
Citation: Varga, N.N.; Boostani, M.;

Farkas, K.; Bánvölgyi, A.; Lőrincz, K.;
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Simple Summary: In this study, we focused on melanoma, a highly aggressive form of skin cancer
with a rising global incidence. Melanoma’s staging and treatment depend on Breslow thickness,
which is usually unavailable at the initial diagnosis. We aimed to compare two novel imaging
techniques, optically guided high-frequency ultrasound (OG-HFUS) and multispectral imaging
(MSI), to estimate Breslow thickness and improve preoperative staging. We enrolled 101 patients
with confirmed primary melanoma, categorized by tumor thickness, and utilized these imaging
methods. Our findings revealed that OG-HFUS was superior compared to MSI in estimating Breslow
thickness, making it a valuable tool for melanoma diagnosis and patient care. This research may
enhance preoperative staging and treatment decisions in the field of melanoma, offering promising
implications for patient outcomes.

Abstract: Melanoma is the most aggressive form of skin cancer that is known for its metastatic poten-
tial and has an increasing incidence worldwide. Breslow thickness, which determines the staging and
surgical margin of the tumor, is unavailable at initial diagnosis. Novel imaging techniques for assess-
ing Breslow thickness lack comparative data. This study evaluates optically guided high-frequency
ultrasound (OG-HFUS) and multispectral imaging (MSI) for preoperative estimation of Breslow
thickness and staging. We enrolled 101 patients with histologically confirmed primary melanoma
and categorized them based on tumor thickness. Optically guided 33 MHz HFUS and MSI were
utilized for the assessment. Our MSI-based algorithm categorized melanomas into three subgroups
with a sensitivity of 62.6%, specificity of 81.3%, and fair agreement (κ = 0.440, CI: 0.298–0.583). In
contrast, OG-HFUS demonstrated a sensitivity of 91.8%, specificity of 96.0%, and almost perfect
agreement (κ = 0.858, CI: 0.763–0.952). OG-HFUS performed better than MSI in estimating Breslow
thickness, emphasizing its potential as a valuable tool for melanoma diagnosis and patient manage-
ment. OG-HFUS holds promise for enhancing preoperative staging and treatment decision-making
in melanoma.
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1. Introduction

Malignant melanoma is a highly aggressive form of skin cancer originating from
melanocytes. It has witnessed a global surge in its incidence, emphasizing the necessity
for vigilant skin examinations and sun protection [1]. The epidemiology of malignant
melanoma reveals varying rates across populations and regions, notably higher in areas
with increased exposure to ultraviolet (UV) radiation from the sun [1]. Factors such as fair
skin, a history of sunburns, familial predisposition, and excessive UV exposure significantly
contribute to the development of melanoma [2,3]. Understanding its diverse subtypes
and stages is crucial for accurate diagnosis and tailored treatment strategies [4,5]. Timely
intervention is paramount, emphasizing the significance of proactive skin health measures
and awareness to combat this potentially life-threatening condition [6,7]. Efforts focusing
on sun protection advocacy, routine skin screenings, and early detection play a pivotal role
in its epidemiology, stressing prevention as a critical measure in reducing its incidence [8,9].

Accurate pathological staging of melanoma relies on histological results and serves as
a crucial component of the diagnostic process. The histological examination allows for a
detailed evaluation of the tumor’s characteristics, including its architectural features, cell
type, mitotic rate, and, importantly, the Breslow depth. These factors play a significant
role in determining the accurate stage of melanoma and enabling healthcare professionals
to make informed decisions regarding the most appropriate treatment approach [10–12].
Although non-invasive imaging techniques can offer valuable insights, they are limited in
determining the histological parameters necessary for accurate staging [10,11].

Several imaging technologies have been investigated as potential non-invasive diag-
nostic tools for assessing Breslow thickness, such as dermoscopy (DSC) [13], multispectral
imaging (MSI) [14], high-frequency ultrasound (HFUS) [15], and optical coherence tomog-
raphy (OCT) [16].

Dermoscopy is a non-invasive imaging technique that magnifies skin lesions, revealing
intricate details not visible to the naked eye. By utilizing specialized lights and filters,
dermoscopy allows dermatologists to observe pigment patterns, structures, and vascular
features crucial for diagnosing skin conditions like melanoma [17,18]. Dermoscopy has
become an invaluable non-invasive tool in dermatology, particularly in the early detection
of melanoma. It has revolutionized the diagnosis of melanoma by meticulously examining
skin lesions and unveiling unique features that are pivotal in diagnosing melanoma at its
nascent stages [19]. Specific patterns and structures emerge through dermoscopy, aiding
in the differentiation between benign and malignant lesions, such as irregular pigment
network, asymmetrical structures, abrupt peripheral streaks, and various shades of color
variation [19]. Dermoscopy also reveals subtle nuances that often evade the naked eye
but are distinctive under dermoscopic analysis, such as the presence of atypical vessels,
regression structures, and the uneven distribution of colors within a lesion, which are
significant indicators guiding accurate diagnoses and prompt interventions in suspected
cases of melanoma [19].

Multispectral imaging (MSI) is an emerging imaging technique in dermatology that
collects and analyzes reflected radiation from different wavelength bands in the visible
(400–700) and even beyond the visible light range, using light bulbs or LED lights [14,20–23].
The MSI name is used for techniques employing ten or less than ten spectral bands; modali-
ties using more than ten are called hyperspectral imaging (HSI) techniques [23]. The main
advantage of this technique is the combination of spectrophotometry (spectral resolution)
and digital cameras (spatial resolution) [14,24], visualizing the light–tissue interactions
of the skin [23]. The skin has many chromophores which interact with the irradiating
light, including melanin, oxy- and deoxyhemoglobin, bilirubin, and collagen [25], allowing
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the user to study these components in different physiologic and pathologic conditions. It
is also notable that MSI is cost-effective and can be used with smartphone cameras [14].
Our research group developed an algorithm previously using MSI to estimate the Breslow
tumor depth of melanoma using three different wavelength bands (green, red, and infrared)
and a multistep sorting algorithm into three distinct subgroups: 1. Breslow thickness under
1 mm, 2. Breslow thickness between 1 and 2 mm, 3. Breslow thickness over 2 mm. The
algorithm could sort melanomas into these three subgroups with a sensitivity of 78.00%
and specificity of 89.00% and a substantial agreement (κ = 0.67; 95% CI, 0.58–0.76) [26].

In dermatology, HFUS has gained attention as a non-invasive diagnostic tool for skin
cancer. Our lab has studied the use of HFUS in differentiating high-risk from low-risk basal
cell carcinomas [27]. This imaging technique, also known as high-resolution ultrasound,
employs sound waves with frequencies greater than 20 megahertz (MHz) to generate
images of tissue structures [15]. Melanoma is generally characterized by hypoechogenic,
homogenous, and well-defined lesions on HFUS images [28]. Using HFUS, the depth of
the melanoma can be measured by determining the distance between the top layer of the
skin and the deepest point of the tumor. Therefore, HFUS may be capable of preoperative
diagnosis of melanoma [29] and estimation of Breslow thickness [28].

OCT operates on the principle of low-coherence interferometry, emitting light waves
that reflect off skin tissue. By measuring the echo time delay and intensity of the reflected
light, it creates detailed images based on the varying optical properties within the skin’s
layers [30,31]. In the context of melanoma detection, OCT offers remarkable significance
by providing detailed insights into the skin’s architecture, allowing for the visualization
of structural changes within lesions. This technology significantly aids in distinguishing
between benign and malignant lesions, enabling clinicians to make more precise and timely
diagnoses in suspected cases of melanoma [32,33]. Furthermore, OCT imaging offers a
non-invasive means to diagnose and monitor the development of various skin conditions
over time, serving as a viable substitute for skin biopsies or surgical interventions for
different skin conditions [34–36].

Considering the increasing incidence of melanoma and the need for faster diagnostic,
staging, and therapeutic procedures, this study aims to compare the efficacy of novel opti-
cally guided high-frequency ultrasound (OG-HFUS) and MSI in preoperative estimation of
Breslow tumor thickness.

2. Materials and Methods
2.1. Inclusion and Exclusion Criteria

In this Single-Center Prospective Validation Study, the inclusion criteria involved
obtaining informed consent from patients and validating primary cutaneous melanomas
through histopathological confirmation by expert dermatopathologists. Eligibility was
restricted to melanomas exhibiting a Breslow thickness of less than 10 mm.

Exclusion criteria were applied to cases with in situ melanomas or melanoma metas-
tases, and primary melanomas located in specific anatomical sites (such as acral, genitalia,
or mucosa). Furthermore, lesions presenting extensive hair, bleeding, or scaling that could
impede accurate imaging were also excluded.

2.2. OG-HFUS Device and Image Analysis

We conducted measurements at the Department of Dermatology, Venereology, and
Dermatooncology, Semmelweis University, using the portable OG-HFUS device (Dermus
SkinScanner, Dermus Ltd., Budapest, Hungary). This device combines ultrasound imaging
and optical image capture capabilities. The OG-HFUS device has a single-element ultra-
sound transducer operating at a nominal center frequency of 33 MHz ranging between
20–40 Mhz. A silicon membrane covers the imaging window, and for scanning, a gel is
applied by the researcher, who uses an optical imaging module for positioning the lesion.
The resulting ultrasound image is presented in a color scale format to enhance contrast. The
optical image obtained by the device offers a field of view measuring 15 mm × 15 mm. The
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ultrasound image extends laterally up to 12 mm and reaches a maximum penetration depth
of 10 mm. In cases where the lesion size exceeded the optical field of view, we captured
additional image sets to ensure comprehensive coverage and analysis. Both the optical
and ultrasound images are then stored using a cloud-based system, which saves all the
photos under a patient ID with the birth date, sex, diagnosis, and exact location of the body
region [37]. These captured ultrasound images were used to measure the presumed tumor
thickness. The depth measurement of tumor thickness was obtained within 1 min after
capturing the ultrasound image.

2.3. MSI Device and Image Analysis

The measurements were conducted at the Department of Dermatology, Venereology,
and Dermatooncology at Semmelweis University, Budapest, Hungary. The handheld
prototype utilized in this study was jointly developed by the University of Latvia and
Riga Technical University (Riga, Latvia). The illumination source consisted of a LED ring
comprising four types of LED diodes emitting at wavelengths of 405 nm (for Autofluo-
rescence/AF excitation), 525 nm (Green/G), 660 nm (Red/R), and 940 nm (Infrared/IR),
enabling penetration into different skin layers. The LEDs provided an irradiating power
density of 20 mW/cm2 and had a field of view of 2 × 2 cm2. For quantitative analysis,
we utilized the G, R, and IR channels. The device was designed to capture skin diffuse
reflectance images using the fixed arrangement of the four LEDs at 35 mm. These LEDs
were arranged circularly within the ring and covered by a matte plate diffuser to ensure
uniform illumination. Image acquisition was performed using a 5-megapixel color CMOS
IDS camera (MT9P006STC, IDS uEye UI3581LE-C-HQ, Obersulm, Germany) placed at a
distance of 60 mm from the illuminated skin [38]. The acquired images were automatically
transferred to a cloud server for further data processing and analysis [39]. To capture
the AF emission images and block the 405 nm excitation illumination, a long-pass filter
(T515 nm > 90%) was placed in front of the camera. In cases where the lesion size exceeded
the camera’s field of view, we captured additional image sets to ensure comprehensive
coverage and analysis. A detailed description of this prototype device was previously
published [38,40]. The LED-based multispectral images were analyzed using ImageJ v1.46
software (NIH, Bethesda, MD, USA) [41]. For intensity analysis and shape description, we
manually selected regions of interest (ROIs) using Freehand selections. ROIs corresponding
to melanomas were recorded using the ROI manager function of the ImageJ software,
ensuring that the analyzed area was consistent across all channels (G, R, and IR). Mean gray
value (integrated density/area), circularity (4π × area/perimeter2), solidity (area/convex
area), and roundness (4 × area/(π × major_axis2)) were measured as described in our pre-
vious publication [26]. The entire imaging procedure and subsequent thickness estimation
are completed within a few minutes.

2.4. Melanoma Classification Algorithm

In our previous research [26], we developed an algorithm to classify melanomas into
three clinically relevant subgroups (Breslow thickness < 1 mm, Breslow thickness between
1–2 mm, and Breslow thickness > 2 mm) based on the shape descriptors and intensity
values of their MSI images. This modified melanoma classification algorithm (Figure 1.)
was used in the current study to assess the efficacy of MSI. The first step of the original
algorithm was not used in this research.
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Figure 1. The melanoma classification algorithm. Our algorithm is based on the shape descriptors
and the intensity values of the lesion to classify them algorithmically into different Breslow thickness
subgroups. The Circularity is the first parameter that sorts the lesions into two subcategories, over
and under the threshold (0.75 A.U.). It is followed by the next steps on different branches in the
algorithm, where the lesions under the threshold are differentiated into two subgroups based on their
intensity in the Green (G) channel, sorting them into two categories, under and over the threshold
(8.0 A.U.). In contrast, the previously distinguished subgroup over the Circularity threshold goes
through a similar process using the Infrared (I.R.) intensity, sorting them into two subgroups with a
threshold value (113.7 A.U.). The lesions under the threshold of Circularity and over the threshold
of G channel intensity are classified as melanomas with Breslow < 1 mm, whereas melanomas
with similar Circularity values but lower G intensity are classified as tumors with Breslow between
1–2 mm. The melanomas with higher circularity values (over the 0.75 threshold) are subclassified
with the I.R. channel values, and melanomas with lower intensities (threshold 113.7 A.U.) were
classified as Breslow > 2 mm and melanomas with higher I.R. intensities were classified as Breslow
between 1–2 mm. A previous version of this melanoma classification study was published in our
earlier study [26], which has been updated. A.U.: Arbitrary Unit. Yellow lines display how the lesions
were manually outlined for further analysis.

2.5. Statistical Analysis

We compared our measurements on the captured ultrasound images with histologi-
cally determined Breslow thickness to assess the accuracy of OG-HFUS. To describe the
correlation, we employed Pearson correlation and calculated the reliability within each
clinical category when classifying patients based on ultrasound results.

We developed a multivariate linear model to analyze Pearson correlation between
multispectral imaging (utilizing green, red, and infrared channels) and Breslow thickness
in skin lesions. Circularity data were also considered for a comprehensive evaluation of
morphological aspects. Significance evaluation was conducted using F statistics.

For statistical evaluation, we used the scikit-learn, scipy, and statmodels libraries in
the Python programming language and environment. We determined the sensitivity, speci-
ficity, positive predictive value (PPV), negative predictive value (NPV), and mean squared
error (MSE) in each clinical category. For overall model estimation, we presented the
micro-averaged sensitivity, specificity, positive predictive, and negative predictive values.
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Cohen’s kappa (κ) was used to calculate concordance. p values below 0.05 were considered
statistically significant. The results are expressed as mean +/− standard deviation.

3. Results
3.1. Patient Data

In total, a cohort of 101 melanoma patients was investigated, characterized by a
mean age of 64.20 ± 15.24 years, comprising 53 males and 48 females, resulting in a sex
ratio of 52% males and 48% females These evaluated primary cutaneous melanomas were
distributed across various anatomical regions: 60 on the trunk, 32 on the extremities, 6
on the cheek, 2 on the forehead, and 1 on the neck. The analysis revealed that the mean
Breslow thickness was 1.61 mm ± 1.69 mm. The range of lesion depth was quite substantial,
ranging from a minimum thickness of 0.135 mm to a maximum of 8.12 mm. The detailed
breakdown of melanoma subtypes is presented in Table 1.

Table 1. Melanoma subtype distribution. The table displays the number of cases for each melanoma
subtype, along with their respective percentages in the study.

Subtype Lesion (n) Distribution Ratio (%)

SSM 69 68.32

NM 8 7.92

SSM sec. Nod. 10 9.90

LMM sec. Nod. 1 0.99

LMM 6 5.94

ALM 1 0.99

UC 4 3.96

Naevoid 2 1.98
SSM: Superficial Spreading Melanoma; NM: Nodular Melanoma; SSM sec. Nod.: Superficial Spreading Melanoma
with secondary Nodular component; LMM sec. Nod.: Lentigo Maligna Melanoma with secondary Nodular
component; LMM: Lentigo Maligna Melanoma; ALM: Acral Lentiginous Melanoma; UC: Unclassified Melanoma.

3.2. Diagnostic Accuracy of the OG-HFUS

The overall performance of the OG-HFUS demonstrated substantial reliability, as
indicated by Cohen’s kappa coefficient of 0.858 (95% CI: 0.763–0.952). The HFUS imaging
results can be visualized in Figure 2. This value suggests almost perfect agreement between
non-invasive ultrasound measurements and the gold standard histological data. Mea-
surements with the OG-HFUS exhibited a significant positive correlation with histological
Breslow thickness (r = 0.943, p < 0.0001) (Figure 3). The detailed performance metrics of
OG-HFUS for estimating Breslow thickness are presented in Table 2.

Table 2. Diagnostic accuracy of OG-HFUS for estimating Breslow thickness.

Breslow
(mm) Patients (n) MSE Sensitivity

(%)
Specificity
(%) PPV (%) NPV (%) Cohen’s

Kappa (κ) 95% CI

<1 56 0.034 98.2 95.2 96.5 97.6 0.937 0.867–1.000

1–2 15 0.080 80.0 94.0 70.6 96.3 0.701 0.503–0.900

>2 27 1.02 85.2 98.6 95.8 94.6 0.868 0.755–0.980

Total 98 0.31 91.8 96.0 91.8 96.0 0.858 0.763–0.952

MSE: Mean Squared Error, PPV: Positive Predictive Value; NPV: Negative Predictive Value; CI: Confidence
Interval.
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Figure 3. Pearson Correlation Analysis of OG-HFUS Measured Thickness (mm) on the Y-Axis and
Histology-Confirmed Breslow Thickness (mm) on the X-Axis, Demonstrating a Significant Positive
Correlation with Histological Breslow Thickness (r = 0.943, p < 0.0001). Each data point on the
graph, represented by a specific color, corresponds to a particular melanoma subtype in the following
order: ALM (Acral Lentiginous Melanoma), LMM (Lentigo Maligna Melanoma), NM (Nodular
Melanoma), SMM (Superficial Spreading Melanoma), SSM (Superficial Spreading Melanoma) and UC
(Unclassified Melanoma). Green background highlights cases where the predicted tumor thickness
aligned with the same category (<1mm, 1–2mm, or >2mm) as the actual Breslow thickness determined
by pathologists. Conversely, a red background signifies instances where the predicted tumor thickness
fell into a different category.

3.3. Diagnostic Accuracy of the MSI

The overall performance of the MSI demonstrated fair agreement, as Cohen’s kappa
coefficient became 0.440 (95% CI: 0.298–0.583). The MSI imaging results can be visualized
in Figure 4. Independently, among the shape descriptors and intensity values of different



Cancers 2024, 16, 157 8 of 15

channels, the IR channel exhibited the highest correlation (r: −0.659, p < 0.0001) with
Breslow thickness. However, multivariate correlation analysis revealed a strong correlation
between the multivariate data and Breslow depth (r: 0.714, p < 0.0001) (Figure 5). It is
important to note, however, that this predictive value lags behind the performance of
OG-HFUS. The detailed efficacy of MSI estimating Breslow thickness can be seen in Table 3.
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Figure 4. Multispectral images of distinct melanoma lesions classified according to various wave-
length channels. Representational images of three lesions segmented into three groups based on
Breslow thickness: <1 mm (row 1), 1–2 mm (row 2), and >2 mm (row 3). AF: Autofluorescence,
G: Green, R: Red, IR: Infrared.
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Figure 5. Pearson correlation analysis of multivariate linear model (mm) on the Y-axis and histology-
confirmed Breslow thickness (mm) on the X-axis, demonstrating a significant positive correlation
with histological Breslow thickness (r = 0.714, p < 0.0001). Each data point on the graph, represented
by a specific color, corresponds to a particular melanoma subtype in the following order: ALM
(Acral Lentiginous Melanoma), LMM (Lentigo Maligna Melanoma), NM (Nodular Melanoma), SMM
(Superficial Spreading Melanoma), SSM (Superficial Spreading Melanoma) and UC (Unclassified
Melanoma). Green background highlights cases where the predicted tumor thickness aligned with
the same category (<1 mm, 1-2 mm, or >2 mm) as the actual Breslow thickness determined by
pathologists. Conversely, a red background signifies instances where the predicted tumor thickness
fell into a different category.
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Table 3. Diagnostic accuracy of MSI for estimating Breslow thickness.

Breslow
(mm) Patients (n) MSE Sensitivity

(%)
Specificity
(%) PPV (%) NPV (%) Cohen’s

Kappa (κ) 95% CI

<1 56 0.64 55.4 93.0 91.2 61.5 0.457 0.286–0.627

1–2 15 0.61 60.0 67.9 25.0 90.5 0.177 −0.052–0.406

>2 28 3.36 78.6 90.1 75.9 91.4 0.680 0.517–0.842

Total 99 1.41 62.6 81.3 62.6 81.3 0.440 0.298–0.583

MSE: Mean Squared Error; PPV: Positive Predictive Value; NPV: Negative Predictive Value; CI:
Confidence Interval.

3.4. Comparative Analysis of Imaging Methods

In our comparative analysis, OG-HFUS demonstrated superior performance in the
preoperative estimation of Breslow thickness. OG-HFUS achieved a sensitivity of 91.8%, a
specificity of 96.0%, and exhibited almost perfect agreement (κ = 0.858, CI: 0.763–0.952). In
contrast, MSI showed a sensitivity of 62.6%, and specificity of 81.3%, with a fair agreement
(κ = 0.440, CI: 0.298–0.583). OG-HFUS also displayed a positive predictive value (PPV) of
91.8% and a negative predictive value (NPV) of 96.0%, surpassing the PPV and NPV of
MSI, 62.6% and 81.3%, respectively. These findings underscore the improved accuracy and
efficacy of the OG-HFUS approach in determining Breslow thickness compared to MSI.

4. Discussion

Breslow tumor thickness is a critical predictor of survival among patients with lo-
calized melanoma, [42] and this measurement defines the optimal safety margin for
treatment [5]. If the surgical margin is insufficient, reoperation becomes necessary. Con-
versely, when it exceeds what is required, it may result in a larger scar and potential loss of
function in the affected area, imposing an unwanted burden on patients [43,44]. Treating
melanomas in the head and neck region can be even more challenging, and achieving
excision with an appropriate surgical border is not always feasible [45]. Our findings
revealed that OG-HFUS was superior compared to MSI, demonstrating higher sensitivity,
specificity, and overall agreement in predicting Breslow thickness.

Preoperative HFUS is a promising tool for aiding surgeons in single-step melanoma
surgery [46,47]. Particularly, HFUS, in combination with digital dermoscopy, enhances
accuracy, and videomicroscopy can differentiate between thick and thin melanomas with
a sensitivity of 86.7% [48]. Optical coherence tomography has also shown promise in
predicting melanoma tumor thickness based on vascular morphology [49]. Reflectance
confocal microscopy (RCM) is an emerging dermatological tool with cellular-level reso-
lution and a penetration depth of approximately 200 µm [50,51]. It has proven to be an
accurate modality for presurgical margin mapping of LMMs [52,53] but it is not suitable
for estimating Breslow tumor thickness, especially in deep lesions. Moreover, Verzì et al.’s
study illustrates the potential of LC-OCT to enhance the non-invasive diagnosis of LMM,
an in situ melanoma subtype prevalent in elderly individuals. Investigating the LC-OCT
features of an LMM lesion on a 49-year-old’s nose, the technique revealed characteris-
tic microscopic traits in both horizontal and vertical imaging. LC-OCT clearly depicted
large, bright roundish, or dendritic atypical cells around hair follicles and within the
epidermis, signaling atypical melanocytes and their tendency towards folliculotropism.
Despite being based on a single case, the strong correlation between LC-OCT images and
histopathological sections underscores the potential of LC-OCT in facilitating non-invasive
LMM diagnoses [54]. Interestingly, there is a growing trend in combining various imaging
modalities, such as line-field optical coherence tomography (LC-OCT), which combines the
cellular-level resolution of RCM with the depth penetration of OCT [55]. These combined
modalities are well-suited for analyzing melanomas and their structural characteristics.
Barragán-Estudillo et al. established links between specific dermoscopic and RCM findings
with histopathologic parameters in primary melanomas. Notably, the presence of pig-
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mented networks in dermoscopy was linked to lower Breslow and mitotic rates (p = 0.002),
while visible vessels correlated with higher Breslow and mitotic indexes (p = 0.001). Fur-
thermore, confocal identification of dermal nests or atypical cells in the papillary dermis
related to elevated mitotic rates (p = 0.006 and p = 0.03). Moreover, superficial dermal
inflammation visible through confocal imaging was associated with higher Breslow and
mitotic index (p = 0.04). These findings indicate the potential of combined dermoscopy
and RCM assessments in estimating primary melanoma characteristics and predicting
crucial histopathologic parameters [56]. Furthermore, Fedorov et al. have used an OCT-
HFUS-Raman spectroscopy combined tool to virtually biopsy melanomas, harnessing the
advantages of these different modalities [57]. Moreover, Suppa et al.’s comprehensive
review of LC-OCT’s application in melanocytic lesions showcases its groundbreaking use
in imaging melanoma, highlighting details like epidermal invasion and disruptions in
the dermal-epidermal junction. The review defines criteria for benign lesions, compares
LC-OCT with reflectance confocal microscopy, and finds similar diagnostic performance in
identifying melanoma. It emphasizes LC-OCT’s correlation with histopathology/RCM in
recognizing critical features in diverse lesions, including in situ and invasive melanomas,
Spitz nevi, and genital pigmented lesions. Case reports underscore LC-OCT’s ability to
detect cellular structures akin to histopathology, validating its accuracy. Lastly, the review
anticipates advanced LC-OCT devices featuring global dermoscopic colocalization, under-
lining its pivotal role in precise lesion characterization, aligning seamlessly with established
diagnostic criteria [58]. The discussion on the reliability of non-invasive techniques, such
as LC-OCT and RCM, concerning their strong correlation with both vertical and horizontal
histopathology in clinical practice is crucial. The existing literature, notably the study by
Lacarrubba et al., delineates the utility of RCM in identifying key microscopic features of
discoid lupus erythematosus (DLE) and its correlation with horizontal histopathological
sections. Lacarrubba et al.’s investigation demonstrated RCM’s ability to accurately detect
typical inflammatory changes and dermo-epidermal junction alterations characteristic of
DLE. This alignment between RCM and histopathology, both in horizontal and vertical
views, substantiates the precision of non-invasive imaging techniques and their potential
for enhancing clinical diagnoses in conditions like psoriasis, discoid lupus, and other
dermatological disorders [51].

Breslow thickness is a critical parameter for melanoma staging and surgical planning.
OG-HFUS demonstrated an exceptional sensitivity of 91.8% in estimating Breslow thickness,
signifying its ability to accurately identify both thin and thick melanomas. This high
sensitivity is invaluable in clinical practice as it reduces the risk of underestimating tumor
thickness, which can lead to inadequate surgical margins and potential disease recurrence.
In contrast, MSI exhibited a lower sensitivity of 62.6%, implying a higher likelihood of false
negatives in Breslow thickness estimation. False negatives can be particularly problematic
in melanoma diagnosis as they may result in undertreatment.

OG-HFUS also excelled in terms of specificity, boasting a specificity of 96.0%, in-
dicating a low rate of false positives. The high specificity of OG-HFUS suggests that it
can reliably differentiate non-melanoma lesions from melanomas, reducing unnecessary
excisions and alleviating patient anxiety. On the other hand, MSI showed lower specificity
(81.3%) and a fair agreement (κ = 0.440). The decreased specificity of MSI could result in
more false-positive findings, potentially leading to unnecessary excisions and increased
healthcare costs. This specificity is lower compared to our previous findings, where the
MSI algorithm could sort melanomas into three subgroups with a sensitivity of 78.00% and
specificity of 89.00% [26]. The difference in specificity might be attributed to variances in
the study cohorts. It is also important to note that future improvements of this algorithm
could further improve the performance of this evaluation.

When comparing the methods and results of our study with those of Kaikaris et al.,
notable differences and outcomes are observed. Kaikaris’ study, conducted between January
2004 and October 2008, utilized a linear 14 MHz frequency ultrasound sensor to measure
melanoma depth in 100 patients diagnosed with stage I–II cutaneous melanoma. Their
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findings demonstrated varying mean differences in measurements, with a higher mean
difference of 60 µm observed in tumors matching pathological stage 1 and pathological
stage 2 categories. Notably, a stronger correlation (Pearson’s correlation coefficient, r: 0.869;
p-value < 0.0001) was found in thicker melanomas exceeding 2 mm (mm), while a lower
correlation (r: 0.283) was observed in thinner melanomas (1–2 mm) [59].

Comparing our study with Botar et al.’s research reveals differing approaches and
findings in the assessment of cutaneous melanoma. Botar’s study, conducted between
September 2011 and January 2015, focused on 42 melanoma lesions, using 40 MHz sonogra-
phy and strain elastography to assess gray-scale features and elastographic characteristics.
Their results highlighted the consistent appearance of melanoma lesions, indicating a mean
difference between Breslow index and ultrasound thickness of −0.05 mm, suggesting a
minimal variance between these measurements. Notably, a strong correlation was identi-
fied between elastographic appearance and strain ratios for various tissue interfaces, with
a p-value indicating statistical significance (p < 0.002) [60].

In Reginelli’s investigation, we encounter variations in both the methodologies em-
ployed and the resulting findings, particularly in the context of evaluating melanocytic
lesions, particularly those exhibiting features indicative of nodular melanoma. Reginelli
and colleagues analyzed a total of 14 lesions characterized by distinct dermatoscopic fea-
tures suggestive of nodular melanoma. Among these, seven lesions underwent excisional
biopsy as part of the study. Their methodology centered on the use of ultrasounds equipped
with HFUS probes spanning a range from 50 MHz to 70 MHz. The primary aim was to
identify the presence of the two hyperechogenic laminae separated by a hypo/anechoic
space, a feature used to assess lesion thickness. Notably, Reginelli’s study revealed a consis-
tent positive agreement between the thickness determined through ultrasound and that
derived from biopsy in all cases. It is worth highlighting that this analysis encompassed a
comparison of seven lesions to calculate thickness, including some designated as satellite
lesions (situated less than two centimeter distance from the primary lesion) and in transit
lesions (localizable to more than two centimeters from the primary lesion) [61].

In a comparative analysis of our study with Oranges et al., differences in methodology
and findings emerge with regards to the evaluation of melanomas through ultrasound
techniques. Oranges’ study focused on 27 melanomas in a population with a mean age
of 57.6 years, predominantly employing HFUS with a 70 MHz probe to examine lesions
before surgical removal. Their approach involved thorough assessments by two skilled and
blinded operators using specialized software for repetitive measurements. The findings
showed these melanomas to appear as band-like or oval/fusiform-shaped hypoechoic
inhomogeneous lesions, with evident intralesional hair follicles in some cases. Comparing
ultrasonographic thickness to Breslow thickness revealed variances across cases, with
thickness values being either less than, greater than, or identical to Breslow thickness.
Notably, Oranges et al.’s study exhibited a low bias and high correlation between Breslow
index values and ultrasound measurements for both operators, underscoring the reliability
of their approach [62].

Although the duration of the imaging procedure from initial imaging to final thickness
estimation slightly differs between HFUS and MSI, taking about 1 min for HFUS and
approximately 3 min for MSI, the superior performance of OG-HFUS in estimating Breslow
thickness holds important clinical implications. Accurate Breslow thickness assessment
is vital for melanoma staging and the determination of surgical margins. OG-HFUS has
the potential to enhance preoperative diagnosis, reducing the need for re-excision due to
underestimation of tumor thickness. This not only improves patient outcomes but also
contributes to cost-effective healthcare delivery by minimizing unnecessary procedures. It
is important to acknowledge the limitations of this study. The sample size, while sufficient
for preliminary assessment, could be expanded in future research to further validate the
findings. Additionally, the study focused on primary melanomas, and the performance of
OG-HFUS and MSI in assessing metastatic lesions remains to be explored. Further research
could also investigate the cost-effectiveness of these imaging modalities in clinical practice.



Cancers 2024, 16, 157 12 of 15

5. Conclusions

In conclusion, our research evaluated the performance of OG-HFUS and MSI in
estimating Breslow thickness and determining the preoperative staging of malignant
melanoma. The results demonstrated that OG-HFUS outperformed MSI in diagnostic
accuracy with a strong positive correlation with Breslow thickness. This highlights the
potential of OG-HFUS as a valuable tool for melanoma diagnosis and patient management.
In addition, the preoperative staging with OG-HFUS may be crucial due to the impact of
primary excision on SLNB examination. Additionally, MSI analysis of tumor thickness
provided the ability to classify melanomas into clinically relevant subgroups. Both imaging
methods hold promise for enhancing preoperative staging and treatment decision-making,
offering valuable insights for improving outcomes in melanoma patients. However, fur-
ther research and clinical validation are warranted to establish their broader utility and
integration into routine clinical practice.
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melanoma thickness—Comparison of two methods: Ultrasound versus morphology. J. Plast. Reconstr. Aesthetic Surg. 2011,
64, 796–802. [CrossRef]

60. Botar-Jid, C.M.; Cosgarea, R.; Bolboacă, S.D.; Şenilă, S.C.; Lenghel, L.M.; Rogojan, L.; Dudea, S.M. Assessment of Cutaneous
Melanoma by Use of Very- High-Frequency Ultrasound and Real-Time Elastography. Am. J. Roentgenol. 2016, 206, 699–704.
[CrossRef]

61. Reginelli, A.; Belfiore, M.P.; Russo, A.; Turriziani, F.; Moscarella, E.; Troiani, T.; Brancaccio, G.; Ronchi, A.; Giunta, E.;
Cappabianca, S. A preliminary study for quantitative assessment with HFUS (High-Frequency Ultrasound) of nodular skin
melanoma breslow thickness in adults before surgery: Interdisciplinary team experience. Curr. Radiopharm. 2020, 13, 48–55.

62. Oranges, T.; Janowska, A.; Scatena, C.; Faita, F.; Lascio, N.D.; Izzetti, R.; Fidanzi, C.; Romanelli, M.; Dini, V. Ultra-High Frequency
Ultrasound in Melanoma Management: A New Combined Ultrasonographic–Histopathological Approach. J. Ultrasound Med.
2023, 42, 99–108. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1001/jamadermatol.2017.3114
https://doi.org/10.1111/cup.14321
https://doi.org/10.1111/ced.15383
https://doi.org/10.5826/dpc.1204a174
https://www.ncbi.nlm.nih.gov/pubmed/36534562
https://doi.org/10.1002/jbio.202200129
https://doi.org/10.23736/S2784-8671.23.07639-9
https://www.ncbi.nlm.nih.gov/pubmed/37278496
https://doi.org/10.1016/j.bjps.2010.10.008
https://doi.org/10.2214/AJR.15.15182
https://doi.org/10.1002/jum.16096

	Introduction 
	Materials and Methods 
	Inclusion and Exclusion Criteria 
	OG-HFUS Device and Image Analysis 
	MSI Device and Image Analysis 
	Melanoma Classification Algorithm 
	Statistical Analysis 

	Results 
	Patient Data 
	Diagnostic Accuracy of the OG-HFUS 
	Diagnostic Accuracy of the MSI 
	Comparative Analysis of Imaging Methods 

	Discussion 
	Conclusions 
	References

