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Simple Summary: There are no effective treatments for patients with cancers that induce air-
way narrowing via extrinsic pressure to the bronchus (i.e., extrinsic malignant central airway
obstruction—MCAO). The effects of these cancerous tumors must be quickly alleviated to allow
normal breathing and delay disease progression. Currently, stents are used to keep the airway open,
but stents do not halt the progression of the cancerous tumor that can crush the stent. We have
shown that interstitial photodynamic therapy (I-PDT) can be a safe and beneficial treatment option for
patients with extrinsic MCAO. Image-based pre-treatment planning is critical for patient safety and
tumor response in I-PDT. Herein, we present and validate novel image-based computer optimization
methods for guiding light administration in I-PDT of extrinsic MCAO, based on a rate-based light
dose metric. We demonstrate the benefit of our approach in data from representative patients with
extrinsic MCAO who were treated with I-PDT.

Abstract: There are no effective treatments for patients with extrinsic malignant central airway
obstruction (MCAO). In a recent clinical study, we demonstrated that interstitial photodynamic
therapy (I-PDT) is a safe and potentially effective treatment for patients with extrinsic MCAO. In
previous preclinical studies, we reported that a minimum light irradiance and fluence should be
maintained within a significant volume of the target tumor to obtain an effective PDT response.
In this paper, we present a computational approach to personalized treatment planning of light
delivery in I-PDT that simultaneously optimizes the delivered irradiance and fluence using finite
element method (FEM) solvers of either Comsol Multiphysics® or Dosie™ for light propagation.
The FEM simulations were validated with light dosimetry measurements in a solid phantom with
tissue-like optical properties. The agreement between the treatment plans generated by two FEMs
was tested using typical imaging data from four patients with extrinsic MCAO treated with I-PDT.
The concordance correlation coefficient (CCC) and its 95% confidence interval (95% CI) were used to
test the agreement between the simulation results and measurements, and between the two FEMs
treatment plans. Dosie with CCC = 0.994 (95% CI, 0.953–0.996) and Comsol with CCC = 0.999 (95% CI,
0.985–0.999) showed excellent agreement with light measurements in the phantom. The CCC analysis
showed very good agreement between Comsol and Dosie treatment plans for irradiance (95% CI,
CCC: 0.996–0.999) and fluence (95% CI, CCC: 0.916–0.987) in using patients’ data. In previous
preclinical work, we demonstrated that effective I-PDT is associated with a computed light dose
of ≥45 J/cm2 when the irradiance is ≥8.6 mW/cm2 (i.e., the effective rate-based light dose). In
this paper, we show how to use Comsol and Dosie packages to optimize rate-based light dose, and
we present Dosie’s newly developed domination sub-maps method to improve the planning of the
delivery of the effective rate-based light dose. We conclude that image-based treatment planning
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using Comsol or Dosie FEM-solvers is a valid approach to guide the light dosimetry in I-PDT of
patients with MCAO.

Keywords: interstitial photodynamic therapy; I-PDT; malignant central airway obstruction; MCAO;
treatment planning; computational optimization; irradiance; fluence; rate-based light dose

1. Introduction

Photodynamic therapy (PDT) is a binary treatment that involves the administration of
a photosensitizer that can be activated with visible or near-infrared light to generate reac-
tive oxygen species, typically singlet oxygen, that induces irreversible cell damage [1–3].
The response to PDT is governed by the photosensitizer type and concentration, light
dose rate (irradiance) and dose (fluence), tumor oxygenation, and in some cases immune
response [1,2,4]. In the context of treating large and deep-seated tumors, interstitial photo-
dynamic therapy (I-PDT) must be employed to induce an effective photoreaction [5,6]. In
this setting, the systemic administration of the photosensitizer is followed by intratumoral
illumination administered by a laser through optical fiber/s that are inserted directly into
the target tumor [5].

Pre-treatment planning for computing the light fluence in the target tumor is a critical
component contributing to patient safety and response following I-PDT [5–8]. We and oth-
ers have shown that image-based computer simulations of light propagation are required
to estimate the intratumoral light fluence in I-PDT [6–11]. Several groups have reported on
the use of computer-based simulations to plan and optimize the light delivery before and
during I-PDT from bare-end fibers (as point light sources) [7,8], or cylindrical diffuser fibers
(CDF) [6,12–15]. These methods assume that the fibers are arranged in a uniform pattern,
usually a parallel placement of fibers into the target tumor. However, this is not always
applicable for deeply seated cancers surrounded by critical structures, which require more
complex fiber configurations. One paper presented automatic treatment planning, based
on convex optimization, that maximizes the delivered light fluence and that is applicable
to arbitrary configurations and applied to a brain tumor model [12]. However, all these
methods only looked at delivering a therapeutic light fluence to the tumor volume.

In our recent preclinical studies, we used an image-based finite element method (FEM)
to guide I-PDT light delivery, which demonstrated that in addition to PS tumor retention,
the baseline tumor volume, and fluence, the intratumoral irradiance is a key parameter
indicative of tumor response to I-PDT with porfimer sodium (Photofrin®, Pinnacle Biologics
Inc., Bannockburn, IL, USA) [10,16]. In external beam PDT of superficial tumors, low
irradiance at the tumor surface is the key parameter for effective response PDT [17,18].
For I-PDT of locally advanced cancers in mice and rabbits, we reported that exceeding the
minimal irradiance at the tumor margins is the key parameter for effective response with
intravenous injection of 5 mg/kg Photofrin at 24 ± 2 h prior to laser light [10,16]. Thus,
we showed that irradiance of 5.0 mW/cm2 with a fluence of 45 J/cm2 at the margins will
result in a significantly lower cure rate (p < 0.05) when compared to 8.6 mW/cm2 with
45 J/cm2 [10,16], which we define in this work as the effective rate-based light dose in
Photofrin®-mediated I-PDT with 630 nm laser light.

Based on the preclinical data, we translated our findings into the clinic, where intra-
venous injection of 2 mg/kg Photofrin at 48 ± 4 h prior to laser light was used in a clinical
study (NCT03735095). Our FEM image-based treatment planning was used to compute
the light irradiance and fluence for Photofrin mediated I-PDT in the treatment of patients
with extrinsic or mixed extrinsic/intrinsic malignant central airway obstructions (MCAO).
These MCAOs are often presented between the main bronchus and the pulmonary artery,
aortic arch, descending aorta, or other major blood vessels [9]. These patients are not
candidates for surgery due to the advanced stage of the disease. They are also not candi-
dates for high-dose curative radiotherapy due to the high rate of serious adverse events
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associated with this therapy [19–22]. We have recently reported that I-PDT of MCAO is
safe with promising outcomes [9], where we applied our FEM simulations using Comsol
Multiphysics® (Comsol Inc., Burlington, MA, USA) to guide personalized treatment plans
for light delivery.

In this paper, we provide the first detailed description of our novel FEM-based com-
putational approach to planning the administration of the effective rate-based light dose
for I-PDT in the treatment of patients with MCAO. We provide the step-by-step process for
optimizing the placement of CDFs in a non-uniform configuration so that critical structures
receive no more than the pre-defined safe irradiance and fluence while the tumor is illu-
minated with a therapeutic effective rate-based light dose. We present a newly developed
domination sub-maps method in Dosie™ (Simphotek Inc. Newark, NJ, USA), a FEM pack-
age with integrated analysis and visualization tools, which optimizes the administration of
safe and effective rate-based light dose in I-PDT when the spatial configuration of CDFs
is already known. The clinical utilization of advancing I-PDT with our new treatment
planning approach is demonstrated through post-analysis of representative data from
patients treated with I-PDT in our recently reported clinical study [9].

2. Materials and Methods
2.1. FEM Light Propagation Simulations in I-PDT

The use of FEM to simulate light propagation in tumors was previously described
in [16,23,24]. The governing equations for irradiance φ(r, t) (W/m2) are

1
cn

(
∂

∂t
φ(r, t)−∇(αn∇φ(r, t))

)
= −µaφ(r, t), (1)

where
αn = cn·[3(µa + (1− g)µs)]

−1. (2)

αn is the optical diffusion coefficient (m2/s) of tissue n, µa and µs are the linear
absorption and scattering coefficients (1/m) of tissue, g is the anisotropy factor, cn is the
speed of light in tissue n, and r is a position (x, y, z) in the target region, r ∈ Ω. The right-
hand side of Equation (1) represents the rate of the light energy absorbed in a unit volume
(J/m3/s). We simulate the laser light delivered from these CDFs as the light irradiance
emitted from the outside diameter of the CDF. This light source is defined by the following
Dirichlet boundary condition, r ∈ ∂Ωlaser:

φ(r, t) = Plaser. (3)

Plaser is the input light irradiance (W/m2) per source diffuser fiber, along the diffuser
surface ∂Ωlaser. It is assumed that the initial light irradiance in the tissue results from visible
or near-infrared light. This initial condition is

φ(r, 0) = Pbg, (4)

where Pbg is the irradiance (W/m2) of the background light radiation (i.e., daylight) in the
target region, r ∈ Ω. A Robin boundary condition is applied (the vector n(r) points outside
of the tissue n, which is assumed to form the boundary of the entire region Ω), r ∈ ∂Ω:

cnφ(r, t) + αn∇φ(r, t)·n(r) = 0. (5)

To date, we have used Comsol to simulate light propagation in locally advanced
tumors for clinical treatment planning of I-PDT [9,10,16]. Here, we present DosieTM, which
is a customized FEM and Monte Carlo [25–28] software developed specifically to become a
treatment planning tool for I-PDT. Dosie solves the same five equations (Equations (1)–(5))
to simulate the light distribution during I-PDT. The Dosie FEM numerical module finds an
approximate solution to the irradiance φ(r, t) by solving the following weak form of the
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governing Equation (1) that is less strict about the smoothness of a solution and holds for
any test function ψ(r, t) ∈ Ψ (which is a set of functions continuously differentiable within
the target region Ω and is trivial outside of its boundary ∂Ω):∫

Ω

∂φ

∂t
ψ +

∫
Ω
∇ψ·(αn∇φ) +

∫
Ω

cnµaφψ +
∫

∂Ω
cnφψ = 0. (6)

A variant of an implicit Euler backward solver is implemented in Dosie to solve
Equation (6), where the integration in Equation (6) is performed over tetrahedral finite
elements. An open-source software SALOME [29] is used to generate the tetrahedral
meshes, which are then tagged and imported into Dosie.

2.2. Image-Based FEM for I-PDT of MCAO

A step-by-step schema in Figure 1 describes the FEM-based treatment planning of
the light delivery during I-PDT of MCAO. The personalized treatment plans indicate
the number, location, and light settings of the CDFs needed to deliver a prescribed light
irradiance and fluence to the target tumor volume. In this study, our goal was to deliver
our preclinical suggested effective rate-based light dose (i.e., 8.6 mW/cm2 and 45 J/cm2)
to a significant part of the target tumor volume. For patients’ personalized treatment
planning, high-resolution diagnostic CT or MRI scans were acquired 1–2 weeks prior
to I-PDT. These scans were imported into an image visualization and analysis software
package (Simpleware, Exeter, UK) and used to manually segment the tumor, adjacent
normal tissues, blood vessels, and other important anatomical features defined by the
treating physician. The segmented scans were then reconstructed to create a 3D computer-
aided design (CAD) model that was imported into the Comsol FEM package. In Comsol,
cylindrical representations of the CDFs were virtually placed within the tumor volume. A
tetrahedral mesh of the entire geometry, which included the tumor, the CDFs, surrounding
normal tissue, and critical structures, was created in Comsol using its mesh generator with
our previously determined optimal mesh parameters defined in [23].

The light propagation throughout the tumor, surrounding tissue, and the major blood
vessels was computed by solving Equation (1) with the appropriate initial and boundary
conditions, as shown in Equations (3)–(5). For all FEM simulations presented in this
publication, we assume that the optical properties do not change during illumination. The
optical properties used for the FEM simulations are used to activate the PS, Photofrin®,
with 630 nm light. These properties are given in Table 1 and were obtained from the
literature [30,31]. For each patient, a manual optimization was performed in Comsol before
treatment begins (as described in the next section) to determine the number, location, and
light intensity (mW/cm) of the CDFs needed to deliver the prescribed light irradiance and
fluence. The resulting treatment plan was presented for approval by the treating physician.

Table 1. The FEM simulation used tumor optical properties for 630 nm light taken from Robinson et al.,
2010 [30]; the blood optical properties were taken from Van Germert et al., 1995 [31].

Title 1 Input Data Description

Tumor Tissue and
Surrounding Normal Tissue

µa = 0.2 (1/cm)
µs
′ = 5.0 (1/cm)

n = 1.37

Tissue linear absorption coefficient
Tissue reduced scattering coefficient

Tissue refractive index

Pulmonary Artery, Descending Aorta, and
Other Major Blood Vessels

µa = 50.0 (1/cm)
µs
′ = 2.32 (1/cm)

n = 1.33

Blood linear absorption coefficient
Blood reduced scattering coefficient

Blood refractive index
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2.3. Comsol Optimization of I-PDT Light Delivery in the Treatment of MCAO

In the I-PDT of MCAO, the light is delivered by inserting one CDF at a time into
the tumor through the endobronchial ultrasound (EBUS) with a transbronchial needle, as
described in detail in Ivanick et al., 2022 [9]. The treatment plan includes the number of
fiber placements within the tumor and prescribes the milliwatt per cm (mW/cm, light
intensity) and joule per cm (J/cm, light energy) for the diffuser length of each CDF. The
tumor is illuminated at an intensity and energy designed to administer the therapeutic
irradiance and fluence. In planning the CDFs placements, several conditions are taken into
consideration. During treatment, fibers can be inserted from the bronchus and into the
tumor at a 30–40◦ angle and no more than 4 cm deep. Additionally, the distance from the
fiber to any major blood vessel (i.e., critical structure) is limited to ≥6 mm for safety, which
is based on our clinical experience [9]. We aim to limit the light irradiance and fluence
delivered to the blood vessels for safety reasons. Although there is no drug in the blood
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vessels at the time of treatment, there is a low risk of microscopic invasion of cancer cells in
the vessel wall. Using these conditions, a manual optimization is performed in Comsol to
determine the number and location of the CDFs. For each CDF placement, a parametric
study is conducted in which the light intensity emitted from the CDF fiber varies between
80 and 400 mW/cm in increments of 20 mW/cm, and the resulting irradiance distribution
throughout the tumor, as well as the major blood vessels, is computed using the FEM solu-
tion to Equation (1). The starting minimum light intensity (80 mW/cm) is based on clinical
experience, while the maximum light intensity (400 mW/cm) is limited by the maximum
laser light power that can be safely delivered through these clinical CDFs. If the irradiance
and/or fluence delivered to major blood vessels exceeds 8.6 mW/cm2 or 9.5 J/cm2, which
we defined as the maximum allowable exposures based on our clinical experience [9], the
CDF is virtually repositioned within the tumor geometry and the simulation is rerun until
a location is determined to be safe (i.e., the irradiance and fluence delivered to the major
blood vessels do not exceed the set thresholds). Once safe light dosimetry and location
are defined for each CDF, the irradiance and fluence resulting from consecutive light il-
luminations are computed within the entire tumor and surrounding critical structures.
Our method for simulating consecutive light uses a combination of Comsol and Matlab®

(Matlab®, 2012a, MathWorks Inc., Natick, MA, USA) and was previously described [16].
This manual optimization of the CDF location and light dosimetry can take up to 1–3 days,
depending on the complexity of the tumor geometry.

2.4. Dosie Optimization of Power Outputs and Treatment Times with a Novel Domination
Sub-Maps Method

Dosie has been specifically designed to help with the process of manually optimizing
the CDFs output intensities and treatment times and provide a framework for computa-
tional analysis and visualization. Using predetermined CDF coordinate locations within
the tumor geometry, Dosie can be applied to optimize the power output (or, equivalently,
the intensity at each point of a CDF) and the treatment time for each CDF by using a new
method we term domination sub-maps. This optimization is performed for each CDF by
maximizing its power output in a sub-region where the resulting irradiance from such
CDF “dominates” the irradiances generated by other CDFs. The steps of this method are
outlined in Figure 2. First, simulations are run in Dosie, where laser light is emitted from
only one CDF at a time and the resulting irradiance distribution map φCDF(r) throughout
the tumor geometry and surrounding major blood vessels (≥4 mm in diameter) is com-
puted for each CDF. For these simulations, the power outputs from the CDFs are initially
set to the same value. The resulting irradiance maps are then combined to determine
the domination sub-maps for each CDF. The CDF domination sub-map is defined over a
sub-region within the 3D tumor geometry and surrounding critical structures, where the
light irradiance delivered from that CDF is at its maximum when compared to the other
CDF irradiance distributions. For example, if there are four CDFs (A, B, C, and D), the
domination sub-map of map φA(r) with regard to maps φB(r), φC(r), and φD(r) is defined
as follows (per each position r = (x, y, z) ∈ ΩT ∪ΩCS within the tumor, ΩT , or critical
structure, ΩCS, geometries):

domnA|B,C,D(r) =
{

φA(r), ifφA(r) > max{φB(r), φC(r), φD(r)}
0, otherwise

. (7)

Figure 3a–d shows representative domination sub-maps (for the tumor only; the
surrounding critical structures are not shown) for one patient with MCAO for all CDFs, and
Figure 4a shows a domination sub-map in the tumor and surrounding pulmonary artery,
aortic arch, and blood vessels for one of the CDFs. Once the domination sub-maps for each
CDF have been determined, the maximum irradiances throughout the critical structures
within each domination sub-map are checked, such that the irradiance delivered to those
structures from different CDFs will not exceed the effective irradiance of 8.6 mW/cm2.
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For each CDF, the Threshold Under-Dose (TUD) factor is determined as the ratio
between the irradiance threshold value of 8.6 mW/cm2 and the maximum irradiance within
its domination sub-map (i.e., max{domn A|B,C,D(r)} for all r ∈ ΩCS as for CDF A in the
example above; also shown in Figure 4b with CDF location), calculated at critical structures:

TUD FactorA =
8.6

max{domn A|B,C,D(r) : r ∈ ΩCS}
. (8)

These TUD factors represent the irradiance-safe scale factors that should be applied
to the initial input light intensities (or powers, in effect) of the CDFs, so that the resulting
irradiance does not exceed 8.6 mW/cm2 at the critical structures. Thus, greater than 1
TUD factors allow the initial intensities to be increased safely without exposing the critical
structures to irradiances >8.6 mW/cm2. When the TUD factor for a CDF is less than 1,
applying this factor will reduce the initial light intensity delivered from the CDF to a value
that will result in an irradiance map that is ≤8.6 mW/cm2 within the critical structures.
The initial light intensities and irradiance distribution maps for each CDF are updated (in
Dosie) based on the TUD scale factors to validate that the irradiance delivered to the critical
structures is under 8.6 mW/cm2. Irradiance is linearly proportional to CDF power, so that
there is no need to re-run time-consuming FEM calculations when the irradiance maps
need to be updated.

The next step is to investigate the fluence (J/cm2) that is delivered to the critical struc-
tures using the updated light intensities for each CDF. The goal is to limit the total fluence
delivered to the critical structures (i.e., major blood vessels) to ≤9.5 J/cm2. To achieve this,
the total light fluence, F(r) = ∑CDF φCDF(r)·TCDF, delivered to all the critical structures
resulting from the updated CDF light intensities is computed assuming the initial treatment
time, TCDF, per CDF. If the total fluence to any of the critical structures exceeds 9.5 J/cm2,
the CDF domination sub-maps for the light fluence, FCDF(r) = φCDF(r)·TCDF, need to be
evaluated to identify the CDF(s) that is/are contributing to the high fluence at the critical
structures. The light intensity emitted from these CDFs are scaled down appropriately until
the resulting total fluence delivered to the critical structures is ≤9.5 J/cm2. At this point,
the CDF intensities, I∗CDFs, have been identified to be irradiance safe and fluence safe at the
critical structures.

In addition to the limitations imposed on the critical structures, there are also limi-
tations regarding the output power delivered from the CDFs. As previously stated, the
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maximum light intensity that can be emitted from the CDFs is 400 mW/cm. Additionally,
using the clinical laser system, the output power emitted from the CDFs can only be set
and calibrated in increments of 20 mW. Based on these criteria and starting with the CDF
critical-structure-safe intensities I∗CDFs identified in the previous steps, the output power
from each CDF is calculated and safely increased to its maximum in the steps of 20 mW
(if the powers are in between the 20 mW increment, the power is scaled down to the
closest power that is a factor of 20 mW). Critical-structure-safe fluence values, along the
CDFs surfaces, are also calculated from I∗CDFs. Dividing the resulting Critical-structure-safe
powers by the Critical-structure-safe fluences and multiplying by the CDF areas give us
the critical-structure-safe treatment times.

The initial light intensities and irradiance distribution maps for each CDF (using the
Dosie expressions calculator) are updated based on the optimized critical-structure-safe
CDF powers and treatment times to validate that the maximum irradiance delivered to the
critical structures is ≤8.6 mW/cm2 and that the total fluence accumulated at the critical
structures from all CDFs is ≤9.5 J/cm2. The previous steps of identifying safe powers
and treatment times for CDFs can be repeated as many times as needed, as long as the
resulting irradiance and the total fluences at the critical structures are below the thresholds
of 8.6 mW/cm2 and 9.5 J/cm2, respectively.

The resulting optimized powers and treatment times for CDFs are used to update
the initial irradiance distribution maps, which will be used to compute the irradiance and
the total effective fluence DVHs for the target tumor volume. In this method, Dosie FEM
calculations used to estimate the overall irradiance map φ(r) are performed only once per
each CDF, while all the updates to the irradiance are completed with the Dosie expressions
calculator based on the new power and treatment time assignment.

3. Results
3.1. Validation of the FEM Solvers in an Optical Phantom

We validated Comsol and Dosie by comparing each of the simulation results with light
dosimetry measurements in a polyurethane solid phantom with known optical properties
(BiomimicTM Optical Phantoms, INO, Québec, Canada). The phantom linear absorption
coefficient at 630 nm, µa, was 0.224 (1/cm); the phantom reduced scattering coefficient at
630 nm, µs

′, was 4.99 (1/cm). The light dosimetry measurements were conducted with our
calibrated light dosimetry system including the necessary correction factors for differences
in the index of refractions as previously described in Oakley et al. 2015 [23]. The irradiance
was measured with the system’s isotropic detection fibers (IP85, Medlight SA, Ecublens,
Switzerland) which were inserted into the solid phantom at 5, 10, 15, 20, and 25 mm away
from a 2 cm CDF emitting 630 nm light at 100 mW/cm (total 200 mW).

The agreement between the phantom measurements and the Comsol simulations
and between the phantom measurements and the Dosie simulations was determined by
calculating the concordance correlation coefficients (CCC) [32]. Values of the CCC are
within the range of −1 to 1, with 1 denoting perfect agreement and 0 denoting a lack of
agreement. Table 2 shows the results of this phantom experiment. The CCC between the
measurements and the Comsol simulations was 0.999 (95% CI, 0.985–0.999). The CCC
between the measurements and the Dosie simulations was 0.994 (95% CI, 0.953–0.996).
These results demonstrate excellent agreement between the simulations and measurements.

Table 2. Validating FEM Solvers in Phantom Experiment.

Distance from CDF
(mm)

Average Measured Irradiance
(mW/cm2)

Comsol Computed Irradiance
(mW/cm2)

Dosie Computed Irradiance
(mW/cm2)

5 46.7 ± 3.4 47.0 50.5
10 15.1 ± 0.8 13.6 12.7
15 4.7 ± 0.2 4.4 4.0
20 1.4 ± 0.09 1.5 1.3
25 0.4 ± 0.03 0.5 0.5
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3.2. Treatment Planning for I-PDT of MCAO Using Comsol

A representative example of the Comsol FEM-based treatment planning for light
delivery during I-PDT for a patient with MCAO is shown in Figure 5. A CT scan of
the patient was used to segment out the tumor, pulmonary artery, aortic arch, bronchus,
vertebra, and the surrounding normal tissue. For this patient, the tumor volume was
26.1 cm3. Based on the FEM simulations, four CDFs with an illumination length of 1.5 cm
and each delivering 240 mW/cm were required in order to deliver≥8.6 mW/cm2 to 99.97%
of the tumor volume. Figure 6 shows the resulting light irradiance distribution for each
CDF placement that was determined using the Comsol optimization. In the 3D irradiance
distributions for the tumor volume, anything in red received ≥8.6 mW/cm2. For this
patient, the treatment time was set to 750 s per fiber placement. Based on the four fiber
placements, the patient would have received the effective rate-based light dose to 79.6%
of the tumor volume. The maximum irradiance and fluence delivered to the pulmonary
artery were 7.6 mW/cm2 and 6.0 J/cm2. The maximum irradiance and fluence delivered to
the aortic arch were 0.6 mW/cm2 and 0.5 J/cm2.

Cancers 2023, 15, x    12  of  18 
 

 

 

Figure 5. FEM-Based Treatment Plan for I-PDT of MCAO. The above figure shows a representative 

treatment plan and simulation results  for a patient with MCAO  that was treated with I-PDT.  (a) 

High-resolution diagnostic CT scan. The treating physician segmented the tumor treatment volume 

(in red) and then the surrounding critical structures were segmented. The total tumor volume was 

26.1 cm3. For this patient, segmentations were performed for the pulmonary artery (in purple), as-

cending and descending aorta (in pink), bronchus (in green), and vertebra (in yellow), and then for 

the tissue surrounding the tumor (not shown). These segmentations were used to create 3D CAD 

models that could be imported into the FEM software, which in this case was Comsol. (b) Three-

dimensional mesh of  the  tumor  (in red), pulmonary artery  (in purple), aortic arch  (in pink), and 

bronchus (in green). The mesh was created from the 3D CAD models in Comsol and used for our 

FEM simulations of light distribution. For this patient, the light irradiance and fluence distribution 

was computed for the tumor, surrounding normal tissue, pulmonary artery, and the aortic arch. (c) 

Fiber placement from the bronchus and into the tumor geometry. The plan was to insert 4 CDFs 

with illumination lengths of 1.5 cm. Each fiber would emit 240 mW/cm for 750 s. (d) Resulting irra-

diance distribution. Based on the treatment plan, 99.97% of the tumor volume would receive ≥8.6 

mW/cm2. The irradiance ranged 7–1528 mW/cm2. (e) Resulting rate-based light dose (the total flu-

ence calculated when the irradiance ≥8.6 mW/cm2). Based on the treatment plan, 79.6% of the tumor 

volume would have received the effective rate-based  light dose (i.e., ≥8.6 mW/cm2 and 45 J/cm2). 

This volume of the tumor is indicated in red in (e). 

Figure 5. FEM-Based Treatment Plan for I-PDT of MCAO. The above figure shows a representative
treatment plan and simulation results for a patient with MCAO that was treated with I-PDT. (a) High-
resolution diagnostic CT scan. The treating physician segmented the tumor treatment volume (in red)
and then the surrounding critical structures were segmented. The total tumor volume was 26.1 cm3.
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For this patient, segmentations were performed for the pulmonary artery (in purple), ascending and
descending aorta (in pink), bronchus (in green), and vertebra (in yellow), and then for the tissue
surrounding the tumor (not shown). These segmentations were used to create 3D CAD models that
could be imported into the FEM software, which in this case was Comsol. (b) Three-dimensional
mesh of the tumor (in red), pulmonary artery (in purple), aortic arch (in pink), and bronchus (in
green). The mesh was created from the 3D CAD models in Comsol and used for our FEM simulations
of light distribution. For this patient, the light irradiance and fluence distribution was computed for
the tumor, surrounding normal tissue, pulmonary artery, and the aortic arch. (c) Fiber placement from
the bronchus and into the tumor geometry. The plan was to insert 4 CDFs with illumination lengths
of 1.5 cm. Each fiber would emit 240 mW/cm for 750 s. (d) Resulting irradiance distribution. Based
on the treatment plan, 99.97% of the tumor volume would receive ≥8.6 mW/cm2. The irradiance
ranged 7–1528 mW/cm2. (e) Resulting rate-based light dose (the total fluence calculated when the
irradiance ≥ 8.6 mW/cm2). Based on the treatment plan, 79.6% of the tumor volume would have
received the effective rate-based light dose (i.e., ≥8.6 mW/cm2 and 45 J/cm2). This volume of the
tumor is indicated in red in (e).
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distribution from the placement of the four CDFs used to treat a representative patient with MCAO
who was treated with I-PDT. (a–d) show the resulting irradiance distribution for, respectively, fiber
positions 1, 2, 3, and 4 when the input light intensity was 240 mW/cm per fiber. The goal of the
treatment planning was to deliver ≥8.6 mW/cm2 to the tumor volume. In the figures, the volume
of the tumor that is ≥8.6 mW/cm2 is given in red. Based on the simulations, 46.4%, 57.6%, 69.6%,
and 48.3% of the tumor volume will receive ≥8.6 mW/cm2 when light is emitted from, respectively,
Fiber 1, Fiber 2, Fiber 3, and Fiber 4.

3.3. Dosie Is in Agreement with Comsol FEM Simulations for I-PDT of MCAO

Using the same tumor geometry, CDF positions, and light intensity and energy as the
initial treatment plans prepared for four patients with MCAO, FEM software was used
to compute the resulting irradiance and fluence dose volume histograms (DVHs) for the
target tumor volume and surrounding critical structures (i.e., major blood vessels). The
CCC with 95% CI (as described in Section 3.1) was used to compare the Dosie simulated
DVHs to the Comsol simulated DVHs.

Of the four patients, one patient had five different tumor locations while the other three
patients had one tumor location. Tumor volumes ranged from 0.7–26.1 cm3. Figure 7 shows
the resulting rate-based light dose DVH for the tumor geometries that were computed
from the Comsol and Dosie FEM simulations. The irradiance dose rate volume histogram
(DRVH) is defined and computed as the percent tumor volume that received≥8.6 mW/cm2.
The effective rate-based light dose DVH is defined and computed as the percent tumor
volume that received ≥8.6 mW/cm2 and ≥45 J/cm2. There was near perfect agreement
between the two FEM software when calculating the intratumoral irradiance DRVH with
a CCC of 0.999, 95% CI (0.996, 0.999). There was very good agreement between the two
FEM software when calculating the effective rate-based intratumoral light dose DVH with
a CCC of 0.977, 95% CI (0.916, 0.987).
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3.4. Dosie Has the Potential to Improve the Administration of Rate-Based Light Dose

We generated another set of treatment plans for the four patients using Dosie’s domina-
tion sub-maps method to optimize power allocation and treatment time for each CDF. The
CDF positions for the patients were taken from the original treatment planning conducted
using Comsol FEM simulations. We applied Dosie’s domination sub-maps method to
demonstrate whether or not we could adjust the CDF output power and treatment time in
order to increase the intratumoral irradiance and effective fluence distribution. The results
are shown in Table 3. The Dosie optimization method could increase the total effective
rate-based light dose DVH by 9.8%, 6.5%, 3.1%, 15%, 9.6%, and 10.7% for, respectively,
P1/T1, P1/T2, P1/T3, P1/T5, P3, and P4.

Table 3. Dosie Domination Sub-Maps Method for Optimizing CDF Power and Treatment Time.

Patient CDF Power Output
Comsol→ Dosie

Time
Comsol→ Dosie

Irradiance DRVH
Comsol→ Dosie

Effective Rate-Based Light Dose DVH
Comsol→ Dosie

P1/T1 120 mW→ 200 mW 500 s→ 520 s 99.5%→ 100% 36.9%→ 46.7%

P1/T2 100 mW→ 120 mW 500 s→ 500 s 100%→ 100% 75.8%→ 82.3%

P1/T3 120 mW→ 100 mW 500 s→ 560 s 91.2%→ 90.5% 24.4%→ 27.5%

P1/T4 120 mW→ 120 mW
120 mW→ 160 mW

500 s→ 520 s
500 s→ 540 s 38.1%→ 40.5% 10.3%→ 10.3%

P1/T5 80 mW→ 100 mW 500 s→ 500 s 100%→ 100% 48.1%→ 63.1%

P2 120 mW→ 100 mW 750 s→ 900 s 72.7%→ 69.3% 22.6%→ 20.3%

P3

300 mW→ 400 mW
300 mW→ 600 mW
300 mW→ 600 mW
300 mW→ 160 mW

750 s→ 740 s
750 s→ 900 s
750 s→ 840 s
750 s→ 760 s

92.8%→ 93.4% 64.8%→ 74.4%

P4 120 mW→ 100 mW
120 mW→ 100 mW

750 s→ 720 s
750 s→ 900 s 70.4%→ 76.0% 41.0%→ 51.7%

4. Discussions

In this paper, we described the manual optimization method employed in Comsol
to determine the fiber position and power settings for I-PDT of MCAO. In addition, we
introduced another FEM software, Dosie (Simphotek, Inc., NJ). The importance of Dosie is
that it was designed specifically to become a medical computational device for treatment
planning of light delivery during I-PDT. In this paper, we demonstrated how to use
Dosie to run power allocation optimization for a known CDFs configuration using Dosie’s
Domination sub-maps method, as introduced in this paper. We validated the two software
packages in a solid phantom with calibrated optical properties, where the simulated light
distributions from the FEMs were in agreement with dosimetry measurements taken in
the solid phantom (CCC = 0.999 for Comsol and CCC = 0.994 for Dosie). Then, we used
four 3D models obtained from patients with MCAO to compare the two software packages.
Using the same fiber positions and light settings, we showed that Dosie is in agreement
with Comsol when calculating the irradiance and the rate-based light dose distribution
throughout the tumor geometries (CCC = 0.999 for irradiance calculation and CCC = 0.977
for a rate-based light dose). We conclude that Dosie can be used to accurately simulate
the light irradiance and fluence during I-PDT of MCAO. Any difference in the two FEM
simulations can be attributed to the difference in the 3D tetrahedral meshes used. Comsol
has its own built-in meshing toolbox while Dosie uses open-source software, SALOME, to
generate and annotate the tetrahedral meshes.

In our current clinical trial for the I-PDT of MCAO, we have been able to develop
treatment plans using our image-based FEM in Comsol that would deliver the effective
irradiance (≥8.6 mW/cm2) to 70–100% of the target tumor volume. However, due to
the location of the major critical structures and restrictions on treatment time, we have
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not always been able to develop a plan that would deliver the effective rate-based light
dose to the majority of the target tumor volume. Applying Dosie’s Domination sub maps
method to optimize CDF power output and treatment time, we may be able to increase the
percentage of the tumor volume that receives the effective rate-based light dose by as much
as 15%, thereby possibly improving the treatment outcome. Future studies will investigate
the use of Dosie’s domination sub-maps method in a clinical setting for power allocation
and treatment time optimization, as well as fiber placement.

5. Conclusions

Image-based FEM can be used to guide the delivery of a therapeutic light irradiance
and fluence for I-PDT in the treatment of patients with MCAO. Comsol Multiphysics®

and/or Dosie™ can be used to strategize a treatment plan for administering our recom-
mended effective rate-based light dose (i.e., the irradiance and fluence of, respectively,
≥8.6 mW/cm2 and ≥45 J/cm2) while keeping the irradiance and the fluence at the sur-
rounding critical structures (e.g., major blood vessels) below safety thresholds. We pre-
sented detailed description of treatment planning procedure using either Comsol or Dosie
for MCAO I-PDT. Dosie’s newly developed domination sub-maps method can improve the
planning of the delivery of the effective rate-based light dose. The presented optimization
methodology is fairly general and can be potentially adopted for other indications and
photosensitizers in I-PDT treatment planning, assuming that the appropriate rate-based
light doses are provided.
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