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Simple Summary: Asbestos exposure is known as the main elicitor of pleural mesothelioma (PM)
development. The pathology’s rarity, wide range of growth patterns, and devastating prognosis
have hindered a standardized treatment to date. This study intended to determine possible prog-
nosticators contributing to adjusting the treatment allocation. This initiated the analysis of the
readily available biomarkers (from blood withdrawal) and clinical characteristics of 98 consecutive
patients regarding their impact on overall survival (OS) in a retrospective and multicentered manner.
Surgery (pleurectomy/decortication (P/D)), multimodal therapy (chemotherapy and surgery), a high
hemoglobin level, a low platelet count, and a low platelet–lymphocyte ratio (PLR) were identified as
favorable prognosticators. In multivariate analysis, histology, P/D, low C-reactive protein (CRP), and
platelet levels were independent prognostic variables for this cohort. These validating results support
further application of (lung-sparing) interventions and accompanying research on prognostic and
predictive biomarkers.

Abstract: Evoked from asbestos-induced inflammation, pleural mesothelioma represents a fatal
diagnosis. Therapy ranges from nihilism to aggressive multimodality regimens. However, it is still
unclear who ultimately benefits from which treatment. We aimed to re-challenge inflammatory-
related biomarkers’ prognostic value in times of modern immune-oncology and lung-sparing surgery.
The biomarkers (leukocytes, hemoglobin, platelets, neutrophils, lymphocytes, monocytes, neutrophil–
lymphocyte ratio (NLR), lymphocyte–monocyte ratio (LMR), platelet–lymphocyte ratio (PLR), C-
reactive protein (CRP)) and clinical characteristics (age, sex, histology, therapy) of 98 PM patients
were correlated to overall survival (OS). The median OS was 19.4 months. Significant OS advantages
(Log-Rank) were observed in multimodal treatment vs. others (26.1 vs. 7.2 months, p < 0.001), surgery
(pleurectomy/decortication) vs. no surgery (25.5 vs. 3.8 months, p < 0.001), a high hemoglobin
level (cut-off 12 g/dL, 15 vs. 24.2 months, p = 0.021), a low platelet count (cut-off 280 G/L, 26.1 vs.
11.7 months, p < 0.001), and a low PLR (cut-off 194.5, 25.5 vs. 12.3 months, p = 0.023). Histology
(epithelioid vs. non-epithelioid, p = 0.002), surgery (p = 0.004), CRP (cut-off 1 mg/dL, p = 0.039), and
platelets (p = 0.025) were identified as independent prognostic variables for this cohort in multivariate
analysis (Cox regression, covariates: age, sex, histology, stage, CRP, platelets). Our data verified
the previously shown prognostic role of systemic inflammatory parameters in patients treated with
lung-sparing surgery within multimodality therapy.
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1. Introduction

Pleural mesothelioma (PM) still carries a poor and heterogeneous prognosis, ranging
from 8 to 30 months depending on the stage at diagnosis and the following treatment [1–3].
Asbestos exposure and the ensuing inflammatory process are critical players in its devel-
opment [4]. PM treatment still needs to be standardized entirely since each histological
subtype and tumor progression state demands a different approach, and several therapeu-
tics are under investigation [4–6].

The uncertainty of successful patient-to-treatment allocation has urged and initiated
biomarker research. This involves the identification of prognostic biomarkers signify-
ing survival advantages and biomarkers predictive for therapy response [4]. Several
inflammatory-related biomarkers have been identified and validated over the years. The
blood levels of leukocytes, lymphocytes, monocytes, neutrophils, platelets, and albumin
repeatedly showed to be of prognostic value in PM patients [7–11]. Ghanim et al. have
even proven both C-reactive protein (2012) and fibrinogen (2014) to be of prognostic as
well as predictive power in PM cases undergoing extrapleural pneumonectomy within
multimodality therapy [12,13].

The immune system’s impact on the development and progression of PM holds
promise for further biomarkers, especially within the frame of immunotherapy [7]. With
immunotherapy and anti-angiogenic therapy on the rise, combined with lung-sparing
surgery and its recently questioned role in PM, there is an urgent need for validated
biomarkers. Patient cohorts that will benefit from novel treatment approaches should
be identified to avoid unnecessary treatments and tailor personalized medicine for PM
patients during lung-sparing surgery and modern (immune-)oncology.

2. Materials and Methods
2.1. Patients

In this retrospective multicenter study, data from 98 patients with a histologically
proven PM diagnosis were pseudonymously collected and analyzed. The partaking de-
partments are listed in Supplementary Table S1, alongside their contributing number of
patients and the corresponding ethics committee, plus approval number.

All partaking departments conducted their data collection according to the ethical
principles of the Declaration of Helsinki. Due to the retrospective approach of this study,
no informed consent from patients was required. Throughout the study, the patients’ data
were kept confidential.

The eligibility criteria included a histologically proven diagnosis of PM (epithe-
lioid/biphasic/sarcomatoid), a comprehensive medical record documenting the PM treat-
ments received at the participating hospital, and standard laboratory and clinical parame-
ters.

A total of 65 patients received multimodal therapy (66.3%), which was defined as
lung-sparing surgery in macroscopic radical intention together with chemo-/, radio-, or
immunotherapy for this cohort. Further, 9 patients were treated with sole surgery (9.2%),
7 patients either received systemic chemotherapy, radiotherapy, or immunotherapy (7.1%),
and 17 were treated with best supportive care (17.0%). Out of the patients who received
cytoreductive surgical treatment (n = 74), 17 underwent a tumor-debulking (23%), and 57
received a macroscopic radical pleurectomy/decortication (=P/D; 77%), of which 29 (51%)
received a P/D and 28 (49%) an extended P/D (=EPD).
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Sole surgery as a treatment for PM is not a therapeutic standard, but the inclusion of
these patients was justified to gather a representative sample. Two of these nine patients
passed away within one month after surgery, another two could not receive chemo- or
radiotherapy due to comorbidities, and the remaining five were missing data on further
treatments.

The multimodally treated patients (n = 65) received the following therapies in addi-
tion to cytoreductive surgery: 34 (52%) patients received neoadjuvant chemotherapy, 4
(6%) received adjuvant chemotherapy, 17 (26%) had neoadjuvant chemotherapy and adju-
vant radiation, 4 (6%) had adjuvant chemotherapy and radiation, 2 (3%) had neoadjuvant
chemotherapy and immunotherapy, 2 (3%) received immunotherapy, and 2 (3%) received
neoadjuvant chemotherapy, radiation, and immunotherapy. Seven (10.8%) patients eventu-
ally received best supportive care (BSC) as a result of therapy exhaustion.

2.2. Variables

The collected variables consisted of peripheral-blood-derived markers (leukocytes,
hemoglobin, platelets, neutrophils, lymphocytes, monocytes, neutrophil–lymphocyte ratio
(NLR), lymphocyte–monocyte ratio (LMR), platelet–lymphocyte ratio (PLR), C-reactive
protein (CRP)) and clinical characteristics (gender, histology, stage, treatment), all of which
were correlated to overall survival (OS). Solely the pre-interventional (pre-diagnostic/pre-
surgery) withdrawn blood samples were considered for the statistical analyses, to prevent
any intervention from significantly altering the inflammatory biomarkers’ levels.

The investigated biomarkers hemoglobin, platelets, leukocytes, neutrophils, mono-
cytes, and lymphocytes were quantified via flow cytometry. The NLR was hence calculated
with the absolute neutrophil count divided by the absolute lymphocyte count, the LMR
with the absolute lymphocyte count divided by the absolute monocyte count, and the PLR
with the absolute platelet count divided by the absolute lymphocyte count. The CRP levels
were quantified through a latex agglutination test.

Clinical characteristics such as age, histology, gender, and therapy modality were
available for all patients. The following blood-derived variables were collected in their
entirety (n = 98): hemoglobin, platelets, neutrophils, lymphocytes, the NLR, and the PLR.
In contrast, leukocytes (n = 7), monocytes (n = 8), the LMR (n = 8), and CRP levels (n = 10)
were missing in some patients and could not be retrieved in retrospect.

2.3. Statistical Analyses

The statistical analyses were conducted using SPSS. p-values lower than 0.05 were
counted as significant. The overall survival (OS) was defined from the date of diagnosis
until the date of death or last follow-up. To calculate the OS, the Kaplan–Meier analysis
was applied. The resulting curves were compared with a Log-Rank test.

The data (biomarkers) were subdivided into below and above the calculated median
to build same-sized groups for the categorical survival analyses and to further visualize
the results using Kaplan–Meier graphs. Univariate survival analyses were conducted with
categorical and metric data for comparison. On the one hand, this method was chosen
to depict the differences in the distinct data processing because the median is not always
the adequate cut-off and therefore does not yield clarifying results. On the other hand,
calculations with metric data yield more accurate results because they depict whether a
one-unit change in a certain biomarker would increase or decrease the risk of death.

Univariate and multivariate Cox regression were utilized to identify independent
prognosticators and predictors of OS and calculate the interaction terms.
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3. Results

As listed in Table 1, the cohort consisted of 25 female (25.5%) and 73 male (74.5%)
patients with a histologically verified pleural mesothelioma diagnosis (n = 98, mean age:
64.9 ± 10.5 years; range: 42–88 years). Equally, 84 patients had epithelioid histology (85.7%),
and 14 patients had non-epithelioid histology (14.3%), which consisted of 8 biphasic (8.2%)
and 6 (6.1%) sarcomatoid cases.

Table 1. Univariate survival analysis via Log-Rank of the collected variables.

Variable Cut-Off n
% of the Whole
Study
Population

Median OS
(Months) 95% CI p *

Age at
diagnosis

≤median 65.5 years
>median

49
49

50.0
50.0

25.6
12.3

23.2–28.0
7.8–16.8 0.057

Sex female
male

25
73

25.5
74.5

25.6
18.1

11.2–40.0
9.7–26.5 0.842

Histology epithelioid
non-epithelioid

84
14

85.7
14.3

24.2
7.8

16.7–31.7
5.6–10.0 0.053

Treatment
modality

multimodal
surgery alone
C/R/I
BSC

65
9
7
17

66.3
9.2
7.1
17.3

26.1
11.7
9.2
3.2

23.1–29.2
10.5–13.0
4.1–14.4
1.8–4.5

<0.001

Surgery vs.
none

cytoreductive
surgery
no surgery

74
24

75.5
24.5

25.5
3.8

23.0–28.0
2.3–5.4 <0.001

Hemoglobin

≤cut-off 12 g/dL
>cut-off 12 g/dL
≤median 12.7 g/dL
>median

36
62
49
49

36.7
63.3
50.0
50.0

15.0
24.2
16.1
23.6

9.2–20.7
15.8–32.6
4.5–27.8
13.7–33.5

0.021

0.250

Platelets ≤median 280 G/L
>median

49
49

50.0
50.0

26.1
11.7

17.7–34.6
7.0–16.4 <0.001

Leukocytes ≤median 7.5 G/L
>median

46
45

46.9
45.9

23.6
17.0

7.6–39.6
11.4–22.6 0.716

Neutrophils ≤median 5.2 G/L
>median

49
49

50.0
50.0

24.9
16.1

16.9–32.9
9.0–23.3 0.794

Monocytes ≤median 0.7 G/L
>median

45
45

45.9
45.9

25.6
12.8

21.1–30.1
7.0–18.6 0.051

Lymphocytes ≤median 1.5 G/L
>median

49
49

50.0
50.0

15.0
24.3

7.0–22.9
16.6–32.0 0.602

NLR ≤median 3.3
>median

49
49

50.0
50.0

23.6
16.1

15.7–31.5
9.0–23.3 0.727

LMR ≤median 2.4
>median

45
45

45.9
45.9

15.0
24.3

8.7–21.2
15.2–33.4 0.601

PLR ≤median 195.6
>median

49
49

50.0
50.0

25.5
12.3

23.4–27.6
4.8–19.8 0.023

CRP

≤cut-off 1 mg/dL
>cut-off 1 mg/dL
≤median 2 mg/dL
>median

35
53
44
44

35.7
54.1
44.9
44.9

23.6
18.0
24.2
13.3

9.9–37.2
6.9–29.1
13.4–35.0
5.3–21.0

0.393

0.437

median OS = median overall survival; CI = confidence interval; p * = Log-Rank; C/R/I = chemo-, radio-, or
immunotherapy; BSC = best supportive care; NLR = neutrophil–lymphocyte ratio; LMR = lymphocyte–monocyte
ratio; PLR = platelet–lymphocyte ratio; CRP = C-reactive protein.
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3.1. Therapy Modalities, Including Surgery, Have an Undeniable Impact on OS

Besides biomarkers, the different therapy modalities had a significant impact on OS.
Patients treated within the multimodality concept survived significantly longer than anyone
else otherwise (surgery alone, C/R/I, BSC) treated (median OS: 26.1 vs. 11.7 vs. 9.2 vs.
3.2 months, p < 0.001, Table 1, Figure 1c). The median survival of sole surgery exceeded
the C/R/I modality one’s. BSC, being ranked last in the median OS, met the expectations
of palliative treatment. The cohort’s dichotomization according to surgery vs. no surgery
revealed remarkable differences in OS. The different approaches, tumor debulking and
P/D, did not yield significant differences in the median OS (tumor debulking: 24.3 months
vs. P/D: 25.6 months) in contrast to patients without any surgical treatment (3.8 months,
p < 0.001, Figure 1d).
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Figure 1. Prognostic factors for patients with PM with corresponding Kaplan–Meier survival curves
calculated via Log-Rank. Variables are either dichotomized by their median, a chosen cut-off, or
subcategories. See Table 1. (a) Patients aged younger than 65 years at diagnosis survived, with
a trend of statistical significance, longer than the cohort above the median (25.6 vs. 12.3 months,
p = 0.057). (b) The cohort with an epithelioid histological subtype survived longer than the non-
epithelioid ones, as aforementioned, with a trend of statistical significance (24.2 vs. 7.8 months,
p = 0.053). (c) Patients treated within the multimodality concept survived significantly longer than
patients who received any other treatment (26.1 vs. 11.7 vs. 9.2 vs. 3.2 months, p < 0.001). (d) Patients
who received cytoreductive surgery survived significantly longer than the ones who did not receive
surgical therapy (25.5 vs. 3.8 months, p < 0.001). (e) Patients with hemoglobin levels above 12 g/dL
survived significantly longer than those with levels below (24.2 vs. 15 months, p = 0.021). (f) Patients
with a platelet level below 280 G/L survived significantly longer than the ones above the median (26.1
vs. 11.7 months, p < 0.001). (g) Patients with a PLR below the median of 195.6 survived significantly
longer than patients above the median (25.5 vs. 12.3, p = 0.023).

3.2. The Prognostic Impact of Platelet Count and PLR

The total cohort’s median OS was 19.4 months (CI 12.1–26.7). The results of the
univariate survival analysis, both via Log-Rank and Cox regression, proved the prognostic
power of platelets and the PLR. The platelet count, dichotomized by its median, yielded
significant survival advantages within the low-count cohort (26.1 vs. 11.7 months, p < 0.001,
Table 1, Figure 1f). Similar results were found for the PLR: the below-median cohort
survived significantly longer than the high-ratio cohort (25.5 vs. 12.3 months, p = 0.023,
Table 1, Figure 1g). The platelet count and PLR were significant when calculated using
metric and categorical data (Table 2).
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Table 2. Univariate Cox regression of the collected variables.

Variables Cut-Off/Subgroup HR 95% CI p **

Age metric
median 65.5 years

1.03
1.54

1.01–1.06
0.98–2.40

0.041
0.059

Gender female, male 0.95 0.56–1.60 0.842

Histology epithelioid, non-epithelioid 1.84 0.98–3.44 0.056

Treatment modality multimodal, surgery alone, C/R/I, BSC 1.83 1.51–2.23 <0.001

Surgery vs. none cytoreductive surgery, no surgery 0.23 0.14–0.40 <0.001

Hemoglobin
metric
cut-off 12 g/dL
median 12.7 g/dL

0.87
0.57
0.77

0.77–0.99
0.35–0.92
0.49–1.21

0.037
0.022
0.251

Platelets metric
median 280 G/L

1.003
2.39

1.001–1.004
1.49–3.84

0.001
<0.001

Leukocytes metric
median 7.5 G/L

1.01
1.09

0.94–1.09
0.69–1.73

0.741
0.716

Neutrophils metric
median 5.2 G/L

1.01
1.06

0.93–1.09
0.68–1.66

0.836
0.794

Monocytes metric
median 0.7 G/L

1.20
1.59

0.94–1.29
0.99–2.54

0.260
0.053

Lymphocytes metric
median 1.5 G/L

0.92
0.89

0.66–1.29
0.57–1.39

0.628
0.603

NLR metric
median 3.3

0.99
1.08

0.92–1.07
0.69–1.70

0.836
0.728

LMR metric
median 2.4

0.82
0.89

0.64–1.05
0.56–1.41

0.122
0.611

PLR metric
median 195.6

1.002
1.68

1.00–1.004
1.07–2.64

0.012
0.025

CRP
metric
cut-off 1 mg/dL
median 2 mg/dL

1.05
1.23
1.20

0.99–1.10
0.77–1.96
0.76–1.90

0.059
0.394
0.438

HR = hazard ratio, CI = confidence interval, p ** = univariate Cox regression, C/R/I = chemo-/radio-
/immunotherapy, BSC = best supportive care, NLR = neutrophil–lymphocyte ratio, LMR = lymphocyte–monocyte
ratio, PLR = platelet–lymphocyte ratio, CRP = C-reactive protein.

The prognostic power of hemoglobin was proven both using metric data (HR 0.87, CI
0.77–0.99, p = 0.037, Table 2) and by category with 12 g/dL as a cut-off (p = 0.021, Table 1,
Figure 1e), but not when dichotomized by the median (p = 0.250, Table 1). The age at
diagnosis yielded significant results only with metric data (HR 1.03, CI 1.01–1.06, p = 0.041,
Table 2) but not categorical (p = 0.057, Table 1, Figure 1a).

3.3. Histology, Monocytes, and CRP Show a Trend of Statistical Significance

The histological subtype could not prove its significant impact on survival for this
cohort. In both univariate analyses, the results show a strong tendency toward statistical
significance (p = 0.053, Table 1, Figure 1b; p = 0.056, Table 2). The monocyte count also
yielded results near significance, but only when dichotomized by the median (p=0.051,
Table 1; p = 0.053, Table 2), not with metric data (p = 0.260, Table 2). The CRP value proved
its prognostic power with a solid trend of significance when calculated with metric data
(p = 0.059, Table 2) but not by category (p = 0.437, Table 1; p = 0.438, Table 2).

Some variables could not be labeled as prognostic for this cohort. The patient’s sex
did not reveal any impact on survival (p = 0.842, Table 1). Blood-derived biomarkers
such as leukocytes, lymphocytes, neutrophils, and the corresponding ratios NLR and
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LMR remained insignificant throughout the analyses, not even displaying a trend toward
statistical significance.

3.4. Multivariate Survival Analysis

To examine the independence of the platelet and CRP levels, a multivariate model
adjusted for age, sex, histology, stage, and surgery vs. no surgery was created: see Table 3.
In contrast to the preceding univariate survival analyses, histology and CRP (cut-off 1
mg/dL) proved their independent prognostic power in multivariate analysis, additionally
to surgery vs. no surgery and platelet level. Non-epithelioid histology implied a 3.45-fold
higher risk of death in opposition to the epithelioid subtype in this cohort (HR 3.45, 95%
CI 1.6–7.4, p = 0.002). Whether patients received surgery or not repeatedly held strong
statistical power, also within the multivariate model (HR 3.04, 95% CI 1.43–6.43, p = 0.004).
Both the platelet (dichotomized by the median) and CRP levels (dichotomized by the cut-off
1 mg/dL) proved to independently influence the risk of earlier death (platelet level: HR
2.01, 95% CI 1.09–3.70, p = 0.025; CRP level: HR 1.76, 95% CI 1.03–3.00, p = 0.039).

Table 3. Multivariate Cox regression model adjusted for age, sex, histology, stage, surgery vs. no
surgery, platelet level, and CRP level. (n = 83, 85% of the study population).

Variables Adjusted HR
for Death 95% CI p ***

Age at diagnosis ≤65.5 years
>65.5 years

1
1.59 0.93–2.73 0.09

Sex female
male

1
1.02 0.55–1.90 0.96

Histology epithelioid
non-epithelioid

1
3.45 1.60–7.40 0.002

Stage early (I, II)
late (III, IV)

1
1.38 0.73–2.62 0.33

Surgery vs. no
surgery

cytoreductive surgery
no surgery

1
3.04 1.43–6.43 0.004

Platelet level ≤280 G/L
>280 G/L

1
2.01 1.09–3.70 0.025

CRP level ≤1 mg/dL
>1 mg/dL

1
1.76 1.03–3.00 0.039

HR = hazard ratio, CI = confidence interval, p *** = multivariate Cox regression, CRP = C-reactive protein.

3.5. Surgery vs. No Surgery Stratified by CRP Level

The prognostic impact of CRP was tested through additional stratification by surgery
vs. no surgery: see Figure 2. In univariate analysis, apart from the analysis with metric data,
which showed a trend, no significant association was found. In contrast, in multivariate
analysis, CRP level was found to be an independent prognostic factor, which is the reason
for its further stratification and interaction testing. Multivariate Cox regression yielded a
significant interaction between CRP level (cut-off 1 mg/dL) and surgery vs. no surgery
(see Figure 2 and Table 4). The survival curves, including the interaction term, indicate a
complex relationship between CRP level, surgery, and prognosis.
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Figure 2. Impact of CRP (cut-off 1 mg/dL) levels on the prognostic effect of surgery vs. no surgery
and multimodal therapy vs. other therapies. Kaplan–Meier survival curves highlight differences in
overall survival (OS). The interaction term was determined through multivariate Cox regression, and
p-values were calculated pairwise using the Log-Rank test. Survival subgroups categorized by CRP
levels and surgery vs. no surgery. Median OS for surgically treated patients (low CRP: 26.1 (95%
CI 0.0–61.9) months vs. high CRP: 24.9 (95% CI 21.2–28.6) months) exceeded that of non-surgically
treated patients (low CRP: 6.8 (95% CI 0.0–14.1) months vs. high CRP: 3.3 (95% CI 3.0–3.7) months).
For both surgically and non-surgically treated patients, differences in OS were insignificant, rejecting
the statistical impact of CRP (cytoreductive surgery: p = 0.699, no surgery: p = 0.120). On the contrary,
cytoreductive surgery revealed robust prognostic implications for both the low- and high-level CRP
groups (low CRP: p = 0.009, high CRP: p < 0.001). Notably, the interaction term was significant (p =
0.048, Table 4).

Table 4. Multivariate Cox regression including the interaction term for CRP and cytoreductive
surgery vs. no surgery.

Variable HR 95% CI p ***

CRP ≤1 mg/dL
>1 mg/dL

1
3.42 1.33–8.75 0.011

Surgery vs. no surgery no surgery
cytoreductive surgery

1
0.39 0.17–0.90 0.028

CRP × surgery vs. no surgery (=interaction term) 0.33 0.11–0.99 0.048
HR = hazard ratio, CI = confidence interval, p *** = multivariate Cox regression, CRP = C-reactive protein.

On the one hand, a trend of a survival advantage with low CRP levels is clearly
visible for both the operated and the non-operated patients (Figure 2). Nevertheless, there
is no significant difference in the OS for low-level CRP/surgery patients as opposed to
high-level CRP/surgery patients. The same applies to non-operated patients: the low-
CRP/no-surgery curve suggests a significant difference in the OS overall compared to
high-CRP/no-surgery. Yet, this distinction is primarily driven by a small subset of patients,
concluding that CRP levels alone may not be considered prognostic in this analysis. The
underlying cause is likely multifaceted. For instance, different additional therapies could
be crucial to these results. After all, three patients received immunotherapy each in the
low-CRP/surgery and high-CRP/surgery arm and two in the low-CRP/no-surgery arm.
Still, this hypothesis was tossed because the majority had similar treatments (systemic
chemotherapy and lung-sparing surgery), which leads us to the assumption that the
intervention itself may be the reason for CRP’s lack of significance.

On the other hand, the survival advantage for patients receiving surgery is indis-
putable. The previous comparison of surgery vs. no surgery revealed distinct results in OS
(25.5 vs. 3.8 months), introducing the possible benefit of lung-sparing surgical procedures.
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4. Discussion

The present study contributes to the growing literature on prognostic biomarkers and
factors in PM management. Besides prognostic impact validation of therapy modality,
hemoglobin, platelets, and the PLR, we determined the independent prognosticators, and
(surgical) therapy itself being a crucial prognostic factor even after biomarker stratification.

Among all the biomarkers, platelet count in particular proved its consistently reliable
prognostic impact in our study. This was evidenced by its significant prognostic impact
with both the categorical (p < 0.001) and metric data (p = 0.001) in univariate analyses
and with confirmation of it as a prognosticator independent of age, sex, histology, stage,
surgery vs. no surgery, and CRP in multivariate analysis (p = 0.025). Furthermore, we
demonstrated that platelets were prognosticators for patients who received surgery (p =
0.003) and multimodal therapy (p = 0.018). These findings are not particularly surprising, as
Ruffie et al. already described them several decades ago [14,15], just as they are described
now [16–18]. It is common for cancer patients to have high platelet counts, a condition
also referred to as reactive thrombocytosis as a side effect of neoplastic growth [19]. This
is due to their promoting role in tumor development, growth, and spread [20]. On top of
everything, platelets even affect the treatment efficacy, especially in chemo- and targeted
therapies [20]. However, the research has not yet established a way to directly target
platelet interactions with cancer cells without simultaneously harming their physiological
function [20]. Until this is adequately exerted, identifying patients who could benefit
from anti-thrombotic treatment may improve the prognosis for high-count patients [20].
Moreover, the supplementary (prognostic) investigation of mean platelet volume to assess
the entirety of platelet activation and its effects has successfully been carried out for specific
cancer types, and could also be helpful in PM research [21,22].

Similarly, but not to the same extent, the PLR has demonstrated its prognostic impact,
although it is not considered an independent prognosticator. The ratio showed prognos-
tic significance in both the univariate analyses, whether with categorical (p = 0.025) or
metric data (p = 0.012). These results are unsurprising, given the significant impact of
high platelet levels. In contrast, a low lymphocyte count in cancer patients decreases
the lymphocyte-mediated tumor response, being associated with an unfavorable progno-
sis [23]. The prognostic power of the PLR has been described and validated for PM [24–26]
and various other cancer types and cardiovascular diseases [23]. Therefore, this easily
accessible biomarker, which reflects the relationship between the specific and non-specific
immune system and thrombotic and inflammatory pathways, deserves continued attention
in biomarker research.

Initially, when examined individually, neither histology nor CRP significantly affected
survival in univariate analysis. However, their impact on survival became evident when
we conducted multivariate analysis, identifying them as independent prognostic factors
(histology: p = 0.002, CRP: p = 0.039). This observation aligns with the well-established
understanding of the prognostic role of histological subtypes in PM. Historically, epithe-
lioid, biphasic, and sarcomatoid subtypes have been recognized as important prognostic
indicators, with epithelioid cases having the most favorable prognosis and sarcomatoid
cases having the least favorable [27]. In our study, due to the relatively small sample sizes
of eight biphasic and six sarcomatoid cases compared to the epithelioid group, we merged
them into a non-epithelioid subcategory to enhance the statistical power.

The cohort exhibits a similar pattern regarding the CRP levels. This biomarker has
long been established as an inflammation parameter and is increasingly linked to ma-
lignancies [28]. Prospective studies suggest a heightened vulnerability to cancer among
individuals with elevated serum CRP levels [28]. However, the prognostic impact of CRP
levels for this cohort is controvertible. Except for a tendency toward significance in uni-
variate analysis with metric data, the variable seemed irrelevant until its inclusion into the
multivariate model yielded significant results.

Furthermore, even a significant interaction (p = 0.048) between CRP level (cut-off 1
mg/dL) and the variable surgery vs. no surgery was detected. CRP revealed a trend toward
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a negative prognostic impact for higher levels, but we could not deduce any beneficiary
effect for (lung-sparing) surgically treated patients with low CRP values. On the contrary,
Ghanim et al. demonstrated CRP’s prognostic and predictive role in PM already in 2012,
but for patients treated predominantly with an extra-pleural pneumonectomy (EPP), the
radical opposite [13]. Therefore, the extent of the intervention supposedly represents the
deciding factor in whether serum CRP levels signify survival benefits.

Not to be overlooked is the impact the different treatment strategies had on the OS
of this cohort. In univariate analysis, both multimodality vs. other therapies and surgery
vs. no surgery yielded strong significant results (both p < 0.001), just as for surgery vs. no
surgery in the multivariate analysis (p = 0.004). Aside from that, the cohort’s stratification
according to treatment (surgery vs. no surgery) and biomarker level (CRP) pointed out the
undeniably strong impact surgery has on OS (Figure 2). The multimodality concept stands
out in its promising survival (median OS 26.1 months) compared to other therapies in this
cohort, which supports its further application.

Surgery, in general, was a strong prognosticator, regardless of intent. Interestingly,
the patients treated with tumor debulking shared quite a similar OS with the P/D-treated
ones (median OS tumor debulking: 24.3 months vs. P/D: 25.4 months). Surgery alone
is insufficient in treating PM patients. Still, it depicts the essential part of tumor burden
reduction, as it is the major therapy component besides systemic chemotherapy in most
guidelines [29,30]. This controverts the only recently published results of the Mesothelioma
and Radical Surgery 2 (MARS 2) trial: sole systemic chemotherapy, as opposed to systemic
chemotherapy + surgery (EPD), was described as more favorable regarding adverse events,
quality of life, and risk of death, even if the median OS was similar [31]. Since, in MARS 2,
the physicians only operated extensively (EPD), the comparison to this study regarding
surgery as a prognostic variable is biased. Nonetheless, the immediate (surgical) reduction
in tumor burden enhances the patient’s physical and psychological well-being. Whether
surgery remains a relevant component in PM therapy is to be researched thoroughly and
continuously, particularly in times of advances in systemic therapy, be they anti-angiogenics
or immunotherapy.

Indeed, the retrospective nature of this study presented specific challenges, particularly
regarding the treatment allocation and the availability of complete laboratory parameters.
Owing to our collaboration with thoracic surgical centers, the number of patients who
underwent surgery greatly exceeded the conservatively treated ones, which also included
BSC patients. It is important to consider this limitation when examining the survival
differences between the treatment options. Additionally, the recorded biomarker levels
only provided snapshots of these parameters at specific time points. In light of these
limitations, there is a growing need to leverage artificial intelligence software, particularly
for gathering and analyzing data more comprehensively. For instance, exploring the
trajectory of biomarkers and their post-operative behavior would be intriguing, shedding
light on whether procedures like surgery can normalize aberrant biomarker levels. With
a focus on biomarkers as prognostic and predictive factors, artificial intelligence could
condense large amounts of data and provide novel insights. Moreover, integrating artificial
intelligence into data collection and analysis can have global applications and transform our
understanding of PM and its treatment. Due to this disease’s difficult therapeutic success,
we must compare more heterogeneous cohorts involving every histological subtype and
treatment regime in substantial numbers to derive clearer implications.

5. Conclusions

Overall, this study adds to the growing literature regarding prognostic biomarkers
and factors in managing PM. Deciding whether to have (lung-sparing) surgery may not
be as heavily dependent on inflammatory parameters as previously thought. Considering
the promising OS of surgically treated patients, as opposed to the rest, the pursuit of its
research is supported, especially in combination with biomarkers. This study’s significant
results and tendencies may resemble other cohorts and be applied to prosper ideas for
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similar research questions. The prospective incorporation of artificial intelligence into these
studies must clarify the role of biomarkers and the impact of diverse therapeutic strategies,
potentially optimizing the treatment of PM patients and advancing their quality of life.
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