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Supplementary Methods 
Data processing and statistical analysis—differentially methylated region calling 
The overall DMR calling and annotation workflow is depicted in Supplementary 
Methods Figure SM1. To process the large amounts of DNA sequence data, we 

leveraged a custom “match tree” data structure consisting of a condensed 

representation of raw input fragment data. The analysis utilized a custom 

implementation using a 1D version of a Kd tree with a randomized surface-area 

heuristic [66]. A distinct interval was defined for every unique set of ≥5 contiguous CpGs 

contained within any fragment. Additionally, the counts of observed fragments for each 

distinct fragment methylation pattern were stored. Sample-level DMRs were called by 

traversing a match tree containing fragment count data for each cancer tissue WGBS 

sample using a sliding window of 5 CpGs. DMRs were defined for each cancer-

indicative methylation pattern within a set of 5 contiguous CpGs if the following 

thresholds were passed: (1) non-cancer WGBS cfDNA aggregate frequency of the 

cancer-indicative methylation pattern was <10-3 in a cohort of non-cancer samples, (2) 

the number of fragments spanning the 5 CpG set was ≥10 in the cancer tissue WGBS 

sample, and (3) frequency of the cancer-indicative methylation pattern was ≥0.2 in the 

cancer tissue WGBS sample.  



 

 
Supplementary Methods Figure SM1. DMR generation and annotation workflow. A 

diagram illustrating the flow of data through processes in the generation of DMR sets per cancer 

type. Control targeted methylation (Control TM) and control whole genome bisulfite sequencing 

(Control WGBS) were a contrived mixture of 100% methylated and 100% unmethylated DNA 

into a cell line DNA background used to estimate pull-down efficiency per DMR. 

 

A size of ≥5 CpGs per DMR was chosen based on the criteria that the number of 

CpGs should be (1) large enough that the measured methylation pattern is unlikely to 

be observed due to bisulfite conversion failure and (2) less than or equal to the number 

of CpGs spanned by a typical cfDNA fragment. In a set of non-cancer targeted 

methylation samples, greater than 50% of fragments span 5 or more CpGs 

(Supplementary Methods Figure SM2).  

 

 



 

 

 

Supplementary Methods Figure SM2. Distribution of the number of CpGs per fragment. 
(a) The cumulative distribution of the number of CpGs per fragment in a collection of non-cancer 

samples run on the GRAIL (Menlo Park, CA) targeted methylation assay. A vertical dashed line 

is drawn for 5 CpGs, such that 54.2% of fragments could possibly be distinguished by a 5 CpG 

DMR, the chosen size for a DMR in this study. (b) A table of the data plotted in (a). 

 

The non-cancer WGBS cfDNA frequency threshold was set to be permissive so 

as not to filter out potentially useful methylation patterns. The fragment depth and tissue 

frequency thresholds were set with the intention of reducing the identification of 



 

methylation patterns present in non-cancer cellular impurities within the tissue samples. 

The filters used required the observation of at least 2 unique fragments with the 

methylation pattern of interest and required that the frequency of this pattern be 

consistent with pathology tissue purity estimates that typically exceed 50%.  

DMRs called in individual tissue samples were merged according to each 

sample’s cancer label, using reported cancer labels as defined in Klein et al. 2021 [37]. 

Letting Vi be the set of DMRs in sample i, we defined the set of DMRs for cancer label k, 

Vk , as the union across all samples with label k such that Vk = V1 ⋃ V2 ⋃ V3… After 

DMR merging, match trees for individual tissue samples were traversed again to 

compute the mean DMR frequency for all samples with at least one fragment containing 

the DMR.  

 
Data processing and statistical analysis - DMR prevalence estimation calculation 
To generate a mean close to the observed prevalence in the tissue set, the beta prior 

on the DMR prevalence was used with alpha equal to (number of tissue samples 

observed to have the DMR’s cancer-indicative methylation pattern) x (scaling factor) + 

1, and beta set to (number of tissue samples observed to not have the DMR’s cancer-

indicative methylation pattern) x (scaling factor) + 1. The scaling factor is included to be 

able to tune the prior, such that a lower scaling factor weakens the prior, and a higher 

scaling factor strengthens it. The prevalence for DMR i (Ri) was computed as follows: 

P(Ri | TF1…TFn, xi,1,… xi,n) ~ P(TF1…TFn, xi,1,… xi,n|Ri) * P(Ri) 

P(TF1…TFn, xi,1,… xi,n | Ri) is computed as 𝚷P(TFj, xi,j | Ri) 

P(TFj, xi,j | Ri) is computed as described below, and xi,j is the count of fragments 

in the jth sample (of n total samples) containing the ith variant. TFj is the tumor 

fraction for the jth sample, defined as the proportion of cfDNA derived from the 

tumor. 

 

Data processing and statistical analysis—tumor methylated fraction estimation 
calculations 
TF was inferred from the count of cancer-indicative methylation pattern fragments xj at 

each DMR j in a set of m DMRs as follows: 



 

P(TF | xj…xm) ~ P(xi…xn | TF) * P(TF) 

where P(TF) ~ Beta(1, 1). 

The likelihood of observing a vector of fragment counts across a set of DMRs was 

modeled as a 2-component mixture of fragments derived from shedding cancer cells 

and fragments derived from a background noise process. Fragment counts at each 

DMR were assumed to be independent. 

P(xi…xn | TF) = 𝚷P(xi | TF) 

The per-DMR likelihood for each DMR count was computed as the prevalence-weighted 

Poisson likelihood of the observed fragment. 𝚷P(xi | TF) = Ri * Pois(xi | DMR in shedding tumor) + 

          (1 - Ri) * Pois(xi | DMR is not in the shedding tumor). 

The fragment count at each DMR site given the DMR is present in the shedding tumor 

was modeled as a Poisson distribution with parameter lambda calculated as a mixture 

of tumor-derived and non-tumor-derived cfDNA. 𝝺 = [TF * (tissue DMR cancer indicative methylation pattern frequency) + (1 - TF) 

* (noise rate)] * (estimated depth).  

Tissue cancer-indicative methylation pattern frequency was defined as the aggregate 

cancer-indicative methylation pattern frequency (i.e., the number of fragments with the 

DMR’s cancer-indicative methylation pattern out of the total number of fragments) 

across all cancer tissue WGBS samples with 1 or more fragments containing the DMR 

cancer-indicative methylation pattern. Depth was approximated as (empirical pull-down 

efficiency for fully methylated or fully unmethylated control DNA) * (estimated fragment 

count in the pre pull-down library). The noise rate was estimated as the mean from an 

aggregated set of non-cancer targeted methylation and non-cancer WGBS samples. 

Prior to TF estimation, DMRs were filtered to include those that pass the following 

filters: 

1. Not in the top 5% of raw sample counts; 

2. On an autosome; 

3. Completely methylated or completely unmethylated, as these variants 

have better pull-down bias estimates; 



 

4. Empirically determined to have probes that pull down the intended 

abnormally methylated DNA; 

5. Have an estimated noise rate below 1/10,000. 

To convert the TF estimate to an allele fraction estimate, the posterior TF values were 

multiplied by a robust estimate of the central tendency of the tissue cancer-indicative 

methylation pattern frequency distribution. The measure used here was one-half of the 

95th percentile of all DMRs with greater than 50% prevalence. This measure can be 

thought of as estimating the tumor purity in the reference DMR dataset by using the 

95th percentile of the tissue frequency distribution and dividing by 2 to estimate the 

contribution of a heterozygous allele. The modeled TF measurement assumes 100% 

tumor purity as we use the raw observed tissue DMR cancer-indicative methylation 

pattern frequency in computing the Poisson lambda in the likelihood calculation for each 

DMR. In converting TF to an estimate of allele fraction, we post hoc account for the 

tumor purity in the reference dataset by using the 95th quantile of the tissue frequency 

distribution and furthermore scale by a factor of one-half to calibrate TMeF to be more 

comparable to small variant based allele fraction estimates. 

 

Synthetic dilution calculations 
Synthetic dilution series were generated via binomial sampling of fragment count data 

for each DMR across a series of mixing fractions for pairs of cancer and non-cancer 

samples. The mixing fractions were post hoc corrected for the difference in coverage 

between the undiluted cancer (𝐶 ) and non-cancer (𝐶 ) samples used in each dilution 

series such that the corrected mixing fraction 𝑟𝑐 = ⋅⋅ ( )⋅ . If the allele fraction for 

the cancer sample is 𝐴𝐹  and the corrected mixing fraction is 𝑟𝑐, the theoretical allele 

fraction of the titrated sample would be 𝑟𝑐 ⋅ 𝐴𝐹 . 

For each DMR in the cancer sample, the matching DMR in the non-cancer 

sample was identified based on position and methylation pattern. For each DMR, given 

the mixing fraction (𝑟), the number of fragments containing each DMR in the cancer and 

non-cancer samples, respectively (𝑚 , 𝑚 ), and the number of fragments not 

containing each DMR in the cancer and non-cancer samples, respectively (𝑢 , 𝑢 ), the 

titrated fragment counts with and without the DMR, respectively (𝑚 , 𝑢 ), were 



 

computed using binomial sampling such that 𝑚 ~ 𝐵𝑖𝑛(𝑚𝐶, 𝑟)  +  𝐵𝑖𝑛(𝑚𝑁𝐶, 1 − 𝑟) and 𝑢 ~ 𝐵𝑖𝑛(𝑢𝐶, 𝑟)  +  𝐵𝑖𝑛(𝑢𝑁𝐶, 1 − 𝑟).  
 

Biophysical modeling of ctDNA shedding 
Linear modeling was performed to fit regression models of the form log(TMeF) ~ 

log(tumor size). This corresponds to a model of TMeF ~ slope * (tumor size)scaling factor. 

For a true biological link between TMeF and tumor size, a positive and significant slope 

and a positive ≤3 scaling factor would be expected. In biophysical terms, a scaling 

factor of 2 is consistent with DNA shed proportional to tumor surface area and a scaling 

factor of 3 is consistent with DNA shed proportional to total tumor volume. Important 

caveats of this overall approach include: (1) that a single maximum tumor size may not 

adequately reflect total tumor size if multiple lesions are present; (2) TMeF values taper 

off around ~10-5 so modeling in low-shedding tumors could underestimate the slope and 

scaling factor if a substantial number of true cTAF values are <10-5; and (3) the model 

simplifies the complex biological underpinnings of ctDNA shedding, excluding important 

factors such as mitotic rate estimates, which were unavailable for the analyzed sample 

set. 


