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Simple Summary: The assessment of tumor response is important in evaluating cancer treatment
and predicting clinical outcomes. The currently used response evaluation criteria in solid tumors
(RECIST) are based on tumor size and have limitations in tumor response assessment. We proposed
a novel radiologic parameter (R) that combines radiologic tumor changes in size, contrast, and
density and utilized patients’ daily cone-beam computerized tomography (CBCT) to evaluate early
tumor response to stereotactic radiation therapy (SBRT) for lung cancer. In total, 132 lung cancer
patients with 134 tumors were selected for this study. The results of R agreed well with the radiologic
assessment performed by an experienced radiologist. Therefore, R can be used for quick, inexpensive,
and accurate tumor evaluation for lung SBRT treatment.

Abstract: Background: We aimed to develop a new tumor response assessment method for lung
SBRT. Methods: In total, 132 lung cancer patients with 134 tumors who received SBRT treatment
with daily CBCT were included in this study. The information about tumor size (area), contrast
(contrast-to-noise ratio (CNR)), and density/attenuation (µ) was derived from the CBCT images for
the first and the last fractions. The ratios of tumor area, CNR, and µ (RA, RCNR, Rµ) between the last
and first fractions were calculated for comparison. The product of the three rations was defined as
a new parameter (R) for assessment. Tumor response was independently assessed by a radiologist
based on a comprehensive analysis of the CBCT images. Results: R ranged from 0.27 to 1.67 with a
mean value of 0.95. Based on the radiologic assessment results, a receiver operation characteristic
(ROC) curve with the area under the curve (AUC) of 95% was obtained and the optimal cutoff value
(RC) was determined as 1.1. The results based on RC achieved a 94% accuracy, 94% specificity, and
90% sensitivity. Conclusion: The results show that R was correlated with early tumor response to
lung SBRT and that using R for evaluating tumor response to SBRT would be viable and efficient.

Keywords: tumor response assessment; stereotactic radiation therapy (SBRT); cone-beam computer-
ized tomography (CBCT); tumor area; tumor linear attenuation coefficient (µ); tumor contrast-to-noise
ratio (CNR)

1. Introduction

The effectiveness of radiation therapy depends on a tumor’s response to treatment.
The assessment of tumor response is important in evaluating treatment and predicting
clinical outcomes. To minimize observer-related uncertainty in determining tumor response,
objective and quantitative criteria should be established and adopted in clinical practice.
The currently used objective response evaluation criteria in solid tumors (RECIST) were
proposed in 2000 and revised in 2009 [1,2]. These criteria are focused on objective or
measurable changes in tumor size. RECIST have related size change (mainly in terms of
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tumor diameter) to response in the following ways: complete response if tumors disappear,
partial response if the tumor diameter in the CT image decreases by 30%, progressive
disease if the diameter increases by 20%, and stable disease if the size change is between
partial response and progressive disease. While RECIST have been widely used for response
assessment, they exhibit uncertainties, such as variability in tumor size measurements
and tumoral heterogeneity, which could result in a 30% misclassification rate [3]. Also,
the response of tumors to radiation includes not only anatomic changes in tumor size but
other biological and radiologic changes as well. Other criteria and methods for tumor
response assessment have been introduced to account for the complexity of tumor response,
including organ-specific response criteria and functional assessment response criteria [4].
The information used for response assessment can be obtained from pathological study
and image analysis. We focused on image analysis in this study.

Various imaging modalities are used for radiation therapy. They include two-dimensional
(2D) radiography, three-dimensional (3D) computerized tomography (CT), nuclear magnetic
resonance imaging (MRI), and ultrasound. The shapes and sizes of solid tumors are
visible and measurable in most of these imaging tools. Other information about biological
or physiological changes in tumors may be obtained from MRI and positron-emission
tomography (PET) [5–8]. For example, the F-18 fluorodeoxyglucose (FDG) uptake by
tumors in PET contains glucose metabolism [9]. However, radiography, MRI, and PET
have many issues, such as significant uncertainties and complexities. Currently, CT is still
used as a major imaging tool for the evaluation of tumor response [1,10,11]. However,
more information is needed for tumor response evaluation. For example, tumor density (in
terms of Hounsfield units (HU) or CT numbers in CT images) was found to be correlated
with tumor response [12]. Much more information can be obtained from radiomics, as a
large number of radiomic tumor features can be derived from CT images and other images,
and some of them may be correlated with tumor response [13–17]. On the other hand, the
radiomic features are affected by acquisition modes, reconstruction parameters, smoothing,
and segmentation thresholds and can have uncertainties of >30% [13]. Therefore, the
accuracy of tumor response assessment should be improved.

Meanwhile, timing should be considered. As tumor response to treatment takes
time to develop, a series of CT images should be taken during or after treatment to track
tumor changes. Usually, imaging for tumor response assessment is performed at patient
follow-ups several weeks, months, and even years after the completion of treatment. Thus,
information about very early tumor response may not be available. However, the early
detection of tumor change helps with adaptive radiation therapy during treatment and
with incorporating additional therapies after treatment to achieve optimal clinical outcomes.
The image-guided radiation therapy (IGRT) frequently uses CT and MRI, especially daily
kV/MV imaging and cone-beam CT (CBCT), to improve the accuracy of patient positioning
and tumor localization. Meanwhile, such images can also be used for tracking tumor
change over the entire course of treatment. As a result, very early tumor response during
treatment can be observed, and very early tumor response assessment has become possible.

CT imaging, including CBCT, CT-on-Rails, and Tomotherapy MV CT, is usually per-
formed daily or weekly to ensure accurate patient positioning and tumor localization for
intensity-modulated radiation therapy (IMRT), especially in stereotactic radiation therapy
(SBRT) treatment. By analyzing the MV CT images on Tomotherapy, Kupelian et al. found
that the average decrease in tumor volume was 1.2% per day [18]. Tumor volume change
was also observed in CBCT images by Brink et al. [19] and Jabbour et al., who evaluated
38 lung cancer patients treated with 3D conformal radiation therapy [20]. The authors
analyzed the weekly CBCT for seven weeks and found a 39.3% decrease in tumor volume
between day 1 in the first week and day 43 in the last week, which was consistent with
Kupelian’s findings. They further found a correlation between tumor volume decrease
and death rate decrease, in that the risk of death decreased by 44.3% for every 10% tumor
volume decrease, but no correlation was found between tumor volume and recurrence.
Mazzola et al. claimed that 20% of the tumor shrink was correlated with complete re-
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sponse after 6 months [21]. Similar results were obtained by Cremolini et al. [22] and
Grewal et al. [23]. Paul et al. also found that a large CT number reduction was correlated
with an increase in survival based on CT-on-Rails [24]. Similar results were reported by
Wen et al. [25]. Therefore, CBCT is suitable for early response assessment.

In this study, we aimed to introduce a novel tumor response metric and develop a
new method that can provide a quick, easy, and accurate determination and prediction of
early tumor response to lung SBRT utilizing daily CBCT images within 10 days.

2. Methods and Materials
2.1. Patient Selection

A total of 132 early-stage (stages I and II) non-small-cell lung cancer (NSCLC) patients
(ages > 18) with 134 lesions at our institution were randomly selected for this study. The
patients were treated with SBRT with 5 fractions (5 × 10 Gy) between April 2018 and
June 2022. The patient treatment was performed on Varian TrueBeam every other day.
CBCT was taken for patient positioning for each treatment. The CBCT techniques used
for lung SBRT included settings of 140 kV, 75 mA, and 1691 mAs. The CBCT images had
512 × 512 pixels and 88 slices with a resolution of 0.9 mm and a slice thickness of 2 mm.
The CBCT images for the first and last fractions, as well as the planning CT, were used for
analysis in this study. The elapsed time between the first and last fractions was about 8
to 10 days. This is a retrospective study that was approved by our Institutional Review
Board (IRB).

2.2. Image Analysis

We selected the CBCT slices that represented the central part of tumors for analysis.
Three parameters, tumor target size in terms of area, contrast-to-noise ratio for the target,
and Hounsfield unit (HU) of the target, were derived from the CBCT images using ImageJ
and the treatment planning system, Varian Eclipse 15.6. The tumor target was identified
with reference to the planning CT and was contoured by an iso-pixel line in ImageJ 1.38e for
analysis. The area of the tumor target, A, was calculated by ImageJ. The mean pixel value,
T, and the standard deviation, σT, were also derived for the contour by ImageJ to represent
the target. A region of interest (ROI) in the area surrounding the tumor was defined as the
background of the target. The mean pixel value, B, and standard deviation, σB, calculated
for the ROI, represented the background of the target. Then, the contrast-to-noise ratio
(CNR) was calculated as follows:

CNR =
|T − B|√
σ2

T + σ2
B

(1)

The Hounsfield units (HU) for the target were obtained in Varian Eclipse and converted
to a linear attenuation coefficient (µ) using the following equation:

µ = (1 +
HU
1000

) µwater (2)

The highest value of µ, which represents the maximum density of the target, was used
for analysis in this study.

2.3. Tumor Response Evaluation Parameters

Tumor response during the course of treatment can be measured by the changes
in area, contrast, and density between the first treatment and the last treatment, which
are described by the ratios of area (A), contrast-to-noise ratio (CNR), and attenuation (µ)
between the first fraction (F) and the last fraction (L).

RA =
AF
AL

(3)
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RCNR =
CNRF
CNRL

(4)

Rµ =
µF
µL

(5)

Then, a new parameter combining the three ratios, R, is defined as the product of
RA, RCNR, and Rµ as follows:

R = RA·RCNR·Rµ (6)

The effect of radiation on tumors can be binarized as response/stable and progres-
sion. A cutoff value, RC, can be derived individually for RA, RCNR, Rµ, and R to define
response/stable (≤RC) and progression (>RC).

2.4. Radiologic Assessment of Tumor Response

The radiologic assessment of tumor response was performed by an experienced radi-
ologist with more than 10 years of experience using the planning CT and CBCT images,
including all the images of the targeted tumor. Radiologic assessment is a comprehen-
sive study utilizing information about tumor size/volume, tumor density, tumor border,
morphological features, and tumor change patterns based on the radiologist’s clinical
experience. Moreover, locations of the lung nodules, presence of emphysema, ground glass
opacities, eccentricity, compactness, roughness, and nodule marginal patterns may also be
considered in radiologic assessment [26,27]. The results of the radiologic assessment were
classified as response, stable, and regression. In this study, the classifications of response
and stable were considered as diseases under control and were combined as one result,
such that the radiologic assessment results were binarized as response/stable (controlled)
and progression (uncontrolled). Since radiologic assessment performed by radiologists is
clinically accepted and has a direct impact on clinical decisions, the results of the radiologic
assessment were considered as true clinical results and were used to verify our calculation
results in this study.

2.5. Statistical Analysis

The parameter, R, was correlated with the binary results of the radiologic assessment
based on a cutoff, RC. Given RC, the quantity accuracy, sensitivity, specificity, positive
predictive value, and negative predictive value can be calculated to evaluate the ability of
detection of the tumor response with R. If the cutoff RC varies, the values above 5 quantities
vary as well. Using the varying sensitivity and specificity values, a receiver operation
characteristic (ROC) curve can be plotted. An optimal value of RC can be derived from the
ROC curve and used to assess tumor response with R.

3. Results
3.1. RA, RCNR, Rµ, and R

The features of tumors in CBCT images were quantified by the area, CNR, and µ of
the tumor, typically in a central image slice. The ratios, RA, RCNR, Rµ, and R, described
tumor changes and were derived for each patient in this study. For all 132 patients and
134 tumors included in this study, the values of RA, RCNR, and Rµ ranged from 0.59 to 1.55,
0.33 to 1.38, and 0.69 to 1.18, respectively. The mean values were 1.01, 0.96, and 0.99 for
RA, RCNR, and Rµ, respectively. The values of R, the product of RS, RCNR, and Rµ, ranged
from 0.27 to 1.67 with a mean value of 0.95. The distributions of RA, RCNR, Rµ, and R were
plotted and are shown in Figure 1a–d. The CBCT images were evaluated by an experienced
faculty radiologist, who found 10 progressions, 32 responses, and 92 stables. Progressions
are labeled with red triangles in Figure 1. The others were classified as stable/response,
and are labeled with blue markers. The corresponding histograms are shown in Figure 2.
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Figure 1. The distribution of (a) RA, (b) RCNR, (c) Rµ, and (d) R. Red triangles represent the progression
cases determined by radiologic assessment.
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Figure 2. Histograms of RA (a), RCNR (b), Rµ (c), and R (d).

3.2. The ROC Curves and Cutoffs of Rs

The ROC curves for RS, RCNR, and Rµ were obtained by varying the cutoff values of RS,
RCNR, Rµ, and R, respectively. We varied the cutoff values in the entire range of values of RS,
RCNR, Rµ, and R and obtained various values of sensitivity and specificity, which were used
to plot the ROC curve, as shown in Figure 3. The optimal cutoffs of R were determined
as 1.2 for RA, as 1.0 for RCNR and Rµ, and as 1.1 for R. The areas under the curve (AUC)
with a 95% confidence interval (CI) were 0.68 (0.59, 0.75) (RA), 0.60 (0.51, 0.68) (RCNR), 0.58
(0.49, 0.66) (Rµ), and 0.95 (0.90, 0.97) (R). The optimal cutoff RC was found for each case
based on the analysis of the corresponding ROC curve, as shown in Figure 3. The results of
accuracy, sensitivity, specificity, positive predictive value, and negative predictive value
corresponding to the optimal cutoff RC were calculated and are summarized in Table 1,
which shows that R with Rc of 1.1 gave the best results.

Table 1. Statistical results for RS, RCNR, Rµ, and R.

RA RCNR Rµ R

RC 1.2 1.0 1.0 1.1

AUC 0.68 0.60 0.58 0.95

Accuracy 0.90 0.66 0.60 0.94

Sensitivity 0.92 0.68 0.61 0.94

Specificity 0.60 0.50 0.50 0.90

Positive Predictive Value 0.97 0.94 0.94 0.99

Negative Predictive Value 0.38 0.11 0.09 0.56
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Figure 3. ROC curves for (a) RA, (b) RCNR, (c) Rµ, and (d) R. The dash line is a reference line under
which the area is 0.5.

3.3. Comparisons

Figure 4 shows the CBCT images for three patients where the changes in tumors
between the first fraction (CBCT 1) and the last fraction (CBCT 5) are visible. The values of
RA, RCNR, Rµ, and R were consistent with the radiologic assessment (RA) results based on
the corresponding RC values. The results for the three patients are listed in Table 2. Figure 5
displays three other patients and shows that the R values with RC of 1.1 agreed with the
RA results, but the results from RA, RCNR, and Rµ were different from those of RA. Such
results are also included in Table 2.

Table 2. Comparison of tumor responses between calculation and radiologic assessment (RA) for RA,
RCNR, Rµ, and R.

Patient RA RCNR Rµ R RA

RC 1.2 1.0 1.0 1.1

Figure 3

(a) 0.81 0.82 0.88 0.59 R

(b) 1.04 0.95 0.97 0.96 S

(c) 1.32 1.21 1.04 1.67 P

Figure 4

(a) 1.15 0.97 1.00 1.12 P

(b) 0.82 1.19 0.97 0.95 R

(c) 0.88 0.86 1.13 0.85 S
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RA, RCNR, and Rµ are not consistent with RA. (a) Progression; (b) response; (c) stable. Tumors are
contoured by an iso-pixel line.
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4. Discussion

The assessment of tumor response is complex. While the RECIST are valid in de-
termining tumor response, they have limitations. First of all, they simplify the response
evaluation criteria and are limited to tumor size. However, tumor response is associated
with other factors, such as tumor density and texture, which are missing in the RECIST.
Choi found that assessment based on the RECIST significantly underestimated the early
tumor response in patients with advanced gastrointestinal stromal tumor; the study indi-
cated a combination of a 15% or greater decrease in tumor density and a 10% or greater
decrease in tumor size on CT was promising when assessing early tumor response and
predicting clinical outcomes [28]. Ganeshan et al. found that the CT texture associated
with tumor heterogeneity can be used as a quantitative prognostic biomarker for response
assessment and survival prediction [29]. Another limitation of the RECIST is that they have
a very strict definition of partial response and progression. According to the RECIST, a
decrease of only 30% or greater in tumor diameter can be recognized as a partial response,
and an increase of at least 20% in tumor diameter can be considered as progression. In a
spherical tumor, a decrease of 30% in diameter results in decreases of ~50% in area and
~65% in volume. Similarly, an increase of 20% in diameter is equivalent to increases of over
40% in tumor area and over 70% in tumor volume. If only 20 or 30% or larger changes
are recognized as tumor response, a smaller change in tumor size must be ignored by the
RECIST. What happens to a patient whose tumor shows changes within 20% to 30%? As
a matter of fact, a less than 30% decrease in diameter may still be considered a positive
response, and a less than 20% increase in diameter may also lead to progression. Choi
found that mean reductions in tumor sizes of approximately 13% were also significant [28].
Moreover, changes over 20 or 30% may not be observed until significant time has passed.
Therefore, the RESICT may not be suitable for very early tumor response evaluation.

Tumor size can also be described by other parameters such as volume. The correlation
between tumor volume and clinical outcomes, including survival and risk of death, has
been investigated [20–25]. Another parameter, HU, which is associated with tumor density,
has also been found to be correlated with survival [24,25]. Paul et al. found that HU
reduction > 30 HU increased survival by about 13% compared to HU reduction <30 HU [24].
Wen et al. found that combined reductions of 28.44 in HU and 32.01% in volume were
associated with response to treatment, while the combined reductions of 19.63 in HU and
23.20% in volume were associated with non-response [25]. However, CT scanners display
significant uncertainties. HU variations can be up to 60 HU, and the tolerance of HU
uncertainty is determined as 50 HU [30,31]. Thus, the reduction to 30 HU may not be
accurately used as a cutoff.

We have introduced two parameters that are associated with tumor size and tumor
density. One is the tumor area ratio, RA, and the other is the tumor attenuation ratio, Rµ.
The parameter µ is related to density and can be derived from HU. In our previous study,
we found that the change in CNR was correlated with tumor response [32]. We have also
introduced the ratio of CNR, RCNR. The three parameters each describe tumor change
from different aspects and they can be used for tumor response assessment. Based on the
analysis of ROCs, the cutoff values for RA, Rµ, and RCNR were 1.2, 1.0, and 1.0, respectively.
These values indicate the tumor is in progression if the area of a tumor increases by 20% or
if attenuation or CNR increase by any amount. Otherwise, the tumor is stable or responding
to radiation therapy. However, the results from RA, Rµ, and RCNR individually did not
agree well with the RA results. The AUCs for the three parameters were lower than 0.70, as
shown in Figure 3 and Table 1.

The new parameter, R, proposed in this study combines changes (ratios) in tumor size
(area), tumor density (HU/µ), and contrast (CNR) as the product of RA, Rµ, and RCNR.
R is a single parameter but contains tumor changes in size, density, and contrast. The
threshold or cutoff of RC = 1.1 indicated a 10% increase would cause tumor progression.
Using R to evaluate tumor change, the results agreed with the RA results very well in
terms of high accuracy, high sensitivity, high specificity, and high AUC compared to RA,
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Rµ, and RCNR. More specifically, as shown in Figure 4 and Table 2, R agreed with PA
in all three cases, while RA, Rµ, and RCNR all failed in (a), Rµ failed in (b), and RCNR
failed in (c). In particular, in (a), RA (=1.15) indicated a 15% increase in area or an increase
in diameter of about 7.5%, and the disease was determined as progression according to
R (=1.12) and RA (=Progression), but it was defined as a stable disease by the RECIST and
RA. As radiosensitivity affects tumor response, the potential variation in radiosensitivity
(e.g., hypoxia) between tumors would change the results of tumor response. However, the
method of response assessment using R is not affected.

In this study, the tumor target was defined by a contour that was quantitatively
determined by the same pixel value (iso-pixel value). Contouring based on the same pixel
value would reduce the chance for human error and has the potential to be computerized
and automated. Since the parameters RA, Rµ, and RCNR were derived based on the contour,
the calculation of those parameters may also be automated using a computer program. The
automation of contouring and calculation will significantly improve the efficiency of and
reduce the uncertainty in response assessment.

Finally, since daily CBCT can be used, the assessment of early tumor response within
10 days of treatment has become available. Specifically, it is quick, convenient, and easy
to perform by utilizing routine CBCT images without adding any additional procedures
and costs.

Nonetheless, this study has limitations. First of all, while the parameter R contains
tumor size, density, and contrast and was able to provide an accurate assessment of tu-
mor response, studies have shown other factors, such as tumor textures, to be related to
tumor response, which are not included in R. In particular, radiomics has been introduced
for tumor response and clinical outcome study. Radiomics can derive a large number
of features, including tumor textures from CT images or other types of images, which
may be correlated with tumor response [13–17]. While radiomics has issues with high
uncertainty and low predictability (e.g., most response studies using radiomics resulted
in <0.80 in terms of AUC values [15]), radiomics will be considered in our future studies,
and some features discovered by radiomics may also be integrated with R. Secondly, the
results of tumor change determined in this study were only based on a single radiologist’s
clinical experience and judgment. The assessment may include uncertainty, as it is more
or less subjective. More tests by multiple observers and multiple institutions would help
reduce such uncertainty. Lastly, CBCT artifacts, organ motions, etc., can cause uncertainties,
and the tumor geometry and density would likely vary with the patient’s respiration.
Firstly, we chose the CT slices with minimum artifacts for analysis. Secondly, this study
was based on the comparison of tumor radiologic changes between the first and last frac-
tions. As the CBCT used the same techniques and was performed under the same patient
setup conditions for both first and last fractions, certain changes caused by image quality
may have counteracted each other. Also, the CBCT images were acquired over ~23 s or
2–3 breathing cycles; it was not a single snapshot that dramatically changed at different
times in a breathing cycle but instead included all the variations. Thus, the effect of respira-
tion on the changes in tumor size and density between the first and last fractions in CBCT
images was minimized and was ignored in this study.

It should be noted that early tumor changes are not equal to long-term clinical out-
comes, but they are strongly correlated. Such correlation can be derived from clinical data
analysis [20–25] and numerical or dynamic models [33,34]. The correlation between early
tumor changes and long-term clinical outcomes can be used for clinical outcome prediction
and helps physicians to respond quickly if treatment plans should be adjusted or additional
therapies are needed. The correlation between R and long-term clinical outcomes will be
further investigated in our future study.

5. Conclusions

Tumor response assessment is complex. The widely used RECIST for tumor response
assessment has limitations, and new assessment methods are needed. In this study, we
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proposed a new method using a novel parameter R that combines tumor size change, tumor
density change, and tumor contrast change based on daily CBCT images. The results show
that R with a threshold RC was a good metric used to evaluate early tumor response during
lung SBRT treatment with high accuracy. The correlation between R and long-term clinical
outcomes will be further investigated in our future studies.
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