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Simple Summary: Melanoma is the third most common type of skin cancer. Melanoma is a heteroge-
neous tumor, composed of genetically divergent subpopulations. These subpopulations exist in the
form of cancer stem-like cells (CSCs) and many non-cancer stem cells (non-CSCs). CSCs are charac-
terized by their unique surface proteins and aberrant signaling pathways. The unique characteristics
of CSCs are responsible for the promotion of melanoma progression, drug resistance, and recurrence.
Beyond unique characteristics of CSCs, melanomas also harbor significant alterations in functional
genes (BRAF, CDKN2A, NRAS, TP53, and NF1). Of these, the most common are the BRAF and NRAS
oncogenes, with 50% of melanomas demonstrating the BRAF mutation (BRAFV600E). Although the
successful targeting of BRAFV600E does improve overall survival, the long-term efficacy of available
therapeutic options is limited, and the development of acquired resistance is mostly common.

Abstract: Melanoma is the third most common type of skin cancer, characterized by its heterogeneity
and propensity to metastasize to distant organs. Melanoma is a heterogeneous tumor, composed
of genetically divergent subpopulations, including a small fraction of melanoma-initiating cancer
stem-like cells (CSCs) and many non-cancer stem cells (non-CSCs). CSCs are characterized by their
unique surface proteins associated with aberrant signaling pathways with a causal or consequential
relationship with tumor progression, drug resistance, and recurrence. Melanomas also harbor
significant alterations in functional genes (BRAF, CDKN2A, NRAS, TP53, and NF1). Of these, the
most common are the BRAF and NRAS oncogenes, with 50% of melanomas demonstrating the BRAF
mutation (BRAFV600E). While the successful targeting of BRAFV600E does improve overall survival,
the long-term efficacy of available therapeutic options is limited due to adverse side effects and
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reduced clinical efficacy. Additionally, drug resistance develops rapidly via mechanisms involving
fast feedback re-activation of MAPK signaling pathways. This article updates information relevant to
the mechanisms of melanoma progression and resistance and particularly the mechanistic role of
CSCs in melanoma progression, drug resistance, and recurrence.

Keywords: melanoma; CSCs; PI3K; MAPK; BRAF

1. Introduction

Despite improved treatment options, the prognosis for patients with advanced ma-
lignant melanoma remains poor, as measured by progression-free and overall survival [1].
Traditional therapeutics primarily target rapidly proliferating tumor cells, leaving tumor-
initiating cells intact [2,3]. Consequently, tumor-initiating cells stimulate the production
of new tumor clones with the propensity to disseminate to distant organs and to confer
resistance to anticancer agents [4,5].

Aggressive tumor cells, including melanoma, share many characteristics with em-
bryonic progenitors, which contribute to the mystery of tumor cell plasticity. While the
multi-linage differentiation of embryonic stem cells (ESCs) is mainly controlled by a dis-
tinct microenvironment milieu leading the specification of the pluripotent ESCs [6,7], the
differentiation in the case of the CSC concept refers to the ability of tumor cells to give
rise to phenotypically diverse populations that reflect the histological features of the initial
tumor in vivo [6]. In both embryonic and adult stem cells, differentiation is controlled by
epigenetic mechanisms, and the plasticity of differentiation in these cells is associated with
transcription accessibility for genes expressed in different normal tissues [7]. Abnormalities
in genetic and/or epigenetic controls can lead to the development of cancer, which can be
maintained by self-renewing CSCs [8,9]. Like normal stem cells, CSCs can show plasticity
for differentiation [10]. CSC plasticity is mostly associated with transcription accessibility
for genes that are normally expressed in different tissues, including tissues other than those
from which the cancers originated [11].

In recent years, there has been an increased focus on cancer stem-like cells (CSCs)
in experimental models of tumor initiation, progression, recurrence, and treatment resis-
tance [9,12,13]. The working hypothesis suggests that CSCs, representing a small fraction
of tumor cells, potentiate neoplastic clones [3]. Like other CSCs, melanoma stem-like
cells (MSCs) are characterized by the expression of stemness properties-dependent protein
markers and well-defined aberrant signaling pathways.

Most available therapeutics fail to target MSCs. In fact, MSCs are genetically evolved
to evade drug toxicity and to promote tumor progression and metastases [14,15]. This
article focuses on the molecular mechanisms of melanoma progression and treatment
resistance, and particularly the mechanistic role of CSCs in melanoma progression, drug
resistance, and recurrence.

2. Melanoma Heterogeneity and Plasticity

Although phenotypic diversity and plasticity in melanoma have been described
>40 years ago [16,17], the molecular characterization of specific phenotypic states was
first determined after the functional characterization of the gene encoding MITF [18].
Consequently, it is possible to investigate the specific phenotypic states evoked by microen-
vironmental signals.

In addition to its significant role in the regulation of pigment cell development [19],
MITF is widely discussed as a key regulator of genes leading to the regulation of melano-
genesis and primary differentiation-associated function of melanocytes [20,21]. Also, ac-
cumulated evidence indicated that deregulation of either MITF expression or activity can
cause melanocyte dedifferentiation [22,23]. Beyond its role in melanoma and melanocytes
differentiation, MITF has been reported to be essential for the regulation of genes implicated
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in several biological processes such as survival [24], cell cycle control [25], invasion [26],
autophagy [27], senescence bypass [28], and DNA damage repair and chromosome stabil-
ity [28,29].

Tumor heterogeneity is widely documented to play an imperative role in cancer
development, evolution, and resistance to therapy. As one of the most heterogeneous
human cancers, melanoma demonstrates high levels of biological complexity during disease
progression. As result, melanoma cells undergo genetic, epigenetic, and/or phenotypic
modification to survive in the human body. In addition to the aforementioned melanoma
alterations, the microenvironment of melanoma cells plays a crucial role in the regulation
of melanoma initiation, progression, treatment resistance, and recurrence [30,31].

The study of single-cell genotyping demonstrated a complex clonal diversity among
tumor cells, a phenomenon that is recognized as tumor heterogeneity; “the same tumor
cells exhibit different morphological and phenotypic profiles” [32,33]. Tumor heterogeneity
is a tumor phenomenon that refers to the existence of subpopulations of cells with different
genotypes and phenotypes that can exhibit different biological behaviors within a primary
tumor and its metastases or between tumors of the same histopathological subtype in the
form of intra- and inter-tumor phenotypes [34–36].

Melanoma has the highest mutation frequency among human cancers, which con-
tributes to the development of significant melanoma heterogeneity [37–42].

Intratumoral heterogeneity refers to development of tumor subpopulations with
variable genetic traits in the same tumor, intertumoral heterogeneity refers to the differences
between lesions in the same patients [32,33,37,43,44], and phenotypic heterogeneity results
from irreversible changes in tumor cells within a homogenous population in response to
microenvironmental signals without undergoing genetic alterations [45–47].

Genetic intratumoral heterogeneity results from genomic instability in the form of
frequent mutation of genes encoding for key proteins of the aberrant signaling pathways
linked to the development of genetically divergent subpopulations [48,49]. The most com-
mon examples of the genetic intratumoral heterogeneity are the melanoma subpopulations
bearing mutant (Mut) protein and its wild-type (WT) counterpart such as BRAFMut or
BRAFWT [50–53], KITL576P, KITWT [54], BRAFV600E/NRASWT or BRAFWT/NRASQ61R [48],
NRASG13R or NRASWT [49], as well as melanoma subpopulations with heterogenous
expression of BRAFV600E [53].

Epigenetic intertumoral heterogeneity refers to tumor subpopulations with epigenetic
variation [32]. The most reported examples for epigenetic intratumoral heterogeneity are
those describing melanoma subpopulations bearing RASSF1A, CDKN2A, DAPK, MGMT,
and RB1 genes with hypermethylated promoters [55,56] or melanoma subpopulations with
heterogeneous expression of melanoma-associated antigen A3 (MAGE-A3) as a conse-
quence of differential methylation of the MAGE-A3 promoter [56].

The microphthalmia-associated transcription factor MITF has been widely reported
to be the master regulator of melanocyte biology in addition to being one of the key
factors that is essential for the regulation of melanoma progression and invasion [32].
Melanoma is one of the most genetically and phenotypically heterogeneous cancers at
inter-patient, inter-tumor, and intra-tumor level [57,58]. In addition to its role as key
regulator of melanoma progression and invasion, MITF is one of the main determi-
nants of melanoma heterogeneity and therapy resistance [57–59]. Consequently, the
genetic, epigenetic, and phenotypic heterogeneity of melanoma result from the devel-
opment of melanoma subpopulations within a tumor and can display remarkable vari-
ability in their phenotypic traits [60]. These heterogenous melanoma subpopulations
are characterized by the expression of MITFhigh and MITFlow proteins [61–63], MITF
and BRN2 (non-canonical melanoma tumor-suppressor) proteins [64–66], and MITF and
PAX3 [65] proteins. Also, phenotypic intertumoral heterogeneity includes subpopula-
tions that can undergo phenotypic transition from one subpopulation to another. This
includes the transition from MITFhigh/NF-κBlow to MITFlow/NF-κBhigh/AXLhigh during
the development of melanoma resistance [67,68], transition from primary melanoma that
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expresses ZEB2high/SNAIL2high/ZEB1low/TWIST1low to metastatic melanoma expressing
ZEB2low/SNAIL2low/ZEB1high/TWIST1high [69], transition of melanoma of the ABCB5+

subpopulation to the melanoma ABCB5−subpopulation [70–73], and transition of the
melanoma CD133+ subpopulation to the melanoma CD133− subpopulation [73–77]. Ac-
cordingly, the development of phenotypic intratumoral heterogeneity, in response to
treatment with BRAF inhibitors, is common. The transition of the melanoma MART-
1neg/NGFRhigh subpopulation to the MART-1neg/NGFRneg subpopulation [78,79], or the
transition of from NRASWT/BRAFV600E to NRASG13R/BRAFV600E [80] following treatment
with BRAF inhibitors, has also been reported.

Cancer cells can exhibit a high level of plasticity or the ability to dynamically switch
between CSC and non-CSC states and even among different subsets of CSCs. Plasticity
gives melanoma cells the ability to dynamically switch between a differentiated state with
limited tumorigenic potential and an undifferentiated or cancer stem-like cell state (CSC)
that is responsible for long-term tumor growth [81]. In addition to the ability to transit
into distinct CSC states with different competence to evade drug toxicity to disseminate
to distant organs, cancer cell plasticity has been shown to be linked to the epithelial-to-
mesenchymal transition-like program in melanoma that relies not only on cell-autonomous
mechanisms but also on signals provided by the tumor microenvironment and/or signals
induced in response to therapy [82,83] in response to active mutations in key molecules of
both MAPK and PI3K/AKT/PTEN pathways [84,85].

The development of cell cycle heterogeneity and the enhancement of cell differentiation
and metabolic reprogramming contribute to the evolution of the phenotypic drug resistance
of melanoma [85–87]. Figure 1 describes the mechanisms of cellular plasticity that allows
for the adaptation of melanoma cells to a variety of environmental stresses.
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mesenchymal–epithelial transition (MET), and cancer cell fusion. Consequently, the development
and accumulation of populations of cancer cell progenitors or cancer stem cells (CSCs) can form a
cancer cell niche. The enrichment of CSC populations in an activated niche is the main source for
their differentiation or trans- or dedifferentiation, and metastasis of melanoma cells can take place at
the same time in distinct compartments of tumor cells.

3. Mechanisms of Tumor Progression and Drug Resistance

Drug resistance is one of the largest challenges to melanoma treatment. Melanoma
initiation and progression is mediated via genetic and epigenetic alterations to the key
molecules in multiple signaling pathways such as RAS/RAF/MAPK, JNK, PI3K/Akt,
and Jak/STAT pathways [86,87]. Likewise, dysregulation of MITF protein results in the
development of melanoma progression and drug resistance [88].

The analysis of melanoma circulated tumor DNA (ctDNA) using next-generation
sequencing (NGS) has been used as a reliable tool to monitor a driver mutation as a predic-
tor marker for survival high-risk stage III cutaneous melanoma patients [89,90] and drug
resistance [91]. The most mutated genes, which are associated with the development of
resistance to targeted therapy in melanoma include CDKN2A [92,93], RB1 [92,94], PIK3CA,
AKT3, HOXD8 [95], PAX5 [93], MAP3K8 [96], and MITF [95]. All these genes are either
involved in the regulation of MAPK and PI3K/AKT signaling pathways in addition to serv-
ing as tumor suppressors affecting drug resistance in other cancers including Homeobox
protein Hox-D8 (HOXD8) [97] and Paired Box 5 (PAX5) [98].

The most common genetic alterations result from frequent mutations to the DNA
sequence of significant genes, while epigenetic alterations are mediated by cytosine methy-
lation of DNA regulatory regions [99,100].

Genetic alterations involve inherited mutation to melanoma development, particu-
larly familial melanomas [101]. These genetic alterations result from familial/inherited
and somatic CDKN2A mutations to both p14ARF and p16INK4A, which impact melanoma
suppression [102,103]. Although the CDKN2A and CDK4 genes have been primarily linked
to familial melanoma, the contribution of these genes only accounts for a small percentage
of familial melanoma [101,104]. The main function of p14ARF is to restrict cell proliferation
via a p53 stabilization-dependent mechanism, which induces the cyclin-dependent kinase
inhibitor p21 [105,106]. The main function of p16INK4A is to control cell proliferation by
inhibiting cyclin-dependent kinases 4 and 6 (CDK4/6) and cyclin D1 [107,108]. Accordingly,
CDKN2A mutations are common in melanoma and even reported in 8 to 57% of familial
melanoma cases [109,110]. Somatic mutations to key genes such as BRAF are common risk
factors associated with melanoma development in more than 5% of patients with BRAF
mutation [111,112]. The frequent mutation of BRAF, particularly of BRAFV600E, has been
reported in benign nevi, the precursors for melanoma genesis [113,114].

Epigenetic-dependent mechanisms such as methylation, chromatin modification,
and remodeling are essential for the regulation of melanoma progression and drug re-
sistance [115,116].

In addition to histone modification, noncoding RNA (ncRNA) expression, chromatin
remodeling, and nucleosome positioning, most epigenetic changes are mediated by aber-
rant methylation of DNA-dependent mechanisms via the addition of a methyl group to the
fifth carbon position of a cytosine molecule, which leads to generation of 5-methylcytosine
(5-mC) molecules that constitute approximately 2–8% of the total cytosines of DNA regula-
tory sequences of interest [117,118].

Analysis of DNA methylation in melanoma cell lines has revealed a large group of
hypermethylated genes, one of which includes the MITF gene [18,119]. MITF is signifi-
cantly involved in the regulation of multiple biological processes, including melanoma
differentiation, proliferation, migration, and senescence [120–122]. Likewise, the hyperme-
thylation of the phosphatase and tensin (PTEN) homologue promoter plays a key role in
the regulation of melanoma progression and resistance [123,124]. PTEN is the suppressor
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of PI3K, whose loss is associated with PI3K activation that, in turn, plays an essential role
in the development of non-inherited melanomas [125,126].

The resistance of any tumor results from the development of primary and/or acquired
resistance mechanisms. As mentioned, the occurrence of primary resistance in melanoma
is attributed to the accumulation of both genetic and epigenetic alterations to tumor cells
and significant changes in their microenvironment [127,128], while the development of
acquired/adaptive resistance results from tumor treatment-induced genetic and epigenetic
alterations to key molecules of aberrant signaling pathways in tumor cells [129,130].

Primary resistance development is mediated in great part by tyrosine-kinase-dependent
phosphorylation of tyrosine residues that drive various cellular functions, including pro-
liferation, differentiation, migration, and survival. Activation of tyrosine kinases is me-
diated by receptor tyrosine kinase (RTK) and/or non-receptor tyrosine kinase (NRTK)-
dependent mechanisms [131–135]. RTK activation is strictly regulated and well balanced
via ligand stimulation, chromosomal rearrangement, point mutations and amplification to
RTK/NRTK genes [131–136]. RTK activation is mediated by variable mechanisms and via
a cascade of phosphorylation events leading to the enhancement of cell growth, migration,
differentiation, survival, or apoptosis. The most common RTK activation mechanisms in-
clude ligand-stabilized dimerization or oligomerization of their protein monomers [135,136].
Dimerization-dependent activation of RTK is mediated through the phosphorylation of
tyrosine residues located in the kinase activation loop or juxta membrane domain of trans-
membrane receptors [135,136]. Phosphorylation of the tyrosine residues of RTKs is essential
to trigger the activation of Ras/Raf/MEK/ERK and PI3K/AKT pathways [131,137].

Acquired resistance for any tumor type occurs via two different biological processes;
one is early intrinsic/adaptive tumor resistance, while the other is known as late acquired
resistance. Intrinsic resistance of tumors like melanoma results from the re-activation
of RTK-dependent pathways (i.e., Ras/Raf/MEK/ERK and PI3K/AKT) as consequence
of treatment with their specific inhibitors [138–140]. While a proportion of patients are
intrinsically resistant to BRAF inhibitors, most patients who initially respond to BRAF
inhibitors exhibit acquired resistance once treatment is initiated [139,140]. The develop-
ment of BRAF inhibitor-associated acquired resistance is mediated by variable mechanisms.
These mechanisms are mostly mediated by either upstream or downstream signaling, lead-
ing to re-activation of the MAPK pathway via BRAF-dependent and -independent mecha-
nisms [141,142]. The upstream signaling-dependent mechanisms are mediated by the activa-
tion of ARAF and CRAF kinases to replace the inhibited BRAFV600E functioning [143–145],
while downstream signaling-dependent mechanisms are mediated by ERK negative feed-
back effects on RAS that restore RAS activity and enhance the formation of BRAFV600E

dimers. Of note, BRAF inhibitors can only bind one component of each dimer, a mechanism
which allows the unbound BRAF monomers to interact with CRAF monomers to form
BRAF-CRAF heterodimers that ultimately trigger the re-activation of ERK signaling to
reduce long-term BRAF inhibitor efficacy [146,147].

In addition to the above-mentioned mechanisms, other mechanisms such as the ampli-
fication of BRAF mutations [148] and/or alternative splicing of BRAF gene, are involved
in the re-activation of the MAPK pathway, leading to the development of melanoma ac-
quired resistance to BRAF inhibitors [149]. Also, both insulin growth factor-1 receptor
(IGF-1R) and PI3K/AKT pathways have been reported to be involved in the development
of melanoma resistance [150–152]. The possible mechanisms of melanoma progression and
drug resistance are summarized in Figure 2.
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Figure 2. The common mechanisms of melanoma progression and treatment resistance.
PI3K/AKT/mTOR and RAS/RAF/MEK/ERK pathways are the most characterized tumor
growth/treatment resistance-driving signals in melanoma. The activation of PI3K/AKT/mTOR
is tightly controlled via a multistep process that can be initiated through tyrosine kinase receptors
(RTKs) such as IGF-1R. The stimulation of IGF-1R by its ligand triggers the activation of PI3K via
their catalytic (p110) and regulatory (p85) subunits leading to the conversion of phosphatidylinositol
(3,4)-bisphosphate (PIP2) lipids to phosphatidylinositol (3,4,5)-trisphosphate (PIP3) allowing PDK1
to phosphorylate the tyrosine 308 (T308) residue and mTORC2 to phosphorylate tyrosine 473 (T473)
in the activation loop of AKT. Activated AKT then activates mTORC1 that, in turn, enhances the
activation of the eukaryotic translation initiation factor 4E binding protein 1 (4EBP1), and ribosomal
protein S6 kinase (S6K). The activation of the Ras/RAF/MEK/ERK signaling pathway is mediated
by the stimulation of epidermal growth factor (EGF) by its ligand for BRAF wild type or by active
mutation in the cells bearing a NRAS mutation. The treatment of melanoma cells bearing BRAFV600E

with specific inhibitors (e.g., dabrafenib) stimulates melanoma cells to overcome the inhibitory effect
of BRAF through the generation of BRAF isoforms via alternative splicing. Treatment of patients
with a NRAS mutation (NRASQ61R) with MEK inhibitors (e.g., trametinib) generates ERK negative
feedback effects on RAS, which creates a bypass mechanism through activation of ARAF and/or
CRAF to replace functional BRAF.

4. Cancer Stem Cells

Tumors are unique and complex ecosystems in which heterogeneous cell subpopula-
tions with variable molecular profiles, aggressiveness, and proliferation potential coexist
and interact in addition to exhibiting some self-renewal properties [153,154]. Two major
models have been proposed to explain how tumors grow and progress [155,156]. In one
of these models, namely the stochastic model, all the tumor cells are similar in their
biological features, but their fates are determined by their intrinsic signals and their
microenvironment-dependent signals. Although not all cancer cell progeny has the po-
tential to behave like a cancer stem cell, they have the potential to retain plasticity to go
from a non-stem cell to a stem cell-like precursor [156]. While in the hierarchical model, the
cancer stem cells are biologically different and can self-renew in addition to giving rise to
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various progeny cells including those lacking the ability to self-renew [157]. However, the
hierarchical model is often considered to be the most common model for sustained tumor
propagation rather than the stochastic model [156].

Like normal stem cells, CSCs are hierarchically organized at the cellular level in
origin tissues as a small fraction of genetically divergent subpopulations [158,159]. The
development of these subpopulations results from the segregation of genetic material of
functional genes to intrinsically asymmetric cell division of stem cell lineage to produce
two daughter cells, both different in their genetic materials and phenotype [160,161]. The
process of asymmetric cell division is genetically programed to produce one cell with
stemness properties that is recognized as a CSC and one cell that is recognized as a non-
CSC [124]. CSCs are adopted and genetically programed to grow continuously and divide
indefinitely, whereas non-CSCs are characterized by their limited cell division [160,161].
While non-CSCs are sensitive to anti-cancer agents, CSCs evade drug toxicity and relocate
and metastasize to distant organs [4,14,74].

Many potential biomarkers of CSCs have been identified based on their expression
in human solid tumors. Potential CSC markers include neural crest nerve growth fac-
tor/neurotrophin receptor CD271 [4,78,79,162]. CD271+ melanoma cells are characterized by
their tumorigenicity [4,78,79], and propensity to metastasize to the brain [130]. CD20, the cell
surface marker of normal B cells, exhibits elevated expression in melanoma [4,14,163–165].
Transcription factors such as Nanog and Oct3/4 transcription factors have been found to be
markedly elevated in melanospheres when compared to adherent melanoma cells [166,167].
Likewise, the activation of signaling pathways is common in normal stem cells such as
Wnt, and Notch and Hedgehog are also activated in melanoma CSCs [168–171]. Aldehyde
dehydrogenase (ALDH1) has also been identified as a potential marker of CSCs associated
with multidrug and/or immunological resistance [170]. Accordingly, genes such as ABCB1,
ABCB5, and ABCG2 undergo differential expression in both melanocytes and melanoma
cells [4,71,171–173]. Finally, Sox10 expression maintains the growth of MSCs to grow as
non-adherent tumorigenic spheres [174,175].

The involvement of the stem cell marker CD133 protein in the maintenance of melanoma
stemness properties and drug resistance is mediated by its C-terminal domain, which con-
tains tyrosine binding sites located on tyrosine 828 (Tyr828) and tyrosine 852 (Tyr852)
residues [74,176]. These two tyrosine residues are phosphorylation targets of the non-
receptor tyrosine kinase (NRTK) Fyn [176]. The contribution of CD133 to the regulation of
CSC functions such as self-renewal, differentiation, and drug resistance are likely mediated
by the NRTK, Fyn-dependent mechanism via the phosphorylation of Tyr828 residue located
on the cytoplasmic domain of CD133 [74,176]. Our laboratory has demonstrated that the
phosphorylation of Tyr828 is essential to trigger the activation of PI3K and its downstream-
dependent signaling pathways in melanoma [74]. Many studies have demonstrated that
increased CD133 expression is associated with high tumorigenicity and metastatic potential
for melanoma cells [75,177–179]. Also, CD133 protein has been implicated in the regulation
of tumor resistance [180–183].

CD133-expressing CSCs have been shown to exhibit resistance to chemotherapy
and radiation therapy in addition to being associated with poor prognosis in various
cancers [182]. We and others demonstrated that CD133+ cancer cells confer resistance to
many chemotherapeutic agents such as caffeic acid phenethyl ester [4], taxol [14], and
fotemustine [74]. Accordingly, CD133-dependent mechanisms have been shown to be
involved in the development of melanoma resistance to chemotherapy [74].

Thus, understanding the mechanisms which are involved in the regulation of CSC growth
and maintenance may help develop innovative therapeutic approaches for melanoma treatment.

The preliminary prevailing hypothesis suggests that tumor-initiating cells are derived
from normal stem cells rather than from progenitor cells; the development of CSCs from
normal stem cells and from progenitor stem cells has been shown [156,184,185]. Figure 3
outlines the pathways by which MSCs develop from either normal stem cells or cancer
progenitor cells. In addition to their origin and unique properties, CSCs serve as an



Cancers 2024, 16, 470 9 of 26

experimental model by which the mechanisms of tumor progression, recurrence, and
treatment resistance can be investigated.
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Figure 3. Proposed model for cancer stem-like cell (CSC)/melanoma stem cell (MSC) generation
from normal and cancer cells. (A) Generation of CSCs/MSCs results from the transformation of
normal stem/progenitor cells into undifferentiated cancer cells via multiple genetic mutations and
dedifferentiation-dependent mechanisms. (B) Generation of MSCs from cancer cells. This model
describes the generation of MSCs from tumor cells through the activation of aberrant signaling
pathways via driver mutations to tumor growth signaling pathways and activation of self-renewal
genes. MSCs become educated to divide into tumor progenitor cells/MSCs. The produced MSCs
possess genetic properties which allow for the division into one differentiated cell and one MSC.
Once the dedifferentiation process of the differentiated cell is complete, the dedifferentiated cells
can be transformed into MSCs. CSCs/MSCs undergo abnormal asymmetric cell division to produce
two daughter cells, one CSC and one non-CSC.

5. Mechanisms of Melanoma Treatment Failure and Recurrence

Mechanistically, the role of CSCs in tumor initiation, metastasis, and therapy resistance
have been demonstrated [4,14,74,174]. Stemness property-associated proteins like CD133
and CD271 have been purposed to play a functional role in melanoma progression, metasta-
sis, and drug resistance [74,75,79,165,186]. Of note, approximately 50% of melanoma cases
involve BRAF mutations [187]. BRAF inhibitors (e.g., vemurafenib, dabrafenib) have be-
come the preferred therapy for melanoma patients with mutated BRAFV600E [188–192]. Un-
fortunately, while the successful targeting of BRAFV600E improves overall survival [188,193],
acquired resistance development is common in most patients. This type of resistance is the
direct consequence of secondary NRAS mutations [194,195] in response to BRAF inhibitor
induced-ERK negative feedback effects on RAS as well as RTK-dependent RAS activation,
which triggers the activation of both ARAF and CRAF, BRAF amplification, and activation
of pathways like PI3K [196–198].

Melanoma progression, metastasis, treatment failure, and recurrence are attributed to
the presence of genetically divergent MSC subpopulations with stemness properties [199,200].
First assessment of melanoma patients treated with BRAF inhibitors revealed that 20%
targeted the BRAFV600E mutation [201,202]. Thus, the development of intrinsic resistance
in melanoma patients with the BRAFV600E mutation results from the presence of a portion
of cells (e.g., tumor-initiating cells/CSCs) that confer drug resistance [201,203].
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While treatment with BRAF inhibitors displays initial tumor regression in most
melanoma patients, complete tumor regression rarely occurs [204,205]. The main cause of
this noted poor prognosis is attributed to BRAF inhibitor-mediated compensatory mecha-
nisms. These compensatory mechanisms include elevation of ARAF and CRAF proteins, a
mechanism through which melanoma cells sustain the activation of MAPK activity dur-
ing BRAF inhibitors treatment [206–208]. Although BRAF inhibitor-resistant cells remain
sensitive to MEK inhibitors, the resistance of these melanoma cells to various structurally
different MEK inhibitors can be mediated by the generation of the compensatory mecha-
nism via activation of RTKs such as IGF-1R [205–208]. Like other cells with a melanocyte
origin, melanoma cells express IGF-1R. Importantly, MEK inhibitor-resistant melanoma cells
demonstrate higher surface levels of IGF-1R when compared to BRAF-sensitive melanoma
cells [205–208]. As such, IGF-1R is known to play an important role in tumor progression
and drug resistance [209]. IGF-1R-induced effects are mediated via activation of MAPK
and PI3K signaling [206–209]. This crosstalk between the MAPK and IGF-1R/PI3K/AKT
signaling pathways promotes the survival and expansion of BRAF-inhibitor-resistant cells.

The most widely recognized challenge of current therapies for solid tumors involves
this development of drug resistance and tumor recurrence. Common molecular mech-
anisms involved in therapeutic resistance include increased drug metabolism and drug
efflux; enhanced repair capacity of damaged DNA; re-activation of drug targets; overac-
tivation of growth and survival signaling pathways; amplification of genetic mutations;
and impaired activity of apoptosis/autophagy-dependent pathways [142,152]. Tumor
heterogeneity is also an important driver of drug resistance [32,80,210,211]. In contrast
to non-CSCs, CSCs are characterized by specific features that allow them to escape drug
toxicity [211,212]. These specific features include expression of different members of the
ATP-binding cassette (ABC) transporters such as ABCB5, ABCG1, ABCG2, and ABCG5,
all “efflux pumps”, to extrude drugs from cells into the microenvironment [213,214]. In
addition to the ABC transporters, high levels of ALDH activity modulate CSC resistance
to anti-cancer agents [160,215,216]. CSCs have been shown to be resistant to radiation
therapy, based on their ability to repair damaged DNA [74,217,218]. Finally, inhibition of
fotemustine-induced DNA damage in CD133+ melanoma subpopulations is associated
with the activation of checkpoint kinases CHK1 and CHK2 [74]. Taken together, these
observations strongly support the notation that melanoma CSCs represent a target for
melanoma treatment with standard therapies being combined to be directed against the
tumor bulk.

Current approaches to cancer immunotherapy include the non-specific stimulation of
antitumor immune response through stimulation of endogenous effector cells via cytokine-
dependent mechanisms, active immunization, adoptive immunotherapy, and the target-
ing of immune checkpoints or immune regulatory molecules [219]. The most common
cytokine-based therapy involves targeting interleukin-2 (IL-2), which was the first type of
immunotherapy approved for melanoma treatment [220–222]. Various systemic immune
therapies have also been examined for patients with stage II or III melanoma, particularly
for patients with a high risk of systemic recurrence [223]. The most common immunothera-
peutic of this type involves targeting interferon α-2b and peginterferon α-2b [223,224].

Accordingly, the combination of chemotherapy with either immunotherapy or bio-
therapy in metastatic melanoma treatment has been explored in multiple trials; notable
examples include the combination of cisplatin, vinblastine, and dacarbazine with IL-2 and
interferon-α-2b immunotherapy [225–228].

Tumor vaccination-based therapies for melanoma treatment include multiple ap-
proaches. Unfortunately, most protein- or peptide-based vaccines lack significant immuno-
genicity and are unable to induce a robust immune response in monotherapy [229,230].
Likewise, the administration of customized vaccines, derived from tumor patient whole-cell
lysates, does not show any clinical benefit in randomized controlled trials [231]. Other
approaches include recombinant vectors, which encode entire genes or the antigenic epi-
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tope [232], and active vaccination of dendritic cells pulsed with tumor cell RNA, DNA, or
cell lysate [233,234].

The treatment of melanoma with adoptive cell therapy has also been employed. Adop-
tive cell therapy involves the clinical utilization of autologous engineered T cells expressing
receptors that specifically recognize various tumor-associated antigens such as melanocytic
protein Melan-A/MART-1-TCG genes or that secrete specific cytokines [232–235].

Immune checkpoint modulators and immune modulator molecules have also been
investigated [234]. Immune checkpoints target cell surface proteins such as cytotoxic T-
lymphocyte antigen-4 (CTLA4) and programmed cell death-1 (PD-1) [235–238]. These
proteins are implicated in the regulation of immune response initiation and duration [194].
Inhibition of these immune checkpoint inhibitors by anti-CTLA4 and anti-PD-1 antibodies
demonstrated significant tumor regression and long-term durable cancer control when
compared to other systematic therapies [238,239].

The expression of CSC makers in human tumor tissues is closely associated with
the number of tumor-infiltrating immune cells [240,241]. As such, the CSC immune re-
sponse is frequently compromised by immune evasion properties. These immune evasion
properties are mediated by CSC-secreted immunosuppressive factors as well as the ability
of CSCs to recruit immunosuppressive noncancerous cells [242–244], enhancing immune
evasion strategies.

CSC-mediated immunosuppression both in vitro and in vivo allows CSCs to evade
anti-tumor immune-mediated reactions [245]. Melanoma is characterized by their expres-
sion of a variety of antigens, including differentiation and cancer testis antigens such as
MelanA/Mart1, HMB45, tyrosinase, gp100, and NYESO1 [246,247]. MSCs have the poten-
tial to initiate the activation of several mechanisms to maintain tumor survival and escape
the patient’s immune reactions [244,248], via their mechanistic role in the suppression
of anti-tumor immune reactions. One of these mechanisms involves the expression of
multidrug resistance (MDR) genes and related functional transporters. MDR is the ability
to mount resistance to multiple, structurally unrelated therapeutic drugs with different
mechanisms of action [249–251]. MDR pathways in melanoma are responsible for the
decrease in intracellular drug accumulation and is mediated by energy-dependent efflux
pumps via ABC transporters that translocate solutes across the cellular membrane [252,253].
We and others have shown the involvement of the ABCB5 transporter in the modula-
tion of melanoma resistance to anti-cancer agents like caffeic acid phenethyl ester [4]
and doxorubicin [4,254,255]. Accordingly, blockage of ABCB5 enhances intracellular drug
accumulation in melanoma cells sensitive to the therapeutic effects of BRAF inhibitors [256].

Resistance of MSCs to BRAF and MEK inhibitor-induced cell death has been re-
ported [257,258]. Increased activity of Stearoyl-CoA-desaturase 1 (SCD1), the rate-limiting
enzyme in the formation of monounsaturated fatty acids, has been shown to overcome
BRAF and MEK inhibitor-induced death of MSCs [259].

The CD133 protein remains the most important identified stem cell marker. Functional
analysis of this protein suggests that CD133 is a key tumor progression and treatment-
resistance-driving signaling protein in melanoma [74], via a mechanism mediated by
binding of the regulatory subunit of PI3K, p85, to the Tyrosine 828 (Tyr828) residue located
on the cytoplasmic domain of the CD133 protein [74]. In addition to its contribution to the
regulation of melanoma proliferation and metastasis [260–262], the overexpression of CD271
is associated with the induction of stem-like quiescence [160,260–262]. CD271 expression is
lost in early progression when melanoma cells invade the dermis [263]. The low expression
of CD271 is likewise associated with phenotype switching in melanoma [261].

Both tumor autonomous mechanisms and adaptive survival signaling may be related
to melanoma progression and drug resistance. Once the processes of melanoma progression
have been initiated, tumor cells tend to detach from their natural binding partners, namely
keratinocytes, to interact with host cells such as fibroblasts and endothelial cells [2,264],
inducing the secretion of the hepatocyte growth factor (HGF), endothelial growth factor
(EGF), neuregulin (NRG), and IGF-1R [265–267]. Secretion of these tumor-derived growth
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factors often occurs in response to treatment with BRAF inhibitors, a common mechanism
by which melanoma cells confer resistance to BRAF inhibitors [268,269].

Accordingly, melanoma treatment with BRAF inhibitors is theorized to remodel the
host environment [151,270]. Clinically utilized BRAF triggers contradictory mitogen-
activated protein kinase (MAPK) signaling pathways as well as triggers differentiation in
normal skin fibroblasts, particularly those bearing BRAFWT cells [271]. Thus, such bidirec-
tional signaling between tumor and host cells plays an active role in the configuration of
these mechanisms, which is essential for the development of adaptive resistance to BRAF
inhibitors [197,272].

Treatment with BRAF and/or MEK inhibitors mediates both autocrine and paracrine
effects, which in turn trigger a stress-induced senescent phenotype in different melanoma
subpopulations [273,274]. Cellular senescence is a phenomenon that occurs in melanoma
patients during and/or after melanoma treatment has been initiated [275,276].

Cellular senescence is an autonomous tumor suppressor mechanism associated with
the stabilization of cell cycle arrest [277,278]. Senescent cells are characterized by their
ability to secrete variable factors that can change tumor cells and their microenvironment,
allowing tumor cells to evade the toxicity of anti-cancer agents and subsequently grow and
metastasize. Senescence-associated secretory phenotype (SASP) is associated with senes-
cent cells wherein cells secrete high levels of inflammatory cytokines, immune modulators,
growth factors, and proteases [279–285]. SASP may consist of exosomes and ectosomes
containing enzymes, microRNA, DNA fragments, chemokines, and other bioactive fac-
tors [286]. Previous and current reports indicate that senescent cells are highly secretory
cells and drive a range of different functions via SASP-dependent mechanisms [287,288].
The formation of SASP composition is dynamically and spatially regulated; thus, changing
SASP composition can determine the beneficial and detrimental aspects of the senescence
program, tipping the balance to either an immunosuppressive/pro-fibrotic environment
or pro-inflammatory/fibrolytic state. The temporal and spatial regulation of SASP and
NOTCH signaling may regulate SASP composition [289,290]. As the composition of SASP
is dynamically and spatially regulated, a change in SASP can determine whether the
senescence program progresses to an immunosuppressive/profibrotic environment or
proinflammatory/fibrolytic state [287,288]. In summary, SASP has the potential to trigger
tumor growth through the change in tumor microenvironment composition that ultimately
influences treatment outcomes.

Melanoma cells with a senescent phenotype are characterized by the upregulation
of two genes, one of which is matrix metalloprotease 2 (MMP2) [291,292]. Vemurafenib-
induced MMP-2 has been shown to enhance melanoma invasiveness via an alteration in
tumor microenvironment [280]. The other gene encodes monocyte chemoattractant protein
1 (MCP1). Functionally, MCP1 is involved in the initiation and subsequent activation of the
poly (ADP-ribose) polymerase-1 (PARP-1)/NF-kB signaling cascade, which is essential for
the regulation of tumor progression and dissemination to distant organs [287,291,293].

BRAF, ALK, or EGFR kinase inhibitors induce a complex network of secreted signals
(secretome) in most tumor types including melanoma [294,295]. In addition to their role
in the development of acquired resistance, the BRAF, ALK, or EGFR inhibitor-induced
secretome results in an incomplete tumor regression and the stimulation of tumor growth
and metastasis [291,292].

For example, vemurafenib-induced MMP-2 has been reported to enhance melanoma
invasiveness and alter the tumor microenvironment, which triggers tumor resistance
mechanisms [285,296]. Figure 4 provides a brief description of the possible mechanisms
regulating the feedback activation of tumor growth factor (TGF) receptors during BRAF
and MEK inhibitor-based therapy in MSCs.
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Figure 4. A proposed model for Fyn-CD133 signaling to the PI3K pathway induces melanoma intrinsic
and acquired resistance to anti-cancer agent in melanoma cells. (A) Fyn stimulated CD133 signaling
to the PI3K pathway in melanoma population bearing the BRAF wild type (BRAFWT) is medi-
ated by Fyn/CD133/PI3K/PDK1/AKT-induced inhibition of p27, Fyn/CD133/PI3K/AKT/MDM2-
induced ubiquitination of p53 and Fyn/CD133/Grb2/Grb7/NRAS7BRAF/MEK/ERK-induced
cell growth. (B) Intrinsic resistance of melanoma cells: Fyn stimulated CD133 signaling to the
Grb2/Grb7/NRAS7BRAF/MEK/ERK pathway is responsible for acquired resistance of BRAF in-
hibitors (e.g., dabrafenib).

6. Conclusions

Melanoma progression and treatment resistance are attributed to tumor heterogeneity-
dependent mechanisms that are mostly associated with development of genetically diver-
gent subpopulations. These subpopulations exist in the form of CSCs or non-CSCs. Like
other CSCs of any solid tumors, MSCs are identifiable via stemness specific markers. Thus,
MSCs are central to tumor development, drug resistance, and recurrence. The develop-
ment of MSCs is attributed to genetic and epigenetic changes, which lead to deregulation
of several signal transduction pathways, including MAP kinase and PI3K/AKT. While
BRAF/MEK and PI3K/AKT pathway inhibitors represent an intriguing therapeutic option
for patients with metastatic melanoma, the success of these therapeutics is reduced by the
development of acquired resistance via MSC-dependent mechanisms. These resistance
mechanisms result from treatment pressure-induced by either BRAF/MEK or PI3K/AKT
pathway inhibition. Both PI3K/AKT/mTOR and RAF/MEK/ERK signaling cascades
are derived from numerous feedback loops and are interconnected at multiple points of
crosstalk. Inhibition of one of these pathways can result in the activation of the other
signaling cascade. The re-activation of the MAP kinase pathway occurs either via bypass-
dependent activation of MEK by c-RAF/RAF1 or amplification and relative splicing of
BRAF. Conversely, activation of the PI3K/AKT pathway results from the inhibition of the
MAP kinase pathway. Thus, dual targeting of both pathways may improve melanoma
treatment efficacy and lead to better clinical outcomes.
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