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Simple Summary: Tenosynovial giant cell tumor is a benign yet aggressive neoplasm of the synovium
that predominantly affects young patients. The tumor comprises two subtypes: the localized type
and diffuse type, with the diffuse type exhibiting significantly higher aggressiveness. MRI stands
out as the most valuable imaging modality for both its diagnosis and planning its treatment.When
interpreting the initial MRI for suspected tenosynovial giant cell tumor, it is imperative to consider:
(i) the characteristic findings of tenosynovial giant cell tumor, (ii) the potential findings of the diffuse
type, and (iii) the tumor’s resectability. In interpreting follow-up MRIs of the diffuse type after
treatment, it is crucial to consider both local recurrence and the development of early osteoarthritis
after surgery as well as the treatment response after systemic treatment. Recognizing the distinctive
MRI findings of diffuse type tenosynovial giant cell tumor before and after treatment enhances
radiologic evaluation, contributing to optimal patient management.

Abstract: Tenosynovial giant cell tumor (TSGCT) is a rare soft tissue tumor that involves the syn-
ovial lining of joints, bursae, and tendon sheaths, primarily affecting young patients (usually in
the fourth decade of life). The tumor comprises two subtypes: the localized type (L-TSGCT) and
the diffuse type (D-TSGCT). Although these subtypes share histological and genetic similarities,
they present a different prognosis. D-TSGCT tends to exhibit local aggressiveness and a higher
recurrence rate compared to L-TSGCT. Magnetic resonance imaging (MRI) is the preferred diagnostic
tool for both the initial diagnosis and for treatment planning. When interpreting the initial MRI of a
suspected TSGCT, it is essential to consider: (i) the characteristic findings of TSGCT—evident as low
to intermediate signal intensity on both T1- and T2-weighted images, with a blooming artifact on
gradient-echo sequences due to hemosiderin deposition; (ii) the possibility of D-TSGCT—extensive
involvement of the synovial membrane with infiltrative margin; and (iii) the resectability and
extent—if resectable, synovectomy is performed; if not, a novel systemic therapy involving colony-
stimulating factor 1 receptor inhibitors is administered. In the interpretation of follow-up MRIs of
D-TSGCTs after treatment, it is crucial to consider both tumor recurrence and potential complications
such as osteoarthritis after surgery as well as the treatment response after systemic treatment. Given
its prevalence in young adult patents and significant impact on patients’ quality of life, clinical trials
exploring new agents targeting D-TSGCT are currently underway. Consequently, understanding the
characteristic MRI findings of D-TSGCT before and after treatment is imperative.

Keywords: tenosynovial giant cell tumor; diffuse type; magnetic resonance imaging; local recurrence;
osteoarthritis; targeted therapy; treatment response

1. Introduction

Tenosynovial giant cell tumor (TSGCT) is a benign yet locally aggressive neoplastic
disorder affecting the synovium, which includes joints, bursae, and tendon sheaths [1].
The disorder encompasses intra-articular and extra-articular manifestations [2]. In the
2013 World Health Organization (WHO) classification of soft tissue and bone tumors, the
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nomenclature was updated based on the tumor’s growth pattern (Table 1) [3]. The diffuse
form of this disease is now referred to as diffuse type TSGCT (D-TSGCT), replacing the term
“pigmented villonodular synovitis”, while the more common localized form is characterized
as localized type (L-TSGCT), replacing the term “giant cell tumor of the tendon sheath”.
D-TSGCT is marked by widespread involvement of the synovium, whereas L-TSGCT often
presents as a discrete and encapsulated mass [4]. Histologically, there is no clear histological
distinction between the two subtypes; therefore, diagnosis relies on radiological assessment
and clinical presentation [5].

Table 1. WHO classification (2013) of TSGCT according to its growth pattern.

Localized Type Diffuse Type

A more common form affecting only a portion of the synovium A less frequent form involving substantial parts of the
synovium

Predominantly involving the digits and wrists Primarily affecting large joints (knee, hip, ankle, elbow)

Systematically benign More aggressive and destructive and may exceptionally include
a malignant component

TSGCT is a rare neoplasm, with incidence rates of 45 and 5 per million person-years
for L-TSGCT and D-TSGCT, respectively (Table 2) [6,7]. It exhibits a female predilection
(F:M; 2:1) and primarily affects a relatively young patient group, typically aged between
30 and 50 years, although it can occur at any age [6,7]. L-TSGCT constitutes the most
common form and is located extra-articularly in 90% of cases. It frequently involves the
tendon sheaths of the volar aspect of fingers (85%), followed by locations in the foot and
knee (15%) [1,8]. The knee is the most common site when presenting as intra-articular
mass [8]. This type typically manifests as a painless, slowly growing soft tissue mass
without joint dysfunction [1]. On the other hand, D-TSGCT originates predominantly in
the intra-articular space as a unilateral, mono-articular process, most commonly affect-
ing large joints such as the knee (70%), followed by the hip (15%), ankle, shoulder, and
elbow [6,9]. In joints affected by D-TSGCT, the synovium becomes hyperproliferative and
hemorrhagic, leading to distortion and damage to adjacent osseous, cartilaginous, and
tendinous structures [6]. This results in episodes of hemarthrosis, pain, swelling, and, in
later stages, severe osteochondral destruction and localized tissue damage [7]. Notably,
most cases of extra-articular form of D-TSGCT are believed to represent extensions of
primary intra-articular disease [10].

Table 2. Incidence and recurrence rate of TSGCT.

Localized Type Diffuse Type

Incidence 45 per million person-years 5 per million person-years

Recurrence rate <15% 50% with intra-articular disease
33 to 50% with extra-articular disease

Histologically, the disease is characterized by inclusions of multinucleated giant cells,
macrophages, and hemosiderin [11]. L-TSGCT typically presents a multinodular, well-
delineated process embedded in a dense, partially collagenous pseudocapsule. In contrast,
D-TSGCT lacks a collagenous pseudocapsule and exhibits a diffuse infiltrative sheet-like
growth pattern along the synovium, featuring cleft-like spaces and discohesive zones [3].
The two subtypes of TSGCT share a common underlying pathogenesis, primarily associated
with a colony-stimulating factor 1 (CSF1) translocation resulting in CSF1 overexpression.
This overexpression leads to an increase in neoplastic cells by binding to CSF1 receptors
(CSF1R) and accumulating CSF1R-presenting cells [12]. Achieving complete resection can
be challenging, particularly in cases of extensive tumor growth. Incomplete resections are
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associated with a higher likelihood of tumor recurrence [13,14]. In the case of intra-articular
D-TSGCT, treatment involves wide local excision, total synovectomy, or arthroplasty, but it
carries a high local recurrence rate, reaching up to 50%, often with multiple recurrences [8].
Extra-articular D-TSGCT also exhibits recurrence in 33% to 50% of cases, frequently with
multiple recurrences (Table 2) [10]. In the absence of sarcomatous transformation, it is exceed-
ingly rare for D-TSGCTs to develop distant metastasis, with only a few cases thus far [15,16].
Sarcomatous changes, whether de novo or metachronous at presentation, are an exceedingly
rare phenomenon in both intra-articular and extra-articular forms of D-TSGCTs [17].

Given the prevalence of D-TSGCT in young adult patents and its significant impact on
their quality of life, it becomes crucial to become acquainted with the distinctive magnetic
resonance imaging (MRI) findings associated with D-TSGCT both before and after treatment.
This review article aims to comprehensively examine the MRI features of D-TSGCT before
and after treatment, with the overarching goal of enhancing radiologic evaluation for the
optimal management of patients.

2. MRI Findings for D-TSGCT on Initial MRI
2.1. MRI Protocols for TSGCT

In the diagnosis and treatment of TSGCT, MRI stands out as the most distinctive
imaging technique [18]. The scanning protocol for soft tissue tumors should encompass,
at a minimum, the following sequences: one set of T1-weighted images (T1WI) before the
administration of gadolinium chelate, one set of T2-weighted images (T2WI) with or without
fat-suppression techniques (such as fat-saturation, fluid sensitive, DIXON method, or short
tau inversion recovery sequences), and one set of T1WI following the injection of gadolin-
ium chelate, with fat-suppression [19]. Intravenous gadolinium contrast facilitates tumor
detection and proves useful for follow-up after synovectomy [1]. A gradient echo (GRE)
sequence may also be beneficial for detecting hemosiderin related to tumor bleeding [1].

2.2. Signal Intensity (SI) for D-TSGCT

The SI of TSGCT on MRI exhibits heterogeneity. T1WI reveals a hypointense to
isointense SI, while T2WI displays a hyperintense SI with areas of low SI (Figure 1) [1].
D-TSGCT is prone to bleeding, with bleeding being more common than in L-TSGCT.
Numerous prior studies have indicated that D-TSGCT exhibits more robust hemosiderin
deposition compared to L-TSGCT, presumably attributed to more frequent occurrences of
bleeding and inflammation in D-TSGCT, relative to L-TSGCT [10,20–22]. Consequently,
extensive hemosiderin deposition is a frequent observation in D-TSGCT, manifesting as
low SI within the tumor on both T1WI and T2WI (Figure 1) [1].

Hemorrhage serves as a classic imaging hallmark of D-TSGCT, typically identified
as a blooming artifact on GRE sequences (Figure 1). The blooming artifact represents a
paramagnetic susceptibility artifact resulting from hemosiderin deposition, characterized
by the enlargement and disproportionately lower SI of blood deposits on GRE images
compared to spin echo sequences [1]. However, the presence of the blooming artifact is
not exclusive to TSGCT [21]. Conditions such as synovial hemangioma and hemophiliac
arthropathy may present similar findings on GRE image [3].

TSGCT demonstrates enhancement following gadolinium administration [23].
The presence of numerous proliferative capillaries in the collagenous stroma contributes to
the strong enhancement in TSGCT [23,24]. Moderate contrast enhancement in TSGCT was
reported in 48% of cases by Huang et al. [25]. However, the contrast enhancement is non-
specific, spanning a broad spectrum, including lack of enhancement, peripheral enhance-
ment, heterogeneous enhancement, and homogeneous enhancement (Figure 2) [21,26,27].
A previous study noted variable degrees of contrast enhancement between D-TSGCT and
L-TSGCT without statistical significance [28].
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Figure 1. A 46-year-old female with D-TSGCT in the knee. (A) Axial T1WI shows iso-to-low SI mass 
(arrow). (B) Axial fat-suppressed T2WI shows heterogeneously high SI (arrow). (C,D) Sagittal fat-
suppressed T2WI images show nodular thickening of synovium containing low SI foci (arrows) with 
extra-articular extension (arrowheads). (E,F) Sagittal GRE sequences show blooming artifact due to 
hemosiderin deposition along the synovium (arrowheads). 
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Figure 2. Enhancement patterns of pathology-proven D-TSCGT. (A) No contrast enhancement 
within the lobulated mass (arrowheads) in the posterior knee. (B) Peripheral contrast enhancement 
of the mass with a sparing central portion (arrowheads) in the posterior knee. (C) Heterogenous 
contrast enhancement of the mass (arrowheads) in the posterior ankle. (D) Homogenous contrast 
enhancement of the mass (arrowheads) surrounding the third metacarpal bone. 

2.3. Morphological Findings for D-TSGCT 
TSGCT can exhibit variable morphological appearances on MRI, depending on its 

anatomical location and growth patterns [3]. Intra-articular forms of D-TSGCT are prone 
to diffuse spreading, adopting a multicompartmental growth pattern that involves at least 
two contiguous intra-articular synovial recesses. The characteristic findings include irreg-
ular synovial thickening (>5 mm), often described as “frond-like” with villous or nodular 

Figure 1. A 46-year-old female with D-TSGCT in the knee. (A) Axial T1WI shows iso-to-low SI
mass (arrow). (B) Axial fat-suppressed T2WI shows heterogeneously high SI (arrow). (C,D) Sagittal
fat-suppressed T2WI images show nodular thickening of synovium containing low SI foci (arrows)
with extra-articular extension (arrowheads). (E,F) Sagittal GRE sequences show blooming artifact
due to hemosiderin deposition along the synovium (arrowheads).
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Figure 2. Enhancement patterns of pathology-proven D-TSCGT. (A) No contrast enhancement
within the lobulated mass (arrowheads) in the posterior knee. (B) Peripheral contrast enhancement
of the mass with a sparing central portion (arrowheads) in the posterior knee. (C) Heterogenous
contrast enhancement of the mass (arrowheads) in the posterior ankle. (D) Homogenous contrast
enhancement of the mass (arrowheads) surrounding the third metacarpal bone.

2.3. Morphological Findings for D-TSGCT

TSGCT can exhibit variable morphological appearances on MRI, depending on its
anatomical location and growth patterns [3]. Intra-articular forms of D-TSGCT are prone to
diffuse spreading, adopting a multicompartmental growth pattern that involves at least
two contiguous intra-articular synovial recesses. The characteristic findings include irregu-
lar synovial thickening (>5 mm), often described as “frond-like” with villous or nodular
morphology. This synovial proliferation tends to envelop associated reactive joint effusion,
leading to the formation of multiloculated thick-walled trapped cystic masses (Figure 3) [1].
Kim et al. [28] conducted a study on various MRI morphologic parameters for D-TSGCT,
including nodularity and margin. Nodularity was classified according to Al Qattan as
type I, representing “a single round or multilobulated tumor” or type II, indicating “two
or more distinct, separated tumors” [29]. The margin was categorized as “circumscribed”
when the lesion’s border was clearly delineated from surrounding structures and as “infil-
trative” if the lesion’s borders were indistinguishable from the surrounding structures [30].
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The study revealed that intra-articular D-TSGCT manifests as multinodular masses scat-
tered throughout the joint, with multinodularity potentially serving as the sole indicator
for determining mass features in intra-articular D-TSGCT (Figure 3) [28].
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Figure 3. A 27-year-old female with D-TSGCT in the knee. (A) Sagittal T2WI shows diffuse and
multinodular synovial thickening with scattered dark SI foci (arrows) in the knee joint space. Extra-
articular extension to the popliteus myotendinous junction is noted (arrowhead). (B,C) Coronal and axial
fat-suppressed T2WIs show that proliferated synovium engulfs the reactive joint effusion resulting in
multichambered cystic mass-like lesions around popliteal fossa (arrowheads). (D) Axial contrast-enhanced
T1WI reveals thickened synovium as diffuse septal enhancement within the cystic changes (arrowheads).

The extra-articular growth of D-TSGCT primarily arises as a result of extra-articular ex-
tension of intra-articular D-TSGCT through transcapsular fenestrations (Figures 1 and 3) [31].
However, due to its infiltrative growth pattern, determining the origin is often
challenging [32]. Instances of extra-articular D-TSGCT without intra-articular commu-
nication are exceedingly rare, and such cases involve the bursa around the knee, such as
popliteal bursa (Figure 4) [20,32–35]. In cases where TSGCTs occur in the digits, they are
typically located in extra-articular portion, and it is crucial to differentiate between two
subtypes [36]. Jeong et al. [36] conducted a comparison of the MRI morphologic features
of TSGCTs in the digits between the diffuse type and localized type. Their findings re-
vealed that D-TSGCTs in digits manifest as multinodular and infiltrative masses without
a peripheral capsule. Kim et al. [28] also found that the most sensitive MRI parameter
with the highest odds ratio for extra-articular D-TSGCT, which was the lack of peripheral
hypointensity (lack of capsule) (Figure 5).
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Figure 4. A 40-year-old female with D-TSGCT in the tibia. (A) Coronal GRE sequence shows a
lobulated heterogenous SI mass in the juxtacortical area of the proximal metaphysis of the tibia with
blooming artifact (arrow). Note that there is no remarkable intra-articular communication of the knee
joint. (B) Axial fat-suppressed T2WI, (C) T1WI, and (D) fat-suppressed enhanced T1WI show the
mass arising from the Pes anserine bursa with focal bony erosion of the adjacent tibia (arrowheads)
and infiltration to the adjacent muscle and subcutaneous fat layer (asterisks).
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Figure 5. Nodularity, margin, and peripheral hypointensity between two subtypes. (A) Pathology-
proven L-TSGCT of the foot shows that the mass is shown as a single mass with a circumscribed
margin (arrows) on axial T2WI. The mass shows the avid peripheral hypointensity (see in box) and
encasement of the extensor tendon (arrowhead). (B) Pathology-proven D-TSGCT of the foot shows
that the masses contain multiple distinct nodules with an infiltrative margin from the surrounding
tissues (arrows) on axial T2WI. The masses show the absent peripheral hypointensity (see box) and
encasement of the flexor tendon (arrowhead). Box; b = bone, yellow line = tendon.

2.4. Relationship to Adjacent Structures of D-TSGCT

D-TSGCT typically exhibits infiltration into adjacent structures [32]. MRI serves as a
valuable tool for detecting the relationship to anatomical or surgical landmarks, with key
parameters including (i) articular or cartilage involvement, (ii) bone involvement, (iii) muscu-
lar/tendinous/ligamentous tissue involvement, and (iv) neurovascular involvement [18].

Articular or cartilage involvement (Figure 6A) is defined as the mass infiltrating the
synovial lining of a small joint or causing cartilage defect/thinning by extending into a
large joint [28]. Bone involvement (Figure 6B) often manifests as extrinsic erosion with
well-defined sclerotic margins. These extrinsic erosions can be notably deep, simulat-
ing bone marrow invasion with an aggressive process, although this feature is rare [3].
The prevalence of bone erosion depends substantially on the site of involvement, specif-
ically the joint capacity [3]. Larger capacity joints like the knee, allowing extension and
decompression of normal tissue into multiple adjacent bursal regions, are less frequently
affected by extrinsic erosion of bone. In contrast, smaller capacity joints such as the hip,
shoulder, elbow, and ankle are more likely to demonstrate extrinsic erosion of bone [3].
Muscular/tendinous/ligamentous tissue involvement (Figure 6C) is defined as the mass
infiltrating into fibers [36]. Neurovascular involvement (Figure 6D) is characterized by
mass involvement of more than 180◦ of a neurovascular bundle [36].

Articular or cartilage involvement demonstrates the highest specificity for diagnosing
D-TSGCT, irrespective of intra-articular or extra-articular location [28]. Jeong et al. [36]
conducted a comparison of the disease extent of TSGCTs in the digits between the diffuse
type and localized type, revealing that D-TSGCTs exhibit more severe disease extents of
articular/cartilage and muscle/tendon involvement than L-TSGCT [36]. The comparison
of MRI findings between L-TSGCT and D-TSGCT is summarized in Table 3.

In the case of the knee, a clinical classification using MRI has been introduced for
both diagnosis and treatment decisions (resectability) [37]. In this study [37], the relation-
ship with adjacent structures was assessed, resulting in three types and four subtypes.
This was presented as a simple and easy-to-use clinical classification. Type 1 (localized
type), controlling the tumor and restoring knee function can be achieved through simple
resection. Arthroscopic tumor resection is advised for subtype 1a (localized type in the joint
capsule), while direct tumor resection is recommended for subtype 1b (localized type outside
the joint capsule). Since bone involvement by D-TSGCT is not uncommon, intra-articular
D-TSGCT (type 2) of the knee included two subtypes. Complete tumor resection with a
single incision or combined anterior and posterior incisions is recommended for patients with
intra-articular D-TSGCT without bone involvement (subtype 2a), while for intra-articular
D-TSGCT with bone involvement (subtype 2b), complete tumor resection of both soft tissue
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and bone is advised. For D-TSGCT spanning both the inside and outside of the joint capsule
(type 3), achieving complete tumor resection was nearly impossible and neo-adjuvant or
adjuvant therapies are recommended due to the high risk of recurrence after surgery alone.
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Figure 6. Involvement of adjacent structures of D-TSGCT on contrast-enhanced fat-suppressed T1WIs.
(A) Articular involvement (arrows) of the metatarsophalangeal joint of the foot, also correlated on a
plain radiograph (arrowheads) presenting as a periarticular bony change. (B) Bone erosion (asterisk)
of the tibia, also correlated on a plain radiograph (arrow). (C) Tendon (arrowhead) and muscular
involvement (arrow) with infiltration into the extensor tendon fibers and interosseous muscle of the
foot. (D) Neurovascular bundle involvement (arrowheads) with more than 180◦ encasement of the
neurovascular bundle of the foot.

Table 3. Comparison of MRI findings between L-TSGCT and D-TSGCT.

MRI Findings Localized Type TSGCT Diffuse Type TSGCT

Signal intensity on T1WI, T2WI and
contrast enhancement

Hypo-to-iso SI on T1WI and heterogeneous SI on T2WI with variable degrees of
contrast enhancement

GRE images Presence of blooming artifact due to hemosiderin deposition

Low SI areas (due to bleeding and
hemosiderin deposition) Speckled Extensive and granular

Nodularity Single Multinodular

Margin Circumscribed Infiltrative

Peripheral hypointensity (capsule) Present Absent

Articular or cartilage involvement Not frequent Frequent

Bone involvement Uncertain difference between two subtypes

Muscle or tendon involvement Not frequent Frequent

Neurovascular involvement Uncertain difference between two subtypes

2.5. Advanced MRI Sequences for D-TSGCT

Advanced MRI techniques, such as diffusion weighted imaging (DWI) and dynamic
contrast-enhanced imaging (DCE), have the potential to significantly improve the imaging-
based diagnoses for musculoskeletal tumors [38]. The increased cellularity observed in
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malignant tumors leads to restricted diffusion, which is reflected in a lower apparent
diffusion coefficient (ADC) value [39]. Tumor-related angiogenesis and hypervascularity
contribute to rapid arterial enhancement, a phenomenon detectable through DCE [38].

Ashikyan et al. [27] conducted a study on DWI encompassing giant cell tumor (GCT)
of bone and TSGCT, which are two histologically distinct neoplasms with overlapping
characteristics. Despite their different histopathological appearances, a common cell lin-
eage is proposed, supported by a study that explored the ultrastructural cytochemical
features of cells in bone, tendon sheath, and intra-articular GCTs, revealing similarities
of tartrate-resistant acid phosphatase (TRAP)-positive cells in all three tumor types [40].
The study further observed that osseous GCTs and TSGCTs exhibit similar and low ADC
values [27,39]. Commonly, there is a belief that malignant tumors tend to exhibit lower
ADC values, while benign tumors typically display higher ADC values [41,42]. However,
TSGCT may present the T2 black-out effect, resulting in a pseudo-low ADC value of less
than 1.0 × 10−3 mm2/s due to the presence of hemosiderin and other blood products
(Figure 7) [39,43]. Other potential reasons for the low ADC values of GCTs include the na-
ture of the intralesional matrix or the presence of hypercellular components [27]. (TS)GCT
comprises giant osteoclast-like cells interspersed with a hypercellular and vascularized
stroma, and this composition can influence the lower ADC measurement (Figure 8) [44].
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Figure 7. A 29-year-old female with D-TSGCT in the distal femur. (A,B) Sagittal and axial fat-
suppressed T2WIs show a low SI mass at the popliteal fossa (arrowheads). (C) Axial T1WI also shows
low SI due to extensive hemosiderin deposition (arrowhead). (D,E) The mass shows low SI on low
and high b-value images of DWI due to hemosiderin deposition (arrows). (F) The mass creates a
pseudo-low ADC value on the ADC map (arrow), suggesting T2 black-out effect.

Moreover, their fractional ADC analysis revealed several intriguing findings: ADC
calculations from low b-value pairs were higher than the ADC calculations from high
b-value pairs, a phenomenon thought to be associated with hyperperfusion in these neo-
plasms [27,45]. In fact, DWI obtained with b-values below 200–400 s/mm2 is influenced
by tissue microcapillary perfusion [46]. Ashikyan et al. [27] reported that GCTs become
apparent at low b value images, known to be hyperperfused (Figure 9). This characteristic
can be illustrated by DCE as a time-intensity curve showing rapid early enhancement with
a plateau phase [47].
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Figure 8. A 46-year-old male with D-TSGCT in the foot. (A) Axial fat-suppressed T2WI shows a
heterogeneously high (asterisk) to low SI soft tissue mass involving the second web space. The mass
extends to the plantar muscles. (B) Axial T1WI shows the mass with iso (asterisk) to low SI. (C) Axial
contrast-enhanced fat-suppressed T1WI shows the heterogenous enhancement (asterisk) within the
mass. (D,E) The enhancing portion of the mass shows persistent high SI on both the low and high
b-value images of the DWI (arrowhead). (F) The mass shows a low ADC value (arrowhead) in this
area, suggesting diffusion restriction.
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3. Differential Diagnoses for D-TSGCT on Initial MRI 
Most synovial diseases predominantly exhibit heterogeneously high SI on T2WI. 

Nevertheless, within daily clinical practice, we encounter a subset of synovial lesions man-
ifesting low SI on T2WI. Such lesions often exhibit distinct characteristics and predilec-
tions, allowing for a more tailored approach to the differential diagnosis [48]. The pres-
ence of T2 hypointensity on synovial diseases can be attributed to various factors, and 
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vial chondromatosis, rheumatoid arthritis, chronic tophaceous gout, amyloid arthropa-
thy, and hemosiderotic synovitis (Table 4) [48]. 

Figure 9. A 37-year-old female with D-TSGCT in the hand. (A) Axial fat-suppressed T2WI shows
lobulated soft tissue with heterogenous SI around the third MCP joint (arrowhead). (B) Axial
T1WI shows the mass with iso SI (arrowhead) and marked extrinsic bony erosion at the metacarpal
bone (arrow) is noted. (C) Axial contrast-enhanced fat-suppressed T1WI shows the homogeneous
enhancement of the mass (arrowhead). (D,E) Due to microcapillary perfusion, the mass shows an
apparent high SI on the low b-value image of the DWI (arrowhead) compared to the high b-value
image of the DWI. (F) The mass shows a low ADC value (arrowhead), suggesting diffusion restriction.

3. Differential Diagnoses for D-TSGCT on Initial MRI

Most synovial diseases predominantly exhibit heterogeneously high SI on T2WI.
Nevertheless, within daily clinical practice, we encounter a subset of synovial lesions mani-
festing low SI on T2WI. Such lesions often exhibit distinct characteristics and predilections,
allowing for a more tailored approach to the differential diagnosis [48]. The presence
of T2 hypointensity on synovial diseases can be attributed to various factors, and their
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specific characteristics may align with conditions such as TSGCT, along with synovial
chondromatosis, rheumatoid arthritis, chronic tophaceous gout, amyloid arthropathy, and
hemosiderotic synovitis (Table 4) [48].

3.1. Differential Diagnoses of Intra-Articular D-TSGCT

On MRI, intra-articular D-TSGCT manifests as a mass-like synovial proliferation
with infiltrative margins and may extend extensively throughout the synovial lining [49].
The lesions tend to bleed, leading to hemosiderin deposition, which is evident as a decrease
in SI across all pulse sequences [49]. The primary considerations for the differential diagno-
sis involve lesions that also demonstrate low SI on T2WI, attributable to various factors
such as blood components of different stages, calcification, inorganic crystals, fibrosis,
and/or amyloid deposition [24,48–50].

3.1.1. Hemosiderotic Synovitis

Hemosiderotic synovitis is a rare proliferative synovial disorder resulting from chronic
recurrent intra-articular bleeding [51]. The primary cause of such bleeding is hemophilia,
while other contributing factors include osteoarthritis, chronic trauma, rheumatoid arthri-
tis, anticoagulant use, hemochromatosis, and myeloproliferative disease [51]. In the
chronic stage of the disease, it is characterized by lateral dominant osteoarthritis and/or
lateral meniscus injury in the elderly [49]. Hemosiderotic synovitis and intra-articular
D-TSGCT may present similar clinical and radiological features, with both conditions ex-
hibiting a blooming artifact on GRE images [52]. Despite the resemblance in MRI findings,
hemosiderotic synovitis tends to involve knee and demonstrates a lesser degree of contrast
enhancement compared to the D-TSGCT, particularly in the distribution within the suprap-
atellar bursa where the maximum thickness of the synovium is observed (Figure 10) [51].
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Figure 10. A 67-year-old female with hemosiderotic synovitis in the knee. (A) Sagittal fat-suppressed
T2WI shows a large amount of joint effusion in the suprapatellar recess (arrowheads). The synovium
is diffusely thickened with a dark SI lining (hemosiderin deposition, arrows). (B) Sagittal contrast-
enhanced fat-suppressed T1WI shows poor contrast enhancement on the distended suprapatellar
bursa (arrowheads).
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Table 4. Differential diagnoses of T2 low SI disease with clinical importance.

Location Disease Key Component MR Imaging Features Clinical Importance

Intra-articular

Intra-articular D-TSGCT Hemosiderin
• Extensive synovial thickening with bleeding
• Blooming artifact on GRE images • Systematically benign

Hemosiderotic Synovitis Hemosiderin
• Blooming artifact on GRE images
• Tends to involve knee
• Lesser contrast enhancement

• Chronic recurrent intra-articular bleeding
• Hemophilia, osteoarthritis, chronic trauma, rheumatoid arthritis, etc.

Synovial Chondromatosis Calcification
• Mineralized loose bodies show low SI on all pulse sequences
• Non-mineralized areas show low SI on T1WI and high SI

on T2WI

• Primary form: benign neoplastic disease
• Secondary form: associated with underlying joint abnormalities

such as osteoarthritis, trauma, etc.
• Plain radiography for cartilaginous nodules

Dialysis-Related
Amyloid Arthropathy

Amyloid
• Heterogeneously low SI on T1WI/T2WI
• No paramagnetic effect on GRE images • History of more than 5 years of hemodialysis

Chronic Rheumatoid
Arthritis

Rice bodies
• Synovial hyperplasia
• Turbid fluid with T2W low rice bodies • Chronic autoimmune inflammation with pannus formation

Tophaceous Gout Tophi • Heterogeneously low SI on T1WI/T2WI • Hyperuricemia
• Dual-energy CT for MSU crystals

Extra-articular

Extra-articular
D-TSGCT

Hemosiderin
• Transcapsular extension of primary intra-articular disease

with tumor infiltration
• Peripheral granular or separated low SI

• More aggressive and destructive and may exceptionally include a
malignant component

Fibroma of the
Tendon Sheath Dense collagen

• Round or ovoid shape
• Strip-like or disordered central low SI • Benign tumor with slow growth

Extra-abdominal
Desmoid-Type
Fibromatosis

Fibrous tissue/collagen
bands

• Variable SI on T2WI/T1WI between cellularity and
fibrous tissue

• Staghorn sign
• Fascial tail sign

• Locally aggressive and infiltrative neoplasms

Tophaceous Gout Tophi
• Cortical bony erosions with marrow edema
• Variable signal SI depending on the amount of

calcium percentage

• On chronic stage, presents as asymmetric polyarticular distribution
• Dual-energy CT for MSU crystals
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3.1.2. Synovial Chondromatosis

Synovial chondromatosis arises from self-limiting proliferative and metaplastic changes
in the synovium [49,53]. It is categorized into primary and secondary forms; the primary
form is currently considered a benign neoplastic disease based on cytogenetic analyses,
while the secondary form is associated with underlying joint abnormalities such as os-
teoarthritis, trauma, or previous infectious or inflammatory arthritis [48]. Monoarticular
involvement is common, with the knee being the most frequently affected joint, followed
by the hip, elbow, shoulder, and ankle [48]. The condition can present as multiple round
bodies, similar in size and shape, with MRI revealing these loose bodies amidst synovial
proliferation [49,54]. Mineralized loose bodies exhibit low SI on all pulse sequences, while
non-mineralized areas show low SI on T1WI and high SI on T2WI, reflecting the increased
water content of hyaline cartilage [48]. Plain radiography or computed tomography (CT)
is the imaging modality of choice for identifying cartilaginous nodules, which display a
cobblestone pattern and varying degrees of calcification (85% is calcified) or ring-and-arc
patterns of mineralization (Figure 11) [48,53]. In long-standing diseases, peripheral en-
chondral ossification or central dystrophic mineralization can develop within the loose
bodies [48,53]. The presence of calcification or metaplastic cartilage helps differentiate
synovial chondromatosis from D-TSGCT.
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Figure 11. A 54-year-old male with synovial chondromatosis in the foot. (A) Coronal T2WI
demonstrates diffusely low SI of synovial thickening at the Lisfranc or Chopart joints (arrowheads).
(B) Axial fat-suppressed T2WI reveals infiltrative soft-tissue extension into the surrounding bone and
muscles (arrowheads). (C) Axial contrast-enhanced fat-suppressed T1WI shows minimal peripheral
enhancement (arrowheads). (D) Axial CT reveals multiple small conglomerated calcifications in
involved tarsometatarsal joints (arrows) with bony erosion.

3.1.3. Dialysis-Related Amyloid Arthropathy

Amyloid arthropathy is a complication associated with long-term hemodialysis [49].
It arises from the deposition of a distinctive form of amyloid, derived from circulating
β2-microglobulin, within the synovial fluid, bone, and periarticular tissues. Increased
serum levels of β2-microglobulin in hemodialysis patients result from the ineffectiveness
of both hemodialysis and peritoneal dialysis membranes in filtering this substance [49,50].
Commonly affected joints include the shoulder, hip, femur, and knee [55]. On MRI, amy-
loid deposition exhibits a heterogeneously low SI on both T1WI and T2WI, which can
resemble intra-articular D-TSGCT [50]. Despite the short T2 relaxation time characteristic
of amyloid-containing tissue due to their hypocellular and fibrous nature, amyloid deposi-
tion does not demonstrate a paramagnetic effect on GRE sequences [49]. While D-TSGCT
typically manifests as monoarticular arthropathy, amyloid arthropathy presents as symmet-
ric polyarthritis with joint or periarticular swelling, accompanied by tendinous amyloid
deposition in periarticular areas (Figure 12) [49]. Notably, a clinical history spanning more
than 5 years since the initiation of hemodialysis can be a crucial diagnostic clue [55].
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Figure 12. A 62-year-old female with amyloid arthropathy in both hip joints. (A) Coronal T2WI shows
periarticular soft tissue masses (asterisks) extending to intra-articular space with heterogeneously
low SI in both hip joints. Bony erosions at both femoral heads (arrows) are combined. (B) Sagittal
T2WI shows that the mass infiltrates into the adjacent tendon and muscles (arrowheads).

3.1.4. Chronic Rheumatoid Arthritis

Rheumatoid arthritis, a chronic autoimmune inflammatory disorder primarily af-
fecting synovial tissues and joints, is characterized by a proliferative, hyperplastic, hy-
pervascular, and locally invasive synovial reaction termed pannus [54]. The condition
typically presents as bilateral symmetrical polyarthritis, with a predilection for the small
joints [48]. On MRI, synovitis is characterized by increased water content and includes
numerous inflammatory cells, granulation tissue, and abundant blood vessels, resulting
in high SI on T2WI with robust contrast enhancement [48]. In the late stage, synovial
fibrosis gradually evolves, manifesting as a turbid fluid showing hypointensity with poor
contrast enhancement [56]. Additionally, rice bodies, which are multiple loose bodies of
approximately the same size and shape, represent a characteristic finding in rheumatoid
arthritis (Figure 13) [56].
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Figure 13. A 60-year-old female with rheumatoid arthritis of the shoulder. (A) Coronal T2WI
demonstrates cystic and erosive change in the glenoid rim (arrowhead) with extensive synovial
proliferation in the glenohumeral joint (arrows). (B) Coronal fat-suppressed T2WI shows multiple
tiny low SI foci, known as ‘rice bodies’, within the hyperplastic synovium (arrow).
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3.1.5. Tophaceous Gout

Gout, an inflammatory response triggered by the deposition of monosodium urate
(MSU) crystals as a result of hyperuricemia, evolves into its chronic phase known as
tophaceous gout, characterized by asymmetric polyarthritic distribution [48]. While tophi
are commonly periarticular, they can also involve the articular or bursal synovium [49].
In MRI, intra-articular tophi typically exhibit heterogeneously low SI on both T2WI and
T1WI, a feature that may resemble intra-articular D-TSGCT [57]. The degree of enhancement
varies due to hypervascular granulation tissue surrounding the tophus or inflammatory
tissue within the tophi [54]. Distinguishing gout from D-TSGCT can be aided by typical
locations such as the quadriceps, patellar tendon, and Achilles tendon (Figure 14) [49].
Although tophi may show mineralization, calcification is not usually apparent in radio-
graphs [48]. Recently, dual-energy CT has emerged as an alternative noninvasive diagnostic
tool for identifying and quantifying MSU crystals (Figure 14) [58,59].
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3.2.1. Fibroma of the Tendon Sheath (FTS) 
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cells are concentrated in the center (Figure 15). In contrast, TSGCT predominantly dis-
plays granular or separated low SI, located near the periphery of the tumor, as foam cells 
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Figure 14. A 39-year-old male with tophaceous gout of the knee. (A) Sagittal T2WI shows hetero-
geneously low SI masses along the synovial lining of the knee joint (arrows). (B) Sagittal contrast-
enhanced fat-suppressed T1WI shows the abnormal enhancement with nodular thickening of patellar
tendon (arrowheads). (C,D) Dual-energy CT reveals MSU crystal deposition (asterisks) with green
color coding along the synovial linings and quadriceps-patellar aponeurosis. Trabecular or cancellous
bone is displayed in purple.

3.2. Differential Diagnoses of Extra-Articular D-TSGCT

Extra-articular D-TSGCT is thought to signify the extension of primary intra-articular
disease through transcapsular extension [31]. Purely extra-articular D-TSGCT is rare in
the literature and likely originates most frequently from the synovium of the bursae and
tendon sheath [20,35,36]. Extra-articular D-TSGCT manifests a local destructive growth
pattern, extensively infiltrating and entrapping adjacent soft tissue while often eroding
bone [8]. It can manifest as an infiltrative soft tissue mass with low SI on both T1WI and
T2WI due to hemosiderin deposition [50].

3.2.1. Fibroma of the Tendon Sheath (FTS)

FTS is a rare benign tumor commonly found in the hands, wrists, and feet, similar to
TSGCT [56]. Despite the similarities in MRI features between FTS and TSGCT, Ge et al. [22]
identified key differences. The patterns of low SI in the two tumor types vary: FTS exhibits
strip-like or disordered low SI at the center of the lesion, likely due to the presence of dense
collagen fiber bundles with all hypointense areas, possibly because most spindle cells are
concentrated in the center (Figure 15). In contrast, TSGCT predominantly displays granular
or separated low SI, located near the periphery of the tumor, as foam cells that can engulf
hemosiderin, resulting in patchy or nested distribution around the lesion. The morphology
of the two types also differs: FTS tumors are predominantly round or ovoid (Figure 15),
while TSGCT tumors are cast-molding and lobulated [22,56,60]. Although both FTS and
TSGCT have been reported to cause absorption of adjacent bone, only a few cases of FTS
with bone erosion have been described [61]. TSGCT is more likely to cause extensive bone
erosion and surrounding destruction [62].
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Figure 15. A 44-year-old male with FTS of the knee. (A,B) Axial fat-suppressed T2WI and sagittal
T2WI show a well-defined high-SI mass containing strip-like low SI bundles at the popliteal fossa
(arrows). (C) Sagittal contrast-enhanced fat-suppressed T1WI shows an ovoid-shaped mass with
septal enhancement (arrowhead).

3.2.2. Extra-Abdominal Desmoid-Type Fibromatosis (DF)

DF is a locally aggressive (myo)fibroblastic neoplasm that originates in deep soft
tissues, characterized by infiltrative growth and a propensity for local recurrence without
metastatic potential [63,64]. Aggressive fibromatosis, musculoaponeurotic fibromatosis,
and desmoid tumor are synonymous term for DF [63]. The major subgroups include super-
ficial (palmar and plantar) and deep fibromatoses. The deep fibromatoses are further classi-
fied as extra-abdominal (found in the upper extremities, lower extremities, trunk, head and
neck), abdominal wall (arising from musculoaponeurotic structures of the abdominal wall),
and intra-abdominal (in the mesentery or pelvis) [63,65]. Extra-abdominal DF originates
from the connective tissue of muscle and their overlying aponeurosis or fascia, potentially
infiltrating adjacent subcutaneous tissue and muscle [65]. DF exhibits a heterogeneous
appearance on MRI, with variable SI on T2WI and T1WI due to diverse intralesional compo-
nents, including myxoid matrix, cellular stroma, and fibrous tissue/collagen bands [66,67].
Decreased T2 SI corresponds to dense collagen and hypocellularity, while increased T2
SI correlates with high cellularity [66]. TSGCT and extra-abdominal DF exhibit similar
SI on MRI, but DF manifests along the fascial planes, with or without muscle invasion.
Recognizing the characteristic signs of extra-abdominal DF aids in distinguishing between
the two diseases (Figure 16); DF displays the staghorn sign (fingerlike tumor extension into
muscle or subcutaneous fat) and fascial tail sign [68].

3.2.3. Tophaceous Gout

Gouty tophi predominantly manifest as periarticular nodules [49]. Tophi are soft tissue
masses that appear hypointense on T2WI, potentially resembling D-TSGCT [50]. However,
gouty tophi can depict cortical erosions, marrow edema and variable signal characteristics
depending on the amount of calcium present on the MRI [58]. Radiographs can be useful
in evaluating soft tissue calcifications, and dual-energy CT may be employed to confirm
the presence of MSU crystals in the tophi (Figure 17) [69].
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T2WI shows a slightly hyperintense intramuscular mass with intralesional dark SI portions Figure 16. A 40-year-old female with extra-abdominal DF in the lower leg. (A) Axial fat-suppressed
T2WI shows a slightly hyperintense intramuscular mass with intralesional dark SI portions (asterisks)
in the medial head of the gastrocnemius muscle. (B) Sagittal T2WI shows this lesion with a lobulated
contour with an infiltrative margin (arrowheads). (C,D) Sagittal contrast-enhanced fat-suppressed
T1WIs show that this mass displays heterogenous enhancement and finger-like tumor extension
into adjacent muscle (termed as “staghorn sign”, arrows) and a tapering appearance of the tumor
extension along the fascia (termed as “fascial tail sign”, arrowhead).
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the involved joint, disease extent, and surgeon’s experience and preference [3]. Striking a 
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Figure 17. A 47-year-old male with tophaceous gout of the knee. (A) Axial fat-suppressed T2WI
reveals a lobulated extra-articular slightly hyperintense soft tissue mass containing low SI foci
along the Pes anserine bursa (arrow). (B) Axial contrast-enhanced fat-suppressed T1WI shows
heterogeneous enhancement and focal cortical erosion (arrowhead) at the proximal medial tibia.
(C) Dual-energy CT reveals the lesion is tophi with MSU deposition of green color coding (asterisk).
Trabecular or cancellous bone is displayed in purple.

4. MRI Findings for D-TSGCT on Follow-Up MRI
4.1. Treatment Options for D-TSGCT

The objective in treating intra-articular D-TSGCT is to remove all abnormal synovium,
thereby preventing local recurrence and ultimately reducing the risk of osteoarthritis [70].
Treatment of extra-articular D-TSGCT is essential to prevent the destruction of the affected
tendon or bursa [71]. Available treatment options encompass surgical resection, radiation
therapy, pharmaceutical modulation of the disease, or a combination of these approaches [3].

Surgical excision remains the primary treatment for TSGCT [3]. However, the long-term
success of surgery hinges on the ability to achieve complete disease resection [3]. Logically,
a cure is more achievable in the L-TSGCT, which exhibits low recurrence rates (Table 2).
Conversely, for D-TSGCT, the surgical approach is contentious, marked by a high recurrence
rate (Table 2) [1,37,72]. The surgical strategy for intra-articular D-TSGCT depends on the
involved joint, disease extent, and surgeon’s experience and preference [3]. Striking a balance
between complete tumor resection and preservation of joint function is challenging [37].
Synovectomy may be conducted through either an arthroscopic or open arthrotomy technique;
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regardless of the approach, complete disease resection is imperative to minimize the recurrence
rates [3]. While arthroscopic surgery offers the advantage of minimal functional loss and
quicker rehabilitation, these benefits must be weighed against the potential incompleteness of
diseased tissue resection [73]. Open arthrotomy with synovectomy enhances the likelihood of
complete disease resection but typically entails immobilization and a more prolonged recovery
with significant postoperative stiffness [71,74].

Radiation therapy can be employed as the primary treatment for intra-articular
D-TSGCT, but its optimal use is as a complement to surgery in cases of incomplete dis-
ease resection [3]. Radiation can be delivered through external beam or via intra-articular
injection of radioactive isotopes, a technique known as radiosynoviorthesis [75]. Minimal
side effects, such as erythema, have been reported, and patients generally tolerate the therapy
well without skin breakdown [3]. Theoretical concerns include the potential development of
malignancy, either in the synovium or bone, following external radiation therapy [3].

Expression of colony-stimulating factor 1 (CSF1) gene expression was found to be
elevated in cases of TSGCT, and CSF1 is implicated in the proliferation and differen-
tiation of neoplastic cells, activating cells of the mononuclear, phagocytic lineage [76].
These monocytic cells constitute the giant cells characteristic of TSGCT [12,76]. Structure-
guided blockade of the CSF1-receptor (CSF1R) kinase has been employed, leading to pro-
longed regression in tumor volume in most patients [77]. Pexidartinib, offering a novel
non-surgical treatment option, was developed to address intra-articular D-TSGCT [37,78].
Results from the ENLIVEN trial, a randomized, placebo-controlled phase III trial, demon-
strated that Pexidartinib therapy not only led to a decrease in tumor volume but also resulted
in an improvement in the range of motion, leading to FDA approval for treatment [9,79].

4.2. Checklists on Follow-Up MRI for D-TSGCT

MRI plays a crucial role in follow-up for D-TSGCT [1]. Table 5 summarizes the
checklists on follow-up MRI according to the types of treatment.

Table 5. Checklists on follow-up MRI by the types of treatment.

Treatment Types Checklists on Follow-Up MRI

Surgical excision • Local recurrence
• Early development of osteoarthritis

Radiotherapy
• Local recurrence
• Skin necrosis
• Malignant transformation

CSF1-receptor inhibitors
• Semiquantitative tumor volume change
• Decrease in SI along synovium with reduction in capsular
distension and joint effusion

In terms of surgical outcome, local recurrence is defined as the presence of new
disease after synovectomy or the observation of growing residual disease on a follow-up
MRI scan [18]. Diffuse synovial thickening within the first 6 months can be equivocal
for residual disease due to associated reactive synovitis. However, suspicion of disease
recurrence should arise if there is evidence of growing, enhancing solid, and nodular
synovial thickening (Figure 18) [1].

D-TSGCT also poses a risk for the early development of osteoarthritis, particularly
in the knee, hip, and ankle [80]. Recurrent disease is likely to necessitate multiple surg-
eries, leading to significant joint morbidity that could expedite the degenerative process
associated with D-TSGCT toward secondary osteoarthritis (Figure 19) [81]. Lin et al. [81]
reported that nearly 30% of patients underwent at least two surgeries during follow-up,
and the risk of recurrent surgery was twice as high in patients with osteoarthritis compared
with those without. This underscores the imperative for effective non-surgical treatment
options for D-TSGCT, especially in patients with secondary osteoarthritis [81].
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Figure 18. Serial T2WI follow-ups for D-TSGCT. (A) Initial MRI shows a low SI mass at the popliteal
fossa (arrowhead). (B) After En bloc excision, the first follow-up MRI (1 year) shows small low SI
nodule at the posterior joint capsule (arrowhead). (C) Second follow-up MRI (3 years) shows recurrent
mass extra-articularly (arrowhead) and extensive nodular thickening intra-articularly (arrow).
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that D-TSGCT patients are typically young, there is a notable concern regarding the long-
term risks, encompassing malignant transformation, fibrosis, joint stiffness, and other po-
tential sequelae [83]. While there have been reported cases treated with the recent ad-
vanced technique such as image-guided intensity-modulated radiotherapy [82], pub-
lished reports on this matter are generally limited, especially on MRI findings. Prospective 
studies are necessary to gain a better understanding of the potential role of this treatment 
modality for D-TSGCT patients. Though there are no published data, if a patient with D-
TSGCT who has undergone radiotherapy undergoes an MRI scan, it would be necessary 
to assess not only local recurrence but also consider skin necrosis and the possibility of 
malignant transformation [82]. 

While D-TSGCT exhibits neoplastic features with clonal cytogenetic abnormalities, it 
shares many characteristics with inflammation related to rheumatoid arthritis. D-TSGCT 
is likely situated in an intermediate state between an inflammatory and a neoplastic pro-
cess [84]. Therefore, despite surgery being the primary treatment option, emerging sys-
temic treatments targeting CSF1R are gaining prominence, and MRI is essential for objec-
tively assessing treatment response [85,86]. The quantification of tumor volume change 
serves as a crucial parameter for evaluating treatment response [1]. Peterfy et al. [87] in-
troduced a semiquantitative, joint-specific visual tumor volume score (TVS) for D-TSGCT, 
expressing tumor volume as a percentage of the estimated volume of the maximally dis-
tended normal synovial cavity of the involved joint. However, since TVS is a semiquanti-
tative tool, its reproducibility has limitation [1]. Beyond changes in tumor size, pilot 

Figure 19. A 47-year-old male with D-TSGCT in the right hip joint. (A) Initial coronal fat-suppressed
T2WI shows a tiny low SI nodular synovial thickening in the right hip joint (arrowheads). (B) After
synovectomy, follow-up CT after 4 years shows the development of osteoarthritis (arrows) in the
right hip joint.

Radiotherapy has been recommended as either an adjuvant to surgery or as the pri-
mary treatment for inoperable patients [82]. Nevertheless, several scholars have investigated
the efficacy and side effects of traditional radiotherapy techniques [83]. Considering that
D-TSGCT patients are typically young, there is a notable concern regarding the long-term
risks, encompassing malignant transformation, fibrosis, joint stiffness, and other potential
sequelae [83]. While there have been reported cases treated with the recent advanced tech-
nique such as image-guided intensity-modulated radiotherapy [82], published reports on this
matter are generally limited, especially on MRI findings. Prospective studies are necessary
to gain a better understanding of the potential role of this treatment modality for D-TSGCT
patients. Though there are no published data, if a patient with D-TSGCT who has undergone
radiotherapy undergoes an MRI scan, it would be necessary to assess not only local recurrence
but also consider skin necrosis and the possibility of malignant transformation [82].

While D-TSGCT exhibits neoplastic features with clonal cytogenetic abnormalities, it
shares many characteristics with inflammation related to rheumatoid arthritis. D-TSGCT
is likely situated in an intermediate state between an inflammatory and a neoplastic pro-
cess [84]. Therefore, despite surgery being the primary treatment option, emerging systemic
treatments targeting CSF1R are gaining prominence, and MRI is essential for objectively
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assessing treatment response [85,86]. The quantification of tumor volume change serves as
a crucial parameter for evaluating treatment response [1]. Peterfy et al. [87] introduced a
semiquantitative, joint-specific visual tumor volume score (TVS) for D-TSGCT, expressing
tumor volume as a percentage of the estimated volume of the maximally distended normal
synovial cavity of the involved joint. However, since TVS is a semiquantitative tool, its re-
producibility has limitation [1]. Beyond changes in tumor size, pilot studies have described
other specific MRI findings following CSF1R inhibitors. These findings include a decrease
in SI with a reduction in capsular distension and joint effusion, as well as an increase in
hemosiderin deposition [2]. These findings may be particularly valuable for patients on
Pexidartinib, where the overall tumor burden remains essentially stable on serial MRIs,
and changes in SI and hemosiderin deposition may be the only imaging findings indicative
of a positive treatment response [2]. These imaging features seem to correlate well with
clinical improvements, such as pain reduction [79]. Hemosiderin scars, referred to as a
low SI lining along the synovium after therapy, may persist without corresponding clinical
complaints [87]. It has been suggested to use term “complete response” in case of residual
hemosiderin scars with a short axis <5 mm [87].

5. Conclusions

A multidisciplinary approach is essential to enhance outcomes for patients dealing
with recurrent and refractory disease of D-TSGCT, and this approach should incorporate
meticulous MRI evaluation before and after treatment [78]. MRI stands out as the preferred
modality for diagnosing D-TSGCT, planning surgeries with adjuvant radiotherapy or
systemic targeted therapy, and assessing local recurrence following surgery or treatment
response to systemic therapies. We emphasize the imaging characteristics of D-TSGCT
alongside potential mimickers and assess checklists following various treatment options.
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