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Simple Summary: Accurate assessment of the presence and progression of bone metastases will
guide individual treatment plans. Sophisticated cross-sectional imaging techniques, such as magnetic
resonance diffusion-weighted imaging (DWI), have gained favor due to their superior soft tissue
contrast and resolution without the need for ionizing radiation. Many DWIS are available on clinical
scanners, which show promise for objective assessment of bone metastases.

Abstract: Background: The purpose of this study is to compare turbo spin echo diffusion-weighted
images in radial trajectory (BLADE DWI) with multi-shot echoplanar imaging (RESOLVE DWI)
for imaging the metastatic lesion in the pelvic bone to find a correlation between ADC values and
standardized uptake values (SUVs) of FDG uptake in PET/CT. The study also seeks to compare the
values of metastatic lesions with those of benign bone lesions, specifically red marrow hyperplasia.
Methods: The retrospective IRB-approved study included patients with bone metastasis and red
marrow hyperplasia in the pelvic bone who underwent 3.0 T MRI with BLADE/RESOLVE DWI
sequences and F-18 FDG PET/CT within one month. BVC (best value comparator) was used in
determining the nature of bone lesions. Apparent diffusion coefficient (ADC) and standardized
uptake value (SUV) were measured by a radiologist and a nuclear medicine physician. MRI image
quality was graded with a Likert scale regarding the visualization of the sacroiliac joint, sacral
neural foramen, hamstring tendon at ischial tuberosity, and tumor border. Signal-to-noise ratio
(SNR) and imaging time were compared between the two DWIs. Mean, peak, and maximum SUVs
between metastatic and benign red marrow lesions were compared. SUVs and ADC values were
compared. AUROC analyses and cut-off values were obtained for each parameter. Mann–Whitney
U, Spearman’s rho, and Kolmogorov–Smirnov tests were applied using SPSS. Results: The final
study group included 58 bone lesions (19 patients (male: female = 6:13, age 52.5 ± 9.6, forty-four
(75.9%) bone metastasis, fourteen (24.1%) benign red marrow hyperplasia). ADCs from BLADE
and RESOLVE were significantly higher in bone metastasis than red marrow hyperplasia. BLADE
showed higher ADC values, higher anatomical scores, and higher SNR than RESOLVE DWI (p < 0.05).
Imaging times were longer for BLADE than RESOLVE (6 min 3 s vs. 3 min 47 s, p < 0.05). There
was a poor correlation between ADC values and SUVs (correlation coefficient from 0.04 to 0.31).
The AUROC values of BLADE and RESOLVE MRI ranged from 0.892~0.995. Those of PET ranged
from 0.877~0.895. The cut-off ADC values between the bone metastasis and red marrow hyperplasia
were 355.0, 686.5, 531.0 for BLADE min, max, and average, respectively, and 112.5, 737.0, 273.0 for
RESOLVE min, max, and average, respectively. The cut-off SUV values were 1.84, 5.01, and 3.81
for mean, peak, and max values, respectively (p < 0.05). Conclusions: Compared with RESOLVE
DWI, BLADE DWI showed improved image quality of pelvic bone MRI in the aspect of anatomical
depiction and SNR, higher ADC values, albeit longer imaging time. BLADE and RESOLVE could
differentiate bone metastasis and red marrow hyperplasia with quantifiable cut-off values. Further
study is necessary to evaluate the discrepancy between the quantifiers between PET and MRI.
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1. Introduction

Evaluating tumor response is essential in cancer treatment. Imaging biomarkers detect
changes in the tumor, helping to determine therapy efficacy. For solid visceral tumors,
criteria such as change in size or number, solid enhancement, sclerotic fill-in, the avidity
of fluorine-18 fluorodeoxyglucose (18F-FDG) uptake have been incorporated into RECIST
1.1, PERCIST, and their variants. Yet, the criteria for bone metastasis, especially for lesions
without extraosseous soft-tissue masses, are still limited [1].

Advanced imaging such as positron emission tomography (PET), PET/computed
tomography (PET/CT), and magnetic resonance imaging (MRI) are important in the di-
agnosis and follow-up of malignant tumors. Yet, their application in quantifying bone
metastases remains undefined. PET yields robust results on the molecular level, but its
efficiency for musculoskeletal lesions is hampered due to nonspecific FDG uptake [2].
Magnetic resonance imaging (MRI), while it can offer valuable macromolecular information
via diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC), faces chal-
lenges that must be addressed to effectively integrate DWI sequences into the assessment
of metastatic bone conditions. They include the cost, eddy current or susceptibility-induced
artifacts, T2* blurring, and restricted spatial resolution, which becomes worse on 3T versus
1.5T scanners [3–5].

DWI techniques such as readout-segmented multi-shot echo planar imaging (RE-
SOLVE) and turbo spin-echo-based radial TSE (BLADE) DWIs minimize some of the DWI
drawbacks by reducing geometric distortion and artifacts [3,6–8] (K-space trajectory shown
in Supplementary Figure S1). However, gaps exist in interpreting different DWI results and
their association with PET-derived quantifiers. Furthermore, to the best of our knowledge,
no studies have explored the efficacy of BLADE DWI for bone metastases.

The condition known as red marrow hyperplasia refers to the growth of hematopoietic
cells replacing normal fatty (yellow) marrow in reaction to either a systemic demand or
cellular hypofunction. Several conditions have been attributed, including chronic anemia,
heavy smoking, and malnutrition, among others. The lesion frequently mimics bone
metastasis on FDG PET and MRI without definitive diagnostic criteria [9,10].

Thus, this study’s goal is to compare BLADE DWI and RESOLVE DWI in imaging the
pelvic bone metastasis correlate ADC with FDG uptake values in PET/CT. This study also
seeks to compare the values of metastatic lesions with those of benign bone lesions, such as
red marrow hyperplasia.

2. Materials and Methods
2.1. Patient Selection

This retrospective study from a single tertiary hospital involved 84 initial patients
who underwent pelvic bone MRI with DWI between January 2014 and October 2015 by
searching the Picture Archiving and Communication System (PACS). Exclusion criteria
included those with only one type of DWI, having MRI and F-18 FDG PET/CT more
than a month apart, and images with severe motion or metal artifacts (Figure 1). Among
the eligible cases, bone metastasis and benign lesions were determined using best value
comparator (BVS; a combination of imaging, clinical, and biological studies at the time of
imaging, and at least 6 months of follow-up). More specifically, bone metastasis was defined
as the combination of the following conditions: (1) bone marrow replacing lesion, which is
low SI on T1WI, increased SI on FST2, and enhancement on postcontrast, (2) without visible
intralesional fat component, (3) in patients with underlying malignancy. Red marrow was
defined as; (1) nodular T1 low SI lesion in vertebrae or pelvic bones compared to adjacent
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fatty marrow, (2) low SI compared to marrow on T2WI and iso to slight high SI on FST2,
and (3) no lesion progression for 6 months and in consensus of experts.
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Figure 1. Flow chart for patient inclusion and exclusion.

2.2. Magnetic Resonance Imaging

MRIs were performed with a 6-channel body coil at 3.0T (Verio; Siemens Healthcare
GmbH, Erlangen, Germany), including precontrast T1, T2-weighted images, axial BLADE
DWI (TR/TE 5200/104 ms, matrix 192 × 192, FOV 360 × 360 mm, slice thickness/gap
5/2.5 mm, B-value 50/800 s/mm2), and axial RESOLVE DWI (4900/62 ms, matrix 192/139,
FOV 320/257 mm, slice thickness/gap 5/2.5 mm, B-value 50/800 s/mm2). Postcontrast
T1-weighted images after the DWIs used the same parameters as pre-contrast images.

2.3. F-18 FDG PET/CT

Patients fasted 4–6 h before imaging and underwent scans if blood glucose levels were
<200 mg/dL. 18F-FDG PET/CT scans were acquired 60 min post-injection of 185 MBq
18F-FDG, from skull base to upper thigh using a dedicated scanner (Biograph mCT 128;
Siemens Healthcare GmbH, Erlangen, Germany). The final PET/CT images were analyzed
on a dedicated workstation.

2.4. Quantification

Lesions with increased FDG uptake were identified on PET/CT by nuclear medicine
physicians, blinded to the result of the MRI. Then, the MRI axial slice corresponding to
these lesions was selected, and regions of interest (ROIs) were measured by the radiologist
and nuclear medicine physician. The ovoid ROI was delineated to be as big as possible to
fit within the bone marrow lesion. The measured SUV max, peak, and average, and ADC
min, max, and average values were recorded for each lesion.

Image quality was assessed by two musculoskeletal radiologists, comparing the fol-
lowing structures on DWIs to postcontrast T1-weighted images: (1) visualization of SI joint,
(2) visualization of sacral neural foramen, (3) the border between the tumor and surround-
ing bone marrow, (4) hamstrings at ischial tuberosity. We evaluated them according to a
five-point Likert scale: structures unrecognizable (nondiagnostic 0), barely recognizable
(poor 1), can be observed but vague than (fair 2), similar quality as (good 3), and better
than (excellent 4), the fat-saturated postcontrast T1-weighted images.
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The signal-to-noise ratio (SNR) of both DWIs was determined by regions of interest
(ROIs) in the urinary bladder and the air regions outside the body and then calculated from
the formula SNR = signal of ROI/(signal of air/0.66). Imaging times were documented.

2.5. Statistical Analysis

Average scores from two readers were used. The Mann–Whitney U test was used to
compare ROI values and visual assessments. Spearman’s rho analyzed the correlation be-
tween MRI and PET values. Receiver operating characteristic (ROC) curves were generated,
with cut-off values determined via the Kolmogorov–Smirnov (K-S) metric to differentiate
metastatic from benign bone lesions. Statistical analysis used statistical software (SPSS,
release 29.0, IBM, Armonk, NY, USA), and significance was set at p < 0.05.

Ethics

This retrospective study received approval from the institutional review board (IRB
number GBIRB2023-055), and the requirement for informed consent was waived.

3. Results

The study group consisted of 44 (75.9%) bone metastases and 14 (24.1%) benign red
marrow hyperplasia from 19 patients (M:F = 9:10, Age 52.5 ± 9.6). Cancers included ten
breast, six lung, one esophageal, one rectal, and one liver origins.

The ADC values of metastatic lesions on both BLADE and RESOLVE DWIs were
significantly higher than those of red marrow hyperplasia, as shown in Table 1. Simi-
larly, SUVmax of metastatic bone lesions was higher than benign lesions (p < 0.05). The
maximum and average ADC values from BLADE were significantly higher than those of
RESOLVE DWI.

Table 1. Quantifiable variables from MRI and PET. ADC minimum (min), maximum (max), and
average (avr) values from BLADE and RESOLVE DWIs, SUV peak, mean, and maximum from F-18
FDG PET for bone metastasis and benign red marrow hyperplasia are listed below. Asterisks indicate
the values showing statistically significant differences between malignant and benign lesions.

Modality Metrics Metastasis Red Marrow

BLADE
ADCMin 600.9 ± 57.9 (p = 0.01) * 136 ± 61.7
ADCMax 1460.4 ± 107.8 (p = 0.002) * 413.4 ± 74.4
ADCAvr 972.8 ± 71.6 (p = 0.002) * 260.2 ± 71.9

RESOLVE
ADCMin 610.1 ± 67.3 (p = 0.005) * 22.0 ± 22.0
ADCMax 1250.4 ± 82.2 (p = 0.005) * 523.8 ± 81.8
ADCAvr 883.9 ± 8.2 (p = 0.002) * 166.2 ± 34.4

F-18 FDG PET
SUVpeak 4.9 ± 0.5 (p = 0.03) * 1.6 ± 0.1
SUVmean 3.3 ± 0.2 (p = 0.006) * 1.4 ± 0.2
SUVmax 5.4 ± 0.5 (p = 0.018) * 1.9 ± 0.2

Correlation coefficients of the ADC values from BLADE and RESOLVE DWI were
0.63 (Confidence interval (C.I.) 0.50~0.73), 0.61 (C.I. 0.47~0.72), and 0.73 (C.I. 0.63~0.81),
for minimum, maximum, and average ADCs, respectively (p < 0.05), indicating strong
correlation. The correlation between ADC values obtained using the BLADE or RESOLVE
DWI methods and SUV was poor (ranging from 0.04 (C.I. −0.271~0.339, p = 0.810), to 0.31
(C.I. 0.01~0.57, p = 0.040). Correlation coefficients between DWI ADC and PET SUV are
shown in Table 2, and representative images are shown in Figures 2 and 3.
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Figure 2. MRI and 18F-FDG PET/CT from a patient with bone metastasis from breast cancer. PET/CT
shows a sacral lesion with increased FDG uptake, with SUV peak measuring 7.21 (a). BLADE b value
800 DWI (b) and ADC map (e) shows the lesion in the sacral body and right ala (ADC max 2924).
RESOLVE b value 800 DWI (c) and ADC map (f) also shows the lesion (ADC max 2632). There is a
fracture line in the right sacral ala, with less intense FDG uptake on PET and higher ADC value on
MRI (black arrows, (a,e,f)). On image quality analysis, anatomical details such as neural foramen
(white arrow) and sacroiliac joint (dotted arrow) are better visualized on BLADE (b) and less distinct
on RESOLVE b value 800 DWI (c). Artifact in background air is more prominent on RESOLVE (double
arrows on (c)). T1-weighted non-contrast MRI (d) is shown as a reference image.
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Figure 3. MRI and 18F-FDG PET/CT from a patient with red marrow hyperplasia. PET/CT shows a
multifocal increased FDG uptake in bilateral iliac bone and sacrum (a). SUV peak from left iliac bone
measured 3.15. The ADC max from BLADE b value was 800 DWI (b), and the ADC map (e) was
812. The ADC max from RESOLVE b value 800 DWI (c) and ADC map (f) was 454. T1-weighted
non-contrast MRI (d) shows the bone marrow with diffuse intermediate SI, close to the signal intensity
of muscle, compatible with red marrow.
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Table 2. Correlation coefficient between ADC values from BLADE and RESOLVE and SUV values
from PET (* indicates the value with statistical significance (p < 0.05)). The only statistically significant
correlation was noted between maximum ADC (ADCMax) from RESOLVE and SUVpeak, with a
correlation coefficient of 0.31; there was a poor correlation between ADC and SUV (C.I. denotes
confidence interval).

R2 SUVpeak C.I., p Values SUVmean C.I., p Values SUVmax C.I., p Values

BLADE ADCMin 0.1 (−0.21~0.39, p = 0.510) 0.04 (−0.271~0.339, p = 0.810) 0.07 (−0.239~0.368, p = 0.650)
ADCMax 0.21 (−0.10~0.48, p = 0.170) 0.14 (−0.177~0.423, p = 0.380) 0.14 (−0.175~0.425, p = 0.370)
ADCAvr 0.23 (−0.08~0.50, p = 0.130) 0.16 (−0.155~0.441, p = 0.310) 0.16 (−0.156~0.440, p = 0.310)

RESOLVE ADCMin 0.11 (−0.20~0.40, p = 0.470) 0.07 (−0.239~0.369, p = 0.640) 0.1 (−0.216~0.390, p = 0.540)
ADCMax 0.31 * (0.01~0.57, p = 0.040) 0.27 (−0.038~0.532, p = 0.070) 0.24 (−0.074~0.505, p = 0.120)
ADCAvr 0.23 (−0.08~04, p = 0.130) 0.19 (−0.124~0.466, p = 0.220) 0.2 (−0.117~0.472, p = 0.200)

The anatomical scores of BLADE were significantly higher than RESOLVE DWI. The
tumor border score was 2 in BLADE vs. 2.2 in RESOLVE, without a statistically significant
difference (Figure 4).
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Figure 4. Anatomical Scores of BLADE and RESOLVE DWI MRI. (* Indicates values with p < 0.05).
The average values are represented by the black dots, and the interquartile ranges by the gray dots.
The scores of BLADE were significantly higher than RESOLVE DWI except for metastatic bone lesion
visualization.

The SNR and CNR of BLADE were significantly higher than those of RESOLVE
(712.6 ± 236.5, vs. 216.4 ± 16.6, 193.5 ± 316.2, vs. 37.9 ± 28.5, respectively, p < 0.05). The
imaging time of BLADE was significantly longer than RESOLVE (6 min 3 s ± 25 s vs. 3 min
47 s ± 16 s, respectively, p < 0.05). Table 3 summarizes the findings.

Table 3. Signal-to-noise ratio (SNR) and imaging times of BLADE DWI and RESOLVE DWI. The
values are significantly higher (*) in BLADE compared with RESOLVE DWI.

BLADE DWI RESOLVE DWI

SNR 712.6 ± 236.5 * 216.4 ± 16.6
Imaging Time 6 min 3 s ± 25 s * 3 min 47 s ± 16 s
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Figure 5 and Table 4 show the AUROC curve values for ADC and SUV, as well as their
cut-off values. The AUC values of BLADE and RESOLVE MRI ranged from 0.736~0.824.
Those of PET ranged from 0.732~0.745. Estimated cut-off values of the malignant lesions
were 423.5, 854.50, 720.50 for BLADE ADC min, ADC max, and ADC average, respectively,
and 246.5, 737, 720.5 for RESOLVE ADC min, max, and ADC average, respectively. The cut-
off values for PET were 2.1, 1.4, and 2.6 for peak, average, and max SUV values, respectively,
with statistical significance.

Cancers 2024, 16, x FOR PEER REVIEW 7 of 11 
 

 

The SNR and CNR of BLADE were significantly higher than those of RESOLVE (712.6 
± 236.5, vs. 216.4 ± 16.6, 193.5 ± 316.2, vs. 37.9 ± 28.5, respectively, p < 0.05). The imaging 
time of BLADE was significantly longer than RESOLVE (6 min 3 s ± 25 s vs. 3 min 47 s ± 
16 s, respectively, p < 0.05). Table 3 summarizes the findings. 

Table 3. Signal-to-noise ratio (SNR) and imaging times of BLADE DWI and RESOLVE DWI. The 
values are significantly higher (*) in BLADE compared with RESOLVE DWI. 

 BLADE DWI RESOLVE DWI 
SNR 712.6 ± 236.5 * 216.4 ± 16.6 

Imaging Time 6 min 3 s ± 25 s * 3 min 47 s ± 16 s 

Figure 5 and Table 4 show the AUROC curve values for ADC and SUV, as well as 
their cut-off values. The AUC values of BLADE and RESOLVE MRI ranged from 
0.736~0.824. Those of PET ranged from 0.732~0.745. Estimated cut-off values of the malig-
nant lesions were 423.5, 854.50, 720.50 for BLADE ADC min, ADC max, and ADC average, 
respectively, and 246.5, 737, 720.5 for RESOLVE ADC min, max, and ADC average, respec-
tively. The cut-off values for PET were 2.1, 1.4, and 2.6 for peak, average, and max SUV 
values, respectively, with statistical significance. 

 
Figure 5. ROC curves for ADC of BLADE and RESOLVE MRI and SUV of 18F-FDG PET/CT (created 
by SPSS v29.0). The AUC values of BLADE (red lines and circles) and RESOLVE (blue lines and 
triangles) MRI ranged from 0.736~0.824. Those of PET (green lines and crosses) ranged from 
0.732~0.745. (Reference line shown as a dashed gray line). The areas under the curve values are 
shown in Table 4. 

Table 4. Area Under the ROC Curve. The AUC values of BLADE and RESOLVE MRI ranged from 
0.736~0.824. Those of PET ranged from 0.732~0.745. The cut-off values between the malignant and 
benign lesions were 423.5, 854.50, 720.50 for BLADE ADC min, ADC max, and ADC average, respec-
tively, and 246.5 m 737, 720.5 for RESOLVE ADC min, max, and ADC average, respectively. The cut-
off values for PET were 1.84, 5.01, and 3.81 for minimum, peak, and mean SUV values, respectively 
(p < 0.05). 

Variables  Area 
Cut-off 
Value 

Sensitivity 
(%) 
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(%) 

BLADE 
ADC Min 0.891 355.0  77.3 100 
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Figure 5. ROC curves for ADC of BLADE and RESOLVE MRI and SUV of 18F-FDG PET/CT
(created by SPSS v29.0). The AUC values of BLADE (red lines and circles) and RESOLVE (blue lines
and triangles) MRI ranged from 0.736~0.824. Those of PET (green lines and crosses) ranged from
0.732~0.745. (Reference line shown as a dashed gray line). The areas under the curve values are
shown in Table 4.

Table 4. Area Under the ROC Curve. The AUC values of BLADE and RESOLVE MRI ranged from
0.736~0.824. Those of PET ranged from 0.732~0.745. The cut-off values between the malignant
and benign lesions were 423.5, 854.50, 720.50 for BLADE ADC min, ADC max, and ADC average,
respectively, and 246.5 m 737, 720.5 for RESOLVE ADC min, max, and ADC average, respectively.
The cut-off values for PET were 1.84, 5.01, and 3.81 for minimum, peak, and mean SUV values,
respectively (p < 0.05).

Variables Area Cut-Off
Value

Sensitivity
(%)

Specificity
(%)

BLADE
ADC Min 0.891 355.0 77.3 100
ADC Max 0.982 686.5 90.9 100

ADC Average 0.950 531.0 818 100

RESOLVE
ADC Min 0.918 112.50 81.8 100
ADC Max 0.982 737.0 90.9 100

ADC Average 0.995 273.0 97.7 100

FDG-PET
SUV peak 0.877 2.06 79.5 100
SUV mean 0.889 1.44 88.6 80
SUV max 0.895 2.59 77.3 100

4. Discussion

This work utilized BLADE and RESOLVE DWIs to image FDG-positive bone lesions,
compared the diagnostic capacities, and assessed the correlation between their ADC and
SUV. The BLADE DWI yielded higher ADC values, superior semiquantitative scores, and
SNR compared to the RESOLVE, although with a longer scan time. There was minimal
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correlation between ADC and SUV in metastatic bone lesions. The BLADE and RESOLVE
DWIs yielded ADC values, which were significantly higher in bone metastasis than benign
red marrow hyperplasia.

Bone metastasis is a common occurrence in various types of solid cancers, with an
incidence ranging from 50% to 80% in lung, prostate, and breast tumors [11]. Skeletal-
related events (SREs) due to bone metastasis, such as pathologic fracture, hypercalcemia,
or nerve compression, have a significant impact on the morbidity and prognosis of cancer
patients. To prevent these occurrences, it is important to diagnose and characterize them
early [12–14]. 18F-FDG PET/CT, a tool for simultaneous near-whole body screening of
hypermetabolic lesions, is useful in metastasis localizations both in soft tissue and bone. It
offers accurate and rapid whole-body images with high diagnostic accuracy and availability,
and its diagnostic accuracy is higher than that of a bone scan. Nevertheless, there are
several drawbacks associated with it, including the use of ionizing radiation and the
difficulty in detecting minor lytic lesions, low glycolytic lesions, or cranial lesions. MRI has
rapidly emerged as an important imaging tool to image malignancies and their associated
complications. Quantitative MRI metrics, such as DWI ADC, provide numerical values
that are important for evaluating many cancers. Malignant cells are highly cellular, and the
DWI measurements from malignancy are known to demonstrate restricted diffusion. The
ADC values are closely associated with the DWI acquisition parameters; in order for wider
application in clinical practice, it is necessary to verify different DWI sequences against
one another and compare them with traditional modalities such as PET. There have been
only a few studies in the literature that have compared two different MRIs and PET/CT
simultaneously for evaluating bone metastasis and benign red marrow hyperplasia [15,16].

One of the key findings of this study was that BLADE DWI, based on a fast spin echo
sequence, improved visualization of pelvic lesions with increased SNR, suggesting that it
is potentially better for complex musculoskeletal structures. The BLADE acquires the data
in radial trajectory and is a variant of a PROPELLER (Periodically Rotated Overlapping
ParalEL Lines with Enhanced Reconstruction) (Supplement Figure S1). Due to the lack
of unique frequency or phase encoding direction, noise from moving anatomy does not
propagate as an artifact along a single direction and oversampling in the center of K space
in all directions. The technique has been employed in the pediatric population, as well
as for imaging of the head and abdomen, and has exhibited improved image quality in
patients with voluntary or involuntary movement [17–19]. The BLADE technique in our
institute was employed in abdominopelvic imaging to address the issue of artifacts caused
by pulsation and susceptibility, which present a considerable obstacle when imaging pelvic
bone metastases. We were able to demonstrate that the BLADE indeed reduced anatomical
distortion of curvilinear structures, such as the sacroiliac joint, margin of neural foramina,
and hamstring attachment sites, compared to the RESOLVE technique. Additionally,
the BLADE images exhibited fewer artifacts in the air surrounding the body, and SNR
also increased with the approach. Nevertheless, it is crucial to consider the extended
scan time, and it is advisable to use a single consistent DWI technique for follow-up
examinations of cancer patients rather than abruptly switching between DWI sequences,
given the substantial disparity in apparent diffusion coefficient (ADC) values between
BLADE and RESOLVE.

The second finding was that while both SUV and ADC offered thresholds to differ-
entiate between bone metastasis and red marrow hyperplasia, no strong correlation was
observed between these measures. DWI is a technique that relies on the random move-
ment of water molecules, known as Brownian motion. It has been observed that there is
an inverse relationship between the apparent diffusion coefficient (ADC) and cellularity.
Consequently, malignant lesions tend to exhibit lower ADC values compared to benign
lesions, while an increase in ADC is observed in lesions with treatment response [20].
Previous literature had varied correlation findings between PET and DWI for nonosseous
malignancy [21–25]. Neither of the methods is cancer cell-specific and depends on various
factors such as tracer metabolism and tissue composition [26]. Benign bone lesions such
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as red marrow hyperplasia, indolent neoplasm, inflammation, or fracture can also show
high FDG uptake, mimicking metastasis. On the other hand, aggressive metastatic lesions
may show low FDG uptake, and they may not be detectable with the naked eye [27].
Moreover, the difference in FDG uptake exists between osteolytic metastatic lesions and
osteosclerotic ones [28,29]. Although both the DWI and PET have improved the diagnosis
of malignant bone lesions, each of them needs thorough assessment for consistency and
interchangeability before regular clinical use.

Red marrow hyperplasia can be attributed to various factors, such as the adminis-
tration of marrow-stimulating drugs and persistent physiologic stress, hence affecting a
considerable number of cancer patients. The imaging characteristics of this condition in-
clude increased FDG uptake and loss of fat signal intensity on T1-weighted MRI [10,30,31].
Its appearance is challenging to diagnose in cancer patients. As far as we know, DWI has
not been rigorously applied to compare the condition with bone metastasis.

It is noteworthy that malignant bone lesions had higher ADC values than red marrow
hyperplasia. The ADC demonstrates an inverse relationship with cellularity. However,
it is possible for a decrease in Brownian motion to take place in lesions characterized by
fibrosis and trabecular structures lacking edema, such as normal background bone marrow.
This phenomenon is observed regardless of the level of cellularity. The lower ADC value
observed in the red marrow compared to bone metastases can be attributed to the presence
of fat and trabecular bone within the red marrow. The cut-off values to diagnose bone
metastasis would, therefore, be higher than those for red marrow hyperplasia.

There are several limitations in this study. First, it was conducted retrospectively at
a single institution, introducing bias in the selection of research participants. Secondly,
although histopathological examination is the gold standard for the diagnosis of bone
lesions, tissue samples were not obtained for practical reasons such as advanced disease.
Thirdly, there being diverse types of primary cancer, the nature of bone metastases may
differ depending on the primary cancer. Lastly, the limited availability of all three modality-
acquisition for cancer patients resulted in a small number of patients. Future research will
be conducted with a larger patient group with power calculation to assess the effectiveness
of BLADE with various scanners and parameters.

5. Conclusions

The BLADE MRI outperformed RESOLVE in imaging pelvic bone metastasis in terms
of anatomical depiction, SNR, and ADC values. BLADE may be a more effective DWI
sequence for cases requiring good anatomical depiction. The observed disparity of metrics
and the weak connection between PET and MRI necessitate further research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers16010214/s1, Figure S1: K-space trajectory of RESOLVE
DWI and BLADE DWI.
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