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Simple Summary: Glioblastoma (GBM) is a deadly cancer type of the brain with an average of
12 months of survival after diagnosis. Current clinical therapies generally provide only a short
lifetime extension. GBM is embedded in a highly lipid-rich environment, and emerging evidence
supports that lipid-based therapeutic molecules are promising research targets to unravel novel drugs.
Recent efforts of phase trials suggest that lipid-based combination therapies may offer a survival
benefit. Here we review preclinical and clinical antitumor approaches targeting the altered lipid
metabolism of glioblastoma.

Abstract: GBM accounts for most of the fatal brain cancer cases, making it one of the deadliest tumor
types. GBM is characterized by severe progression and poor prognosis with a short survival upon
conventional chemo- and radiotherapy. In order to improve therapeutic efficiency, considerable
efforts have been made to target various features of GBM. One of the targetable features of GBM is
the rewired lipid metabolism that contributes to the tumor’s aggressive growth and penetration into
the surrounding brain tissue. Lipid reprogramming allows GBM to acquire survival, proliferation,
and invasion benefits as well as supportive modulation of the tumor microenvironment. Several
attempts have been made to find novel therapeutic approaches by exploiting the lipid metabolic
reprogramming in GBM. In recent studies, various components of de novo lipogenesis, fatty acid
oxidation, lipid uptake, and prostaglandin synthesis have been considered promising targets in GBM.
Emerging data also suggest a significant role hence therapeutic potential of the endocannabinoid
metabolic pathway in GBM. Here we review the lipid-related GBM characteristics in detail and
highlight specific targets with their potential therapeutic use in novel antitumor approaches.

Keywords: GBM; tumor hallmarks; tumor lipid; lipid therapy

1. Introduction

As a result of the brain’s complex and fundamental role, any inconsistent growth
or metabolic alterations may lead to severe consequences. Brain tumors are considered
among the top ten deadliest cancers, despite accounting for only 2% of total cases. High
mortality rates are generally attributed to late diagnosis and lower efficiency of current
surgical, chemo-, and radiotherapeutic treatments [1,2]. Primary brain tumors originate
from cells within the central nervous system, while secondary brain tumors originate from
other primary cancers, most commonly from breast cancer, lung cancer, or melanoma [3,4].
Based on the rate of proliferation and probability of recurrence, there are benign tumors
characterized by slower growth and better treatment outcome, and malignant tumors
marked by poor prognosis due to their rapid proliferation and intensive local spreading,
which rarely affect distant organs [5]. Malignant tumors of the brain include gliomas,
lymphomas, and hematopoietic neoplasm. Gliomas are the most frequent malignant brain
tumors as they account for approximately 80% of total cases [6]. This group of tumors
arises from neuroglial stem or neuronal progenitor cells. Based on the cell of origin,
oligodendrogliomas, ependymomas, and astrocytomas can be distinguished [7]. Gliomas
can also be classified into four main groups according to the WHO 2021 Classification of
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Tumors of the Central Nervous System [8]. The most severe type of glioma is glioblastoma
(GBM), which is known for its severity, poor prognosis, and limited therapeutic efficacy.
Therefore, extensive attempts have been made to find alternative treatment protocols.
Multiple omics studies have recently been performed to help understand the molecular
changes and metabolic reprogramming of GBM. Besides proteins and nucleic acids, lipids
have been raised to play a fundamental role in tumor pathogenesis. It is worth mentioning
that antitumor effects of targeting different lipid metabolism pathways have been shown
for several cancer types such as breast cancer, leukemia, prostate cancer, and GBM. In this
review, we focus on the role of lipid metabolism and specific lipids related to glioblastoma.

2. Glioblastoma

The majority of malignant brain tumors are GBM [9]. Several studies reported a
prevalence ranging between 0.85 and 4.17 per 100,000 persons/year [10] with poor survival
and prognosis as the main characteristics of GBM. A recent systematic review reported
that 2-year, 3-year, and 5-year survival rates are 18%, 11% and 4%, respectively [11].
Meanwhile, the 10-year survival rate was shown to be 0.71% elsewhere [12]. A median
estimated survival time of 14.6 months was found in patients who had been treated with a
combination of radiotherapy and temozolomide (TMZ) [13]. Based on its severity, WHO
classified GBM as a grade IV tumor [8]. The poor prognosis of GBM patients is explained by
the high rate of tumor recurrence [14]. Despite the current clinical settings and substantial
efforts, the vast majority of patients relapse, leading to a high mortality rate [15]. Many
hallmarks of GBM contribute to poor prognosis, including therapy-induced resistance,
modulation of the tumor microenvironment, invasion of neighboring tissues, and extensive
metabolic reprogramming (Figure 1).
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metalloproteinases, TME: tumor microenvironment, and TMZ: temozolomide. 

Figure 1. Targetable GBM hallmarks and features. Altered cellular processes related to cancer
hallmarks of enhanced lipid metabolism (red), aggressive proliferative and invasive phenotype
(yellow), reprogrammed tumor microenvironment (blue), and current therapy (green) of glioblastoma
(GBM) are indicated in separate quarters. Features with typically elevated levels are marked with
an arrow. Underlined features of the reprogrammed lipid metabolism are discussed in detail in the
text. Abbreviations: CSC: cancer stem cell, EMT: epithelial–mesenchymal transition, MMPs: matrix
metalloproteinases, TME: tumor microenvironment, and TMZ: temozolomide.



Cancers 2024, 16, 397 3 of 17

Most GBM cases are primary neoplastic changes that usually affect elderly people [16].
A smaller number of GBM appear as secondary tumors originating from previously diag-
nosed low-grade (II or III) glioma. Although GBM is very aggressive and known for its
ability to invade adjacent tissues, distant metastases (e.g., bone marrow or lung) are rarely
formed [17]. A high degree of heterogeneity necessitated several classification systems
for GBM. Based on their transcriptional features, GBM is divided into four categories:
proneural, neural, classic, and mesenchymal. Among these classes, proneural GBM has the
best prognosis with 17 months of median survival, while the mesenchymal form has the
worst outcome [18,19]. Based on isocitrate dehydrogenase (IDH), GBM is classified into
IDH-wild type (in which IDH is overexpressed) and IDH-mutant [20], which are associated
with worse or better prognosis, respectively [21].

Glioma cells can penetrate the neighboring tissues through either vasculature beds
or axons of the white matter [22]. Glioma cells can shrink and release free cytoplasmic
water up to 33% of their volume and Cl− ions through channels and transporters, allowing
them to more easily cross physical barriers. Another mechanism involves the upregulation
of matrix metalloproteinases that enable the efficient degradation of the extracellular
matrix. Stiffness of the extracellular matrix is a key regulator of glioma invasion. Therefore,
reduction in Cl− levels or inhibition of matrix metalloproteinase-9 led to an anti-migratory
effect on glioma cells [23–25]. GBM cells may also migrate via the epithelial–mesenchymal
transition mechanism, supported by a very low expression of E-cadherin, functioning
for cell–cell adhesion and contact prevention of migration [26]. It was also shown that
epithelial–mesenchymal transition is activated in some GBM clones, which correlated with
a poorer prognosis and a more aggressive tumor phenotype [27].

GBM is histologically diagnosed via biopsy either after the debulking surgery or via a
stereotactic procedure, as well as some imaging techniques such as magnetic resonance
imaging [7] or positron emission tomography [28]. Standard care comprises surgery, ra-
diotherapy, and chemotherapy with TMZ [29]. Although removal of the entire tumor is
impossible due to the infiltrative behavior of GBM [30], surgery aims to remove as much
tumor tissue as possible without affecting healthy tissues. TMZ is a lipophilic DNA alkylat-
ing agent capable of crossing the blood–brain barrier and also improving the prognosis if
combined with radiotherapy, and therefore has been widely used against GBM in clinical
settings [13]. Unfortunately, half of the patients do not respond and develop resistance
to TMZ [31]. To overcome the current therapeutic limitations, remarkable progress has
been made in the last decade to explore the mechanisms of GBM pathogenesis. Several
therapeutic opportunities have been investigated, such as immune therapies targeting
epidermal growth factor receptors or vascular endothelial growth factor. In this respect, the
humanized monoclonal antibody bevacizumab, an angiogenesis inhibitor, has been used as
a first-line therapy for solid tumors characterized by poor survival. This type of treatment
was approved by the Food and Drug Administration for metastatic colorectal and non-
small-cell lung cancer as well as for recurrent GBM [32–34]. Attempts have also been made
to treat GBM by exploiting the metabolic reprogramming reported for GBM. Targetable
changes in lipids and their metabolites, which have been related to the pathogenesis and
progress of GBM, are discussed below.

3. Lipids of the Healthy Brain

Lipid content in the brain is heterogeneous and accounts for 36–40%, 49–66%, and
8–81% of gray matter, white matter, and myelin, respectively [35]. The brain can synthe-
size fatty acids (FAs) such as monounsaturated (MUFAs) and saturated FAs by de novo
synthesis, whereas polyunsaturated fatty acids (PUFAs) are taken from dietary resources
only. Lipids of the brain consist of sphingolipids, glycerophospholipids (phospholipids),
sterols, glycolipids, triacylglycerols, prenols, eicosanoids, and endocannabinoids (ECs) [36].
A large fraction of the brain lipids are plasmalogens that are composed of ether-linked fatty
alcohols at the sn-1 position [37]. Due to their prominent roles, cholesterol, phospholipids,
and sphingolipids are considered as main lipids of the brain [38]. Brain cholesterol levels
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represent 23% of the total cholesterol content in the body [39]. Since the blood–brain barrier
excludes cholesterol-carrying lipoproteins [40], cholesterol is synthesized by oligodendro-
cytes, astrocytes, and neurons [41]. Astrocytes also synthesize apolipoprotein E, which is
responsible for the intercellular transportation of cholesterol [42].

Phospholipids include phosphatidylcholine, phosphatidylethanolamine, and phos-
phatidylserine, which are considered as main components of the cellular membranes,
with a crucial role in membrane permeability barrier function and in regulating fluidity.
Phospholipids account for as much as 25% of the dry weight of the brain [43]. They are
cleaved by phospholipases such as phospholipase A2 (PLA2), releasing arachidonic acid
(AA), which in turn is metabolized into eicosanoids that have different roles in the brain,
mediating inflammation and sleep regulation [44,45]. Sphingolipids are characterized by a
backbone of a sphingosine basis and include ceramide, sphingomyelin, ganglioside, and
cerebroside. They are the primary component of the myelin membrane that insulates the
axons [46]. Sphingolipids also coordinate cellular activities like differentiation and cell
death in the central nervous system [47]. Brain lipids also include ECs, originally defined as
endogenous lipid-based neurotransmitters involved in different physiological processes by
mediating retrograde neurotransmission in a receptor-dependent manner [48,49]. Together
with the endocannabinoid receptors and enzymes, they form the endocannabinoid system.
Anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) activate the cannabinoid receptors
and their metabolism generates AA [50]. ECs coordinate different psychological functions
such as hunger, emotional status, inflammation, and pain sensation [51]. The role and
metabolism of ECs in the brain is one of the most investigated topics of neuroscience and
has been summarized elsewhere [52].

4. Lipid Metabolism in Glioblastoma Cells

Lipids account for 35% of the dry weight of GBM cells and have been recently revealed
to exert an important role in GBM [53]. Glial cells are known for their ability to synthesize
lipids such as FAs [54] and cholesterol [55] via de novo lipogenesis (DNL). Several studies
showed that glioblastoma cells have irregular lipid metabolism to fulfill survival and
progression requirements and to adapt to the tumor microenvironmental conditions, such
as limited nutrients [56,57], making them independent of the exogenous lipid supply [58]. In
this context, altered lipid metabolism in GBM includes DNL, lipid uptake and accumulation,
fatty acid oxidation (FAO), and ferroptosis [59], which could be targeted (Figure 2).

4.1. De Novo Lipogenesis

The reported higher lipid content of glioma cells over other intracranial tumors [53] is
partly attributed to an elevated level of DNL, and also associated with the accumulation
of FAs. Excess FAs can either be stored in the form of triacylglycerols (TAGs) in lipid
droplets (LDs), be oxidized to provide energy, or be involved in several cellular activities
via signaling [60,61]. DNL engages multiple enzymes including ATP-dependent citrate
lyase (ACLY), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FASN) [62]. ACLY
is a cytoplasmic enzyme responsible for starting DNL by producing acetyl-CoA from
citrate transported from mitochondria [63]. ACC then irreversibly carboxylates acetyl-CoA
into malonyl-CoA [64], followed by a FASN-mediated condensation reaction between
acetyl-CoA and malonyl-CoA to yield fatty acids up to palmitate [65]. An increased ACLY
activity within the pseudopodia of GBM cells has been observed. Moreover, analysis
of the gene expression database confirmed a correlation between ACLY expression and
poor prognosis. In accordance, inhibition of ACLY by hydroxycitrate caused reduced
migration of GBM cells in vitro. Therefore, ACLY was suggested as a potential target to
suppress hypoxic cell invasion [66]. Similarly, inhibition of ACC by siRNA or by ACC
inhibitor led to the impaired proliferation and viability of U87 EGFRvIII glioblastoma cells
by hampering DNL, reducing cellular respiratory control ratio, and causing membrane
permeability loss [67]. FASN has been found to be upregulated in both glioblastoma cell
lines and human glioma tissues compared with normal rat astrocytes and normal human
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brain, respectively. Similarly, inhibition of FASN by cerulenin caused a 50% reduction
in DNL and a decrease in cell viability [68]. Treating glioma stem cells with cerulenin
resulted in the inhibition of migration and proliferation of the cells [69]. In a clinical study
on patients of first-relapse GBM, co-administration of the FASN inhibitor TVB-2640 and
bevacizumab significantly improved the progression-free survival at 6 months compared
with bevacizumab treatment alone [70]. A further clinical trial is ongoing to investigate
the effect of the oral, selective small-molecule inhibitor of FASN, ASC40 and bevacizumab
(Table 1). Altogether, these findings suggest that targeting DNL may be a promising
approach to reduce GBM aggressiveness.
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Figure 2. Experimental drug targets of the lipid metabolism pathways in GBM. Drugs affecting
lipid metabolism pathways in GBM could target SREBP activation, de novo lipogenesis (DNL), lipid
droplet (LD) formation, fatty acid oxidation (FAO), and ferroptosis. SREBP activation requires SREBP-
SCAP translocation from ER to Golgi, where it is cleaved by S1P and S2P yielding the N terminal
fragment of SREBP, which in turn translocates into the nucleus (nSREBP) and activates lipogenic
genes. Fatostatin and PF429242 affect the SREBP pathway by inhibiting SREBP translocation and S1P
activity, respectively. SREBP activation leads to DNL by using glycolysis-derived citrate as a precursor.
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Conversion of cytosolic citrate to fatty acids can be targeted by inhibiting the involved enzymes ACLY,
ACC, or FASN by hydroxycitrate, siRNA, or cerulenin, respectively. Similarly, silencing expression
of the ER-associated SCD-1 results in DNL inhibition. Simvastatin targets HMGCR and depletes
cholesterol, which is crucial for GBM survival. To reduce lipotoxicity, GBM cells accumulate LDs
and sequester excess FAs and lipids in the form of cholesteryl esters (Chol-E) or TAGs generated by
the enzymes SOAT1 or DGAT1, respectively. LD formation can be targeted by inhibition of SOAT1
or DGAT1 by avasimibe or A-922500, respectively. Inhibition of the energy-producing FAO can be
achieved by targeting CPT1 with etomoxir or by depleting MCAD, efficiently reducing GBM cell
viability. Upon ferroptosis hydroxyl radicals react with PUFAs in the cell membrane, resulting in
the generation of free cytotoxic radicals (PLOO·). GBM cells can escape ferroptosis through GPX4
activity by reducing PLOO·s to PLOH. This step can be blocked by the inhibitor fatostatin. Reducing
LDLR expression through LXR elements by synthetic LXR agonists LXR-623 and GW3965 causes
cholesterol-dependent GBM cell death. Abbreviations: ACC: acetyl-CoA carboxylase, ACLY: ATP
citrate lyase, CPT1/2: carnitine palmitoyl transferase 1/2, DAG: diacylglycerol, DGAT: diacylglycerol
acyltransferase, FASN: fatty acid synthase, GPX4: glutathione peroxidase 4, HMGCR: β-hydroxyl-
β-methylglutaryl-CoA reductase, LDLR: low-density lipoprotein receptor, LXR: Liver X receptors,
MCAD: medium-chain acyl-CoA dehydrogenase, PDC: pyruvate dehydrogenase complex, PL.:
phospholipid radical, PLOH: phospholipid alcohol, PLOO.: phospholipid peroxyl radical, PUFA:
polyunsaturated fatty acid, RXR: retinoid X receptor, S1P: site-1 protease, S2P: site-2 protease, SCAP:
SREBP cleavage activating protein, SCD: stearoyl-CoA desaturase, SOAT: sterol O-acyltransferase,
SREBP: sterol regulatory element binding protein, TAG: triacylglycerol, and TCA: tricarboxylic
acid cycle.

Lipogenesis and cholesterol homeostasis are regulated by a family of transcription
factors, called sterol regulatory element-binding proteins (SREBPs). SREBPs are synthesized
as precursors complexed with the SREBP cleavage activating protein in the endoplasmic
reticulum (ER) membrane. These transcription factors need to be transported from the
ER to the Golgi apparatus and cleaved by site-1 and -2 proteases (S1P/S2P) [71]. SREBP-1
specifically activates the responsible genes of the enzymes involved in the DNL, whereas
SREPB-2 is responsible for cholesterol homeostasis [72]. SREBPs represent an attractive
pathway to target in the treatment of GBM as several studies have concluded that SREBP-
1 is highly active in GBM cells [73]. Accordingly, apoptosis and decreased viability of
GBM cells were observed upon inhibition of SREBP activation by using PF-429242, an
S1P inhibitor [74].

4.2. Lipid Uptake and Storage

Generally, tumor cells do not rely only on the DNL process to supply the required
lipids but also on lipid uptake from the extracellular milieu [75]. Several studies showed
important roles for CD36, fatty acid binding proteins (FABPs), and low-density lipopro-
tein (LDL) receptors in GBM. CD36 is a scavenger receptor responsible for, among other
functions, binding and transportation of long-chain free fatty acids. CD36 is expressed
on the surface of several cells including microglia [76]. CD36 has also been shown to be
highly expressed on the surface of GBM stem cells. Moreover, its knockdown resulted in
the inhibition of self-renewal and tumor initiation abilities of GBM cells. Based on clinical
datasets and experimental data expression levels of CD36 in GBM, it has been proposed as
a prognostic marker for patient survival [77]. FABPs are responsible for the intracellular
transportation of lipids into different cellular compartments, such as LDs and ER [78]. In-
terestingly, FABPs are highly expressed in the glial cells of the developing brain; however, it
is barely detectable after maturation [78]. In comparison with normal cells, the expressions
of both FABP4 and FABP5 have been found to be higher in GBM cells. The expression
of FABP4 has been associated with a poor prognosis, while its inhibition suppressed
metastases in vivo and in vitro, highlighting FABP4 as a possible target for the treatment of
GBM [79,80]. Gene expression analysis of surgical specimens found an elevated expression
of FABP7 in GBM samples. In addition, in vitro experiments showed an increased ability
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of patient-derived GBM cells to migrate upon overexpression of FABP7. Furthermore, its
nuclear accumulation has been suggested as predictive of poor prognosis [81,82].

As previously mentioned, the brain produces cholesterol by DNL through the meval-
onate pathway. The process begins with β-hydroxyl-β-methylglutaryl-coenzyme A (HMG-
CoA) synthesis by the condensation of acetyl-CoA and acetoacetyl-CoA. Mevalonate is
then formed by the action of HMG-CoA reductase (HMGCR), the rate-limiting enzyme
of cholesterol synthesis, and the reaction continues to yield cholesterol [83]. Unesterified
cholesterol is considered the prominent form of cholesterol in the brain, while the ester-
ified, storage form of cholesterol accounts for only 1% of the total cholesterol content in
LDs [41]. Esterification is performed by acyl-coenzyme A: cholesterol acyltransferase (also
named sterol O-acyltransferase (SOAT)), which is the key enzyme of the cholesterol storage
process [84] that can prevent cholesterol overload. Migration and proliferation of U251
and U87 glioblastoma cell lines were suppressed by applying simvastatin, an inhibitor of
HMGCR, leading to apoptosis [85]. Another study recognized elevated SOAT expression
in GBM and its inhibition blocked cholesterol esterification. Subsequently, DNL suppres-
sion was provoked through the feedback inhibition of SREBP-1, which resulted in GBM
growth arrest [73].

LDs are organelles responsible for storing FAs in the form of neutral lipids, such as
TAGs and cholesteryl esters, thereby protecting cells from the toxic effects of free FAs [86].
Neutral lipids form the hydrophobic core that is enveloped by phospholipids and surface
proteins, such as perilipins [86]. These stored lipids could be used as substrates to build
membranes or to generate energy upon nutrient shortage. To achieve this, enzymes
like adipose triglyceride lipase, diacylglycerol lipase, and monoacylglycerol lipase are
activated [87,88]. Formation of LDs involves several enzymes such as the abovementioned
SOAT and acyl-CoA: diacylglycerol acyltransferases (DGAT 1/2), which stimulate the final
process of TAG formation by adding activated fatty acids to diacylglycerol [89]. In addition,
stearoyl-CoA desaturase (SCD) contributes to LD formation by stimulating the generation
of MUFAs by converting saturated FAs into unsaturated FAs in the ER. In this context,
stearoyl-CoA is considered the preferred substrate and is converted to oleoyl-CoA [90].
These MUFAs can also be used for the synthesis of phospholipids.

LDs are not recognized in healthy brain tissues but are highly expressed in the brain
tissues of GBM patients. Accordingly, administration of oleic acid led to the accumulation
of LDs in the U138 glioblastoma cell line and triggered high rates of FAO and cell migration.
Furthermore, the selective inhibition of monoacylglycerol lipase by JZL184 has been shown
to suppress GBM proliferation, pointing out a prominent role of reprogrammed lipid
metabolism in glioma progression [91]. In addition to the key role of hypoxia in invasion
and therapy resistance of GBM [92,93], lipid homeostasis is also affected by the hypoxic
conditions in growing glioblastoma. It has been shown that necrotic areas contain more
LDs than non-necrotic areas in GBM samples [94,95]. Peroxisome proliferator-activated
receptor alpha, a transcription factor that regulates several lipid metabolizing enzymes, was
found to be highly upregulated in hypoxia-treated primary GBM cells of high-grade glioma
patients. Moreover, hypoxic cells showed elevated LD formation and higher levels of TAGs,
cholesteryl esters, and cholesterol in vitro [95]. Similarly, U87-MG cell line supplementation
with LDL under hypoxic conditions led to the accumulation of LDs. Additionally, patient-
derived samples supplemented with LDL, incubated under hypoxic conditions, and grafted
into mice brains showed LDs settling in the hypoxic niche [96].

GBM cells have been shown to overexpress DGAT1 to prevent lipotoxicity-induced
cell death by storing excess FAs within LDs. DGAT1 inhibition led to an impairment of
LD formation and caused cell death in an in vivo study as a result of the accumulation of
reactive oxygen species [97]. Metabolic profiling of TMZ-resistant GBM cells revealed SCD-
1 overexpression elsewhere. SCD-1 knockdown was shown to re-sensitize cells to TMZ
treatment, while a combined therapy of TMZ and SCD-1 inhibitor was found to reduce
the mobility and viability of GBM cells [98]. A study of the phospholipidome proposed
that silencing SCD-1 might help to overcome GBM treatment resistance in combined
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therapies [99]. Moreover, several intracranial tumors including GBM were shown to
display high or increased activity of the LDL receptor, a receptor responsible for cholesterol
transportation, making these cells highly dependent on cholesterol supply [100]. Several
attempts have been made to target the cholesterol metabolism of GBM cells, such as
using a Liver X receptor agonist, which led to cell death and tumor regression in vivo in a
cholesterol-dependent manner [101,102].

4.3. Fatty Acid Oxidation

FAO is the process by which cells produce energy using FAs as substrates. Carnitine
palmitoyl transferase 1 (CPT1) is one of the enzymes involved in FAO, converting long-
chain acyl-CoA to acylcarnitine for mitochondrial transport. Glioblastoma specimens were
found to express higher and lower expression levels of the isoforms CPT1A and CPT1C
compared with low-grade gliomas, respectively [103]. Medium-chain acyl-CoA dehydroge-
nase (MCAD) is another enzyme involved in the FAO process. MCAD is upregulated in
GBM compared with normal brain tissues. Depletion of MCAD caused the accumulation of
medium-chain fatty acids and subsequent cell death of GBM cells. The authors suggested
that in tumor types surrounded by a lipid-rich environment, such as GBM, targeting MCAD
may be an effective approach to hinder tumor progression [104]. In fact, inhibition of FAO
by etomoxir reduced cell viability and proliferation in a syngeneic mouse model and led to
ATP depletion and subsequent cell death in human GBM cells in vitro [105,106].

4.4. Ferroptosis

Ferroptosis is a special form of cell death characterized as a non-apoptotic, iron-
dependent process that causes lipid peroxidation-mediated cell death. The three main
components of ferroptosis are iron, PUFAs, and glutathione peroxidase (GPX) [107]. The
process starts with the Fenton reaction, where intracellular iron reacts with hydrogen
peroxide yielding hydroxyl radicals (•OH). •OH radicals react with PUFAs, resulting
in phospholipid hydroperoxides (PLOOH) that are normally removed and converted to
PLOH by scavengers such as GPX4. Unscavenged PLOOH, however, can react with iron
to form radicals like alkoxyl (PLO•) and peroxyl (PLOO•), which then further react with
PUFAs. Repeated reaction cycles lead to the accumulation of peroxidized lipids that finally
cause membrane disruption and cell death [108]. As a newly discovered type of cell
death, ferroptosis has been proposed as an attractive target in GBM [109]. In support of
this, ferroptosis-related genes have recently been indicated with a prognostic value for
GBM [110]. Moreover, the SERBP inhibitor fatostatin has been shown to trigger ferroptosis
in GBM cell lines by hindering GPX4 synthesis [111].

5. Lipids with Special Impact on Glioblastoma Progression
5.1. Prostaglandins

Prostaglandins (PGs) are AA-derived inflammatory mediator lipids that have a pri-
mary role in regulating biological activities in both healthy and inflammatory conditions.
Their synthesis starts with the action of PLA2 releasing AA from the sn-2 position of
phospholipids. Cyclooxygenase isoenzymes (COX-1 and COX-2) then metabolize AA into
different types of PGs [112]. It has been raised that high expression of COX-2 in GBM
tissues enhances migration through prostaglandin E2 (PGE2) [113]. Furthermore, a strong
correlation has also been observed between COX-2 expression and poor survival [114].
Therefore, there have been several attempts to target PG synthesis and action in GBM. A
higher expression level of the membrane-associated prostaglandin E synthase 1 (mPGES-1)
has been noticed in the U87-MG cell line compared with primary astrocytes. mPGES-1
knockdown reduced cell growth and proliferation by inhibiting the activation of protein
kinase A. Externally administrated PGE2 retrieved cellular growth and proliferation [115].
By comparing metabolome and gene expression profiles of chemotherapy-sensitive vs.
resistant GBM cells, PGE2 has been shown to participate in the development of TMZ re-
sistance via the COX-2 pathway [116]. In contrast, it was shown elsewhere that primary



Cancers 2024, 16, 397 9 of 17

cultures of GBM tumors with higher levels of mPGES-1 were more prone to Bax-dependent
apoptosis [117]. Furthermore, AA treatment was shown to inhibit the proliferation of GBM
cell lines LN229 and HNGC2 in an in vitro study. Nevertheless, the authors suggested that
AA affects cell proliferation independent of its metabolites [118]. Altogether, PGE2 can
exert both pro- and antitumor effects depending on the cellular or molecular context.

5.2. Lysophosphatidic Acid

GBM cells can also increase their motility and metastatic potential through lysophos-
phatidic acid (LPA) and its receptors [119]. These effects could be attributed to an increased
expression level of autotaxin (ATX), the phosphodiesterase enzyme that converts lipid
substrates such as lysophosphatidylcholine to LPA. Accordingly, genetic downregulation
of ATX blocked GBM cell migration in vitro [120]. In addition, PF-8380, an ATX inhibitor,
improved sensitivity toward radiotherapy and decreased GBM invasion in cell line and
mouse models [121].

5.3. Endocannabinoid Lipids

Beyond an important neuromodulatory role, it has been shown that ECs have anti-
tumor effects against various cancer types [122]. Mostly AEA and to some extent 2-AG
have been investigated for their antitumor role. Nevertheless, ∆9-tetrahydrocannabinol
(THC) and cannabidiol (CBD), phytocannabinoids derived from Cannabis sativa, have been
clinically tested for GBM treatment for both their palliative and antitumor effects. In a
clinical study with a cohort of GBM patients, THC was safely administered locally with
beneficial effects on suppressing tumor growth [123,124]. Released in a sustained manner,
THC-loaded microparticles were actively delivered to the tumor site in a murine GBM
model, where they reduced viability [125]. Furthermore, THC also synergized and im-
proved the antitumor activity of TMZ, when applied in combination [126]. In line with
these findings, intracranial application of THC was shown to improve the apoptotic activity
of cleaved caspase 3 [127]. The mechanisms by which THC provokes cell death involve au-
tolysosome permeabilization, cathepsin release [128], and subsequent ER stress-dependent
autophagy [129]. Oral administration of CBD in addition to the standard treatment has
been shown to extend patient survival [130]. To reduce the psychoactive effect of THC,
a combination of THC and CBD has been clinically tested in the form of a nabiximols
spray added to TMZ for combating recurrent GBM. The results of a placebo-controlled
phase I trial showed that nabiximols was tolerable and improved overall survival. How-
ever, further studies with a higher number of patients should be performed to confirm
these results [131].

AEA has been a focus of physiological and tumor brain research. To our current un-
derstanding, AEA is synthesized from N-arachidonoyl-ethanolamine (NAPE) via multiple,
direct, and indirect pathways (Figure 3). Although the role of these alternative pathways
is not understood, degradation of NAPE yields several metabolites, some of which are
potent signaling molecules, such as DAG, LPA, and AEA. Interestingly, several NAPE me-
tabolizing enzymes have been implicated as potential tumor suppressors as well [132–135],
but the potential role of NAPE metabolites in tumor progression is completely unknown.
Similar to its synthesis, AEA is degraded by multiple pathways. These include its hy-
drolyzation to AA and ethanolamine by fatty-acid amide hydrolase (FAAH) [136] or by
N-acylethanolamine-hydrolyzing acid amidase (NAAA) [137], or by its oxygenation via
lipoxygenases that yield hydroperoxyl compounds [138]. In addition, COX-2 can metabo-
lize AEA to prostanoids, mainly to PGE2 ethanolamide [139]. An up to 17-fold increase in
NAPE and AEA levels has been shown in the tumor tissue of GBM patients compared with
normal brain lipid concentrations, which was accompanied by a decrease in the efficacy of
AEA-degrading enzymes [140]. In a later study, decreased levels of AEA were reported in
GBM samples, but the authors noticed significant differences in sample collection, handling,
and measurement protocols of the sensitive samples [141].
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Figure 3. Alternative NAPE metabolic routes to AEA. (Black) N-arachidonoyl-ethanolamine (NAPE)
is made from phosphatidylethanolamine (PE) by N acylation of the PE head group, which is mediated
by N-acyl transferases (NATs) (e.g., PLA2G2E, PLA2G4E) using phosphatidylcholine (PC) as a fatty
acid source. (Red) NAPE is directly metabolized to anandamide (AEA) and phosphatidic acid (PA) by
phospholipase D (NAPE-PLD) [132]. (Green) Phospholipase C (PLC) activities can produce phospho-
AEA (P-AEA), which is further metabolized to anandamide (AEA) and inorganic phosphate (Pi) by
protein tyrosine phosphatase non-receptor type 22 (PTPN22) and SH2 domain-containing inositol 5′

phosphatase-1 (SHIP1) [133,134]. (Blue) Fatty acids of NAPE can be cleaved by phospholipase A2
(PLA2) activities of abhydrolase domain-containing 4 (Abhd4) or secretory phospholipase A2 (sPLA2),
yielding lyso-NAPE. Lyso-NAPE may be further metabolized to AEA directly with lysophosphatidic
acid (LPA) as a side product. Lyso-NAPE may also be metabolized to glycerophospho-AEA (GP-
AEA) and fatty acid (FA) by Abhd4, and then further to AEA and glycerol-3-phosphate (G3P) by
glycerophosphodiester phosphodiesterase 1 (Gde1) [134,135].

Little is known about the mechanism of AEA-mediated effects on brain tumors, in
particular GBM. An early report on the antitumor effect of AEA has shown inhibition
of MCF-7 and EFM-19 breast cancer cells via a cannabinoid receptor-1 (CB1)-dependent
mechanism [142]. Later, AEA-induced apoptosis in neuroblastoma and lymphoma cell
lines was shown to be abolished by the antagonism of vanilloid receptors [143]. C6 glioma
proliferation was restricted in vitro by exogenously administered AEA in a cannabinoid
and vanilloid receptor-dependent manner. It was also shown that a metabolically stable
analog meAEA (R-(+)-methanandamide) had much lower efficacy [144]. meAEA induced
COX-2 expression in human neuroglioma cells even upon treatment with a selective CB1
receptor antagonist, suggesting a cannabinoid receptor-independent mechanism [145].
Other enzymes were found to contribute to AEA activities because inhibition of COX-2
and lipoxygenase reduced the cytotoxic effect of AEA on A375 melanoma cells, whereas
FAAH antagonism had the opposite effect [146]. Similar results were achieved when the
AEA analog Met-F-AEA (2-methyl-2′-F-anandamide) was combined with an FAAH blocker
(URB597), causing a regression of non-small-cell lung cancer cells [147]. In addition, ox-
idative stress has also been implicated in AEA-mediated antitumor effects, as antioxidants
mitigated oxidative stress-mediated apoptosis triggered by AEA in non-melanoma skin
cancer even with the blockage of cannabinoid and vanilloid receptors, suggesting a yet
unraveled antitumor mechanism of AEA [148].
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6. Clinical Tests of Lipid-Targeting Drugs for Glioblastoma Treatment

As described above, several lipid-based targets have been raised in in vitro and pre-
clinical studies for combating GBM. To evaluate the therapeutic potential of these lipid
targets, a small number of clinical trials have been conducted so far (Table 1). Lipid
metabolism-related drugs have been used in combination with conventional radio- and
chemotherapy. The FASN inhibitor TVB-2640 was shown to improve progression-free
survival measured at 6 months in a phase II study [70], while the effect of another FASN
inhibitor, ASC40, is currently being tested in a phase III trial. The use of the HMGCR
inhibitor atorvastatin, which was supposed to reduce DNL, has failed to confer any clinical
benefit [149]. Neither inhibition of COX-2 by celecoxib, which was expected to block PG
synthesis and AEA metabolism, resulted in a significant clinical benefit [150]. Early-stage
studies indicate that CBD and THC could have a beneficial effect on the overall survival of
GBM patients [130,131].

Table 1. Clinical trials targeting lipid metabolism in GBM. THC: ∆9-tetrahydrocannabinol,
CBD: cannabidiol, FASN: fatty acid synthase, HMGCR: β-hydroxyl-β-methylglutaryl-CoA reductase,
COX-2: cyclooxygenase 2, TMZ: temozolomide, PFS6: progression-free survival at 6 months, and
OS: overall survival.

NCT No. Drug Target Combined with Phase Outcome Reference

NCT03032484 TVB-2640
(Denifanstat) FASN Bevacizumab II Improved PFS6 [70]

NCT05118776 ASC40 FASN Bevacizumab III Ongoing -

NCT02029573 Atorvastatin HMGCR Radiotherapy
+TMZ II No benefit [149]

NCT00047294 Celecoxib COX-2 Thalidomide
+TMZ II No benefit [150]

Case study
(15 patients) CBD

Cannabinoid
pathway

Radiotherapy
+TMZ - Improved OS [130]

NCT03529448 TN-TC11G
(THC+CBD)

Radiotherapy
+TMZ I Ongoing -

NCT01812616 Nabiximols TMZ Ib Improved OS [131]

7. Conclusions

Aggressiveness and poor prognosis of GBM, as evidenced by short survival after
diagnosis and short-term effectiveness of therapies, continue to represent a heavy burden on
the medical community and patients. To overcome this health and social challenge, serious
efforts have been made to treat GBM by exploiting its various characteristics. Among them,
reprogramming or attacking the pathophysiological lipid metabolism appears to be an
attractive novel therapeutic possibility. This review highlights much of the related research
that investigated various pathways of GBM lipid metabolism. Inhibition or elimination
of several enzymes or participating metabolites may counteract growth and invasion,
block proliferation, or induce apoptosis of GBM cells. Altogether, GBM is embedded in a
fairly lipid-rich brain environment and is highly dependent on lipid supply and exchange,
therefore lipid-based therapeutic approaches are emerging and gaining more importance.
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