availability of tissues post glioblastoma diagnosis and tumor surgery, the detailed study of
such predictive markers is feasible. Adam described PTEN mutations selectively associated
with non-responders, whereas MAPK mutations, although very rare, are clearly associated
with responses to therapy [46]. Responders consistently exhibit pERK activation and
more abundant microglia [47]. Effective patient selection is critically important for this
patient group with aggressive tumors, guiding them promptly to the most promising
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treatment options with the best odds of success. For those patients eligible for treatments
like paclitaxel, Dr. Sonabend described the use of microbubbles created by an implantable
ultrasound device [48]. By measuring tumor concentrations of drug in the tumor dissected
after the use of microbubbles or not, the efficacy of treatment can be readily followed [49].
Brain tissue repair after ultrasound treatment is rapid and preliminary data indicate that
this outcome is associated with microglia moving towards the damaged vasculature [50].
Immune assessment at the protein level has greatly helped to advance this technology in
the Sonabend lab.

8. Measuring Hypoxia-Induced Immune Suppression

Dr. José Guevara-Patiño, Professor of Immunology and initiator of the Immune moni-
toring core at Moffit Cancer Center discussed research focused on signaling cues exploitable
for cancer patients undergoing T cell-based immunotherapy. His research focuses on better
understanding the immune fertile conditions that are necessary to generate robust anti-
tumor T cell responses [51] and avoid TGFβ-driven immune suppression [52]. Currently,
José is interested in understanding the role of RPS6 and the effects of tumor-related hypoxia
on anti-tumor T cells [53]. By implementing machine learning approaches, he is working
towards the development of immunological predictive biomarkers for stratifying cancer
patients undergoing immunotherapies. José noted that patients with ECOG level 0–1 are
more prone to developing immune-related adverse events [54] which, in turn, correlate
with better survival. The Achilles heel for adoptively transferred T cells then lies in the
hypoxic environment they encounter in the tumor [55], as this environment impedes their
activity and limits their cytokine expression [56]. These T cells clearly need oxygen to sur-
vive, and they are observed in close proximity to the vasculature, ensuring close access to
oxygen. It has been reported that the hypoxia signature can be tracked using pimonidazole
to stain the T cells over time. This signature cannot be bypassed by non-TCR signaling and
involves mitochondria that are functionally changed under hypoxia, favoring glycolysis
to meet their energy needs [57]. When providing uridine to restart proliferation among
hypoxic T cells, Dr. Guevara-Patiño noticed that this treatment does not re-invigorate
cytokine expression.

9. Technical Advances

Transitioning to the topic of technical advances in the field, Dauren Biyashev, as a
member of Dr. Kurt Lu’s extended research team, discussed applying synthetic melanin
particles [58] as a means of scavenging radicals. This innovative approach aims to recruit
anti-inflammatory immune cells and promote tissue repair, important for would healing
following procedures like surgery. Anumeha Singh from the laboratory of Dr. Rui Yi
described interactions between tissue stem cells and immune cells as determinants in the
transcriptional control of immune privilege, taking hair follicle stem cells as an exam-
ple [59]. Initiating desired immune responses can be overruled by immune privilege, and
understanding the process can contribute to the design of measures to control ongoing im-
munity. Concluding this session, Victor Arrieta presented data from Catalina Lee-Chang’s
group [60], describing integrated single cell analysis [61] of the immune landscape in
chordomas, rare tumors that occur in the spine or base of the skull. In peripheral blood
and tumor samples from chordoma patients, anti-tumor immunity was marked by clonal
enrichment and exhaustion among both peripheral and intra-tumoral CD8+ T cells.

10. Monitoring Success in Cancer Vaccine Development

To better understand the benefits of cancer vaccines, Dr. Lisa Butterfield described the
lessons learned to date. Professor Butterfield previously led the Immunologic Monitoring
Lab at the University of Pittsburgh, and she is currently affiliated with the University of
California San Francisco. Her research is focused on cancer vaccines, immune profiling
and therapies for melanoma, hepatocellular cancer, and other tumor types. Her work in
cancer vaccines began with pulsing HLA-A2+ patient DCs with the immunodominant
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non-mutated MART1-derived peptide. This work gained momentum by transducing DCs
with the full-length antigen or with combinations of shared antigens in an adenovirus [62],
overcoming the need for an HLA match and rendering a more universally applicable
vaccine. Interestingly, the level of tumor antigen expression was not related to treatment
success, whereas vaccine-induced CD8 T cell responses were significantly correlated to both
progression-free survival and overall survival [63]. A quantitative increase in the frequency
of antigen specific T cells in the blood made little difference for patient outcomes. IFNα

was tested for its ability to enhance antitumor responses but was not successful as tested in
the clinical protocol [64]. The potency measurements of DCs, including the expression of
phenotypic markers and the amount of IL-12 p70 produced [65], were not predictive for
in vivo immunogenicity or clinical outcome. Patient-derived DC dysfunction was identi-
fied [66], and NFκB signaling was dysregulated in melanoma patient DCs [67], affecting
ICOSL and downstream T cell priming. Another critical dysregulated area of DC biology
was identified as cellular metabolism [68,69]. Transcriptional profiling, population-based
Seahorse assessments as well as newer single cell metabolic measures like scMEP single cell
metabolic profiling and SCENITH (single cell energetic metabolism analyzed by profiling
translation inhibition) were used to measure the metabolism of patient DCs. Results show
that the mTOR and pAMPK pathways provide a critical regulatory node for DC. Moreover,
increased glycolysis and lactate secretion were identified as markers of immune suppres-
sion in patient DC. In melanoma and hepatocellular carcinomas, DCs exhibited reduced
mitochondrial functionality [70]. Emerging screening methods at the molecular level are
now helping us gain a full understanding of immune dysfunction in tumor patients, setting
the stage for addressing the next challenges in tumor vaccine development.

11. Harmonizing Immune Monitoring

With this discussion of DC and T cell characterization in tumor patients, the series
of lectures morphed into a forum discussion focusing on optimal immune assessment in
cancer research and treatment (Figure 2). Dr. Holden Maecker facilitated a clear discussion
of methods available to cancer researchers at this time. Dr. Maecker is a Professor of
Microbiology and Immunology and Director of the Human Immune Monitoring Center
at Stanford University, leading one of the NCI-supported CIMACs. Holden is a member
of the SITC Biomarker task force and co-chairs the FOCIS Human Immunophenotyping
Consortium. His expertise defines his interest in defining metrics of immune competence
and using upscale technologies to broadly survey immune features at the cellular level
and link them to clinical outcomes. Holden initiated the discussion by highlighting the
different parameters central to measuring immune responses, including measures of DC,
NK, B cell and T cell spatial relationships, quantity and function. The initial focus was on
antibodies and cytokines as the main secreted proteins to be measured, while measures of
chromatin state and gene expression can give a detailed view of immune cell function. A
conversation explored breakthrough monitoring technologies, parameters that cannot yet
be measured, strategies to economize monitoring applications through streamlining and
standardization and the role of CIMACs in guiding and unifying the field. An example
discussion surrounded measurement platforms for protein analytes which include Olink,
with high multiplexing capabilities, a reasonable setup mode and small sample volumes;
the novel NULISA platform, which offers greater automation, with a large number of
targets and a slightly larger input volume; or Luminex, with the advantage of flexibility
in sample numbers and kits that are easily customized for specific uses. The sensitivity of
these methods increases from Luminex to Olink to Alamar (NULISA) based on comparison
testing. Another technological comparison was that of CyTOF versus spectral cytometry
(Table 2), the latter allowing up to 50 marker analysis whereas spectral flow allows in
the range of 40 markers to be measured. The panel design is more challenging for the
latter technology with considerably more spillover, but the acquisition speed is more than
10-fold greater by spectral flow. While CyTOF does not offer light scatter parameters due
to the nature of the label, spectral flow is limited by tandem dye degradation. Single
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cell sequencing platforms were also discussed. Among them, Mission Bio Tapestri offers
targeted DNA sequencing that also allows for antibody-based proteomic measurements
and is good for assessing genetic heterogeneity as relevant to tumor biology. RNA platforms
including the BD Rhapsody, 10X Chromium or Fluent PIPseq and Parse Evercode all allow
for sample multiplexing, while all but the Evercode offer AbSeq and CITEseq capabilities.
A difference among these technologies lies in the ability to target meaningful BCR and
TCR sequencing, with all but the Parse Evercode offering both and the latter offering TCR
sequencing only. The features differ BD technology is suited for multiple small samples
(minimum around 1000 cells) and provides the greatest cell recovery while 10X and PIPseq
work with scalable cell numbers (between 10 and 200 k), and Parse Evercode allows for
fixing of cells for later capture and is especially suited for high cell numbers 20 k to 1 million).
The relative cost per cell is approximately 8:5:1 for BD Rhapsody:PIPseq:Parse Evercode.
The discussion further extended to the sources of variability among labs, highlighting the
influence of sampling, preservation, transportation methods and software selection on
outcomes and reproducibility. Harmonization and standardization were deemed crucial,
and it was suggested to create a single, shared analysis template, involve experts to perform
QC, run comparisons with shared control samples and exclude outliers (Figure 3). Despite
the recognized need to streamline monitoring strategies across core facilities, achieving full
consensus remains a work in progress.
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Table 2. Monitoring by spectral flow and CyTOF: a comparison.

Spectral Flow CyTOF

Number of parameters 30–40 40–50

Sensitivity Varies ~10x by channel Varies ~4x by channel

Spillover

Significant; requires
deconvolution with

single-color controls, panel
design can be challenging

Minimal; generally no
compensation required,

relatively easy panel design

Acquisition speed 3000+ cells/s 200–300 cells/s

Other limitations Tandem dye degeneration No light scatter parameters
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