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Simple Summary: Radiation-induced heart disease represents a spectrum of early and late effects. It
is a significant concern for cancer survivors who receive thoracic radiation therapy, as it is the most
common nonmalignant cause of death in this population. Subclinical cardiac damage can be detected at
an early stage after irradiation and may possibly be used to predict late cardiac complications. Modern
radiotherapy techniques, such as deep inspiration breath-hold radiotherapy or intensity-modulated
radiation therapy, can reduce the heart dose and probably do not cause alterations in myocardial
perfusion. This paper describes the study protocol we will use to evaluate perfusion defects after
left-sided breast radiotherapy using myocardial perfusion single-photon computed tomography.

Abstract: Breast radiotherapy can lead to radiation-induced cardiac disease, particularly in left breast
cancers. Recent studies have shown that subclinical cardiac lesions, such as myocardial perfusion
deficits, may occur early after radiotherapy. The primary method for irradiating breast cancer, known
as opposite tangential field radiotherapy, can cause the anterior interventricular coronary artery to
receive a high dose of radiation during left breast irradiation. To explore alternative approaches
that could reduce the risk of myocardial perfusion defects in patients with left breast cancer, we
plan to conduct a prospective single-center study using a combination of deep inspiration breath
hold radiotherapy and intensity modulated radiation therapy. The study will use stress and, if
necessary, resting myocardial scintigraphy to assess myocardial perfusion. The trial aims to show
that reducing the cardiac dose with these techniques can prevent the appearance of early (3-month)
and medium-term (6- and 12-month) perfusion disorders.

Keywords: radiotherapy; breast cancer; heart toxicity; cardiac SPECT

1. Introduction

Breast irradiation can lead to incidental irradiation of the heart included in the irra-
diation field, resulting in an increased risk for a spectrum of early and late complications
known as radiation-induced heart disease (RIHD) [1,2]. In 2013, Darby et al. found that
there is a connection between the mean heart dose (MHD) and an increased risk of major
coronary events. The relative risk of such events increased by 7.4% per gray (Gy) with-
out any threshold following breast irradiation [2]. This finding has been confirmed in
subsequent studies on breast cancer patients treated with three-dimensional conformal
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radiotherapy (3D-RT), which have shown increases in relative risk of ischemic heart disease
of 4% and 6.4% per Gy of MHD [3,4].

However, these late effects can be considered definitive and can be corrected. One
of the aims of a radiation oncologist is to avoid all risks of side effects, principally heart
complications. Earlier research has established that perfusion defects are correlated with
wall motion abnormalities, decreases in left ventricle ejection function, or the manifestation
of clinical cardiac symptoms [5–7]. Lack of early event detection could be the proof of
heart-sparing and the hope to eliminate the late effect described by publications.

Within a year following radiation treatment of the left breast, an elevation in cardiac
uptake can be observed on 18F-fluorodeoxyglucose positron emission tomography, even in
the absence of coronary stenosis. This finding suggests a potential dysfunction of microvas-
cularization [8]. Perfusion defects may be irreversible or reversible, according to resting
single photon emission computed tomography (SPECT) studies. Infarcted myocardium de-
notes irreversible defects, whereas ischaemic myocardium is diagnosed through reversible
defects [9–14].

Cardiac SPECT is a sensitive and specific technique capable of detecting perfusion
abnormalities. In several studies, it has been reported that RIHD after adjuvant radiation
for left-sided breast cancer may occur earlier and can be detected by cardiac SPECT [5,10].
The rate of perfusion abnormalities observed by cardiac SPECT ranges from 27 to 70% in
patients after breast irradiation [9–12]. A prospective study of 71 patients irradiated for
breast cancer detected 42.9% perfusion abnormalities six months after radiation therapy for
left-sided breast cancer [13].

In patients with left-sided breast cancer, perfusion abnormalities are more commonly
observed, indicating that the incidence of these defects is concentrated in the radiotherapy
field and is linked to the degree of cardiac exposure [13–15]. In a study of 114 patients who
received breast cancer irradiation, volume-dependent perfusion defects were detected in
approximately 40% of patients within two years after irradiation. The occurrence of new
defects was found to be approximately 10% to 20% in patients with less than 5% of their
left ventricle included within the irradiation fields and 50% to 60% in those with greater
than 5% of their left ventricle included (p = 0.33 and p < 0.001) [5].

Breast cancer irradiation is mainly achieved by a tangentially opposed field approach.
Considering cardiac anatomy, when treating a left breast, it would be expected to have
a high dose to the left anterior descending coronary artery (LADA) but not to the left
circumflex and right coronary arteries [14,16]. The distribution of the dose to the heart is
heterogeneous [17], and cardiac tissues are differently radiosensitive [18,19]. Therefore,
MHD may not be the most relevant dose parameter to assess cardiac exposure [20].

In the era of modern radiotherapy techniques, cardiac substructures could be delin-
eated to optimize heart dosimetry and protect patients from cardiac complications [21].
The use of reference atlases and autosegmentation software relevant to these substructures
would save time, quality, and reproducibility in delineation and consequently in dose
calculation [22,23].

The correlation between perfusion defects and radiation dose to the myocardium
implies that strategies aimed at reducing the radiation dose have the potential to mitigate
myocardial damage. The distribution of the radiation dose to the heart is contingent
on several factors, including the radiation technique utilized, the irradiated volumes,
and the location of the radiation field [24,25]. A variety of radiotherapy techniques are
being used to spare the heart [26] by limiting the dose to the heart (intensity-modulated
radiotherapy (IMRT), proton therapy) [27], by maneuvers to increase the distance from the
heart to the target volume (deep inspiration breath-hold (DIBH), prone position) [28], or
by changing the target volume and not including all the breast glandular tissue (partial
breast irradiation) [29]. However, since RIHD appears clinically most often many years
after irradiation, the clinical impact of these techniques remains uncertain.

The DIBH technique can effectively displace the heart posteriorly, medially, and inferi-
orly away from the breast and the deep border of the tangential fields. Some investigations



Cancers 2023, 15, 2467 3 of 10

have recently been performed to aid in the prediction of major beneficiaries of the DIBH
technique using this beam arrangement [30,31], so that non-beneficiaries may be candi-
dates for alternative RT techniques such as IMRT [32]. There is a clear correlation between
the incidental radiation of the heart in left breast irradiation and the detection of early
postradiotherapy perfusion defects, which highlights the importance of implementing heart
sparing techniques. Studies suggest that DIBH may be beneficial in preserving cardiac
perfusion, particularly with low cardiac doses of less than 5 Gy at 6 months and 1 year
post-radiation therapy [33,34].

Advanced radiotherapy techniques, such as IMRT and VMAT, modify the distribu-
tion of doses to the heart by increasing low doses [35,36]. Biophysical models for normal
tissue complications suggest that the relationship between radiation dose and heart com-
plications follows a sigmoidal dose-response curve in this case [36], rather than a linear
curve. Therefore, the risk of heart complications, which was estimated at 7.4% per Gy by
Darby et al. [2], may be overestimated when smaller, more homogeneous doses are used.

This single-institution prospective study will assess the utility of DIBH utilizing a
controlled surface monitoring technique (AlignRT, Vision RT Ltd., London, UK) and IMRT
as a means of preventing cardiac perfusion defects as determined by cardiac gated-SPECT
in patients receiving irradiation for left-sided breast cancer.

2. Materials and Methods
2.1. Study Setting

This interventional, nonrandomized, monocentric, descriptive, and prospective pilot
study is being led by the University Radiotherapy Department of the Strasbourg-Europe
Cancerology Institute (ICANS).

This study was approved by the Ethics Committee of Ouest VI in August 2022 and
registered on clinicaltrials.gov in July 2022 (NCT05454553).

2.2. Participants

For a full overview of all inclusion and exclusion criteria, see Table 1.

Table 1. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

• Patients with left-sided breast cancer histologically
confirmed after lumpectomy or mastectomy with/without
lymph node involvement who are planned for DIBH-RT
or IMRT

• Age > 18 years
• Karnofsky Performance Status > 60%
• Absence of psychiatric illness hindering follow-up
• Patient understanding French
• Signature of informed consent
• Patient registered with social insurance

• Bilateral breast cancer
• History of thoracic irradiation
• Pregnancy or breastfeeding
• Any medical contraindication to cardiac SPECT or chest

CT angiography.
• Any medical contraindications about

regadenoson administration
• Patient under guardianship

Abbreviations: CT: computed tomography; DBIH-RT: deep inspiration breath hold radiotherapy; IMRT: intensity
modulated radiotherapy.

2.3. Practical Conduct of the Study
2.3.1. Screening Procedures and Baseline Evaluation

Eligible patients will receive detailed information about the study, including its char-
acteristics, consequences, and constraints, through a patient information sheet and consent
form, as well as through an oral explanation by the investigator. Patients who agree to
participate in the study will be required to sign an informed consent form. Before initiating
radiotherapy, the patients will undergo various examinations, including a chest CT scan
in the treatment position to aid in 3D treatment planning and dose calculation, a chest CT
angiography to identify cardiac substructures, and baseline cardiac gated-SPECT imaging.

clinicaltrials.gov
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2.3.2. Treatment Phase—Radiotherapy

During the treatment phase of this study, patients will receive a standard course of
breast radiotherapy administered in our department. However, there will be a difference in
the treatment planning process as cardiac substructures will be delineated on simulation
CT scans with the help of chest CT angiography on the Varian Eclipse treatment planning
system (Varian Medical Systems), according to Feng’s atlas [22], to ensure homogeneity and
reproducibility of the cardiac segmentation process. Delineated cardiac substructures will
be: left atrium, left ventricle, right atrium, right ventricle, left main coronary artery, LADA,
left circumflex artery, right coronary artery, pulmonary artery, superior vena cava, aortic
valve, pulmonic valve, mitral valve, tricuspid valve, atrioventricular node, pericardium,
ascending and descending aorta. Cardiac substructure delineation will be validated by an
experienced senior radiation oncologist. Target volumes, irradiation doses, and orientation
to the radiotherapy treatment machine will depend on the clinical situation, as in daily
clinical practice. Dose constraints for organs at risk follow the RECORAD 2022 recom-
mendations [37]. Planned target volumes are defined according to ESTRO guidelines [38].
Target volume coverage is: PTV = V95% ≥ 95%, D2% ≤ 107%, and Dmax ≤ 110%.

2.3.3. Follow-Up Phase

The follow-up will consist of cardiac gated-SPECT at 3 months, 6 months, and
12 months after the end of radiotherapy, in addition to the usual follow-up.

Before these examinations, a consultation with a nuclear medicine physician will be
carried out, which will allow the collection of clinical data, including details of eventual
side effects.

If a reversible perfusion defect is detected during the follow-up period, the patient
will be referred to a cardiologist for exploratory coronary angiography and, if necessary,
transcutaneous angioplasty.

2.4. Practical Implementation of Cardiac SPECT

Cardiac SPECT will be obtained using a dedicated CZT camera (D-SPECT, Spectrum
Dynamics Medical, Caesarea, Israel). According to the study protocol, patients will be
scheduled to undergo cardiac SPECT before and at 3, 6, and 12 months post-irradiation.
Stress electrocardiogram (ECG)-gated SPECT will be performed after infusion of 3 MBq/kg
99mTc-tetrofosmin (Myoview®, General Electric Healthcare, Chicago, IL, USA) at peak
pharmacological stress with regadenoson (single dosage: 400 µg; Rapiscan®, GE Healthcare,
Chicago, IL, USA). Intake of xanthic bases such as caffeine will be discontinued 24 h before
cardiac SPECT. Rest ECG-gated SPECT will be performed on the same day, 4 h after stress
ECG-gated SPECT, with administration of 8 MBq/kg 99mTc-tetrofosmin only if stress
ECG-gated SPECT shows abnormalities.

2.4.1. Cardiac SPECT Settings

The gamma camera will be configured to use a 140 keV photopeak with a 10% energy
window. The acquisition time will be determined by a precount value of one hundred six
counts originating from the left ventricle. The images will be reconstructed with Spectrum
Dynamics software, without attenuation correction, and gated into 16 frames per cardiac cycle.

Cardiac SPECT images will provide objective quantitative data on regional myocardial
perfusion, regional wall motion, and ejection fraction. The quantitative analysis will be
performed using Cedars-Sinai software (New York, NY, USA) for quantitative gated SPECT
(QGS)/quantitative perfusion SPECT (QPS).

2.4.2. Use of Regadenoson (RAPISCAN®)

The quality of the cardiac SPECT results is closely tied to the quality of the stress
test that is performed. The stress test can be conducted through physical exercise, such
as running on a treadmill or pedaling on a bicycle. To ensure that the test is satisfactory,
the patient must achieve an appropriate heart rate level of at least 85% of their maximum
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theoretical rate during the physical exercise stress test. However, depending on their clinical
history, up to 40% to 50% of patients may not be able to reach this heart rate threshold.
If a physical stress test is inadequate, not recommended, or unfeasible for the patient,
administration of a pharmacological stress agent through intravenous injection can be used
to induce myocardial perfusion abnormalities.

To have a secure and reproducible protocol for patients, a myocardial stress scan
will be performed with regadenoson, a pharmacological stress agent for radionuclide
myocardial perfusion imaging.

Regadenoson causes a rapid increase in intravascular adenosine. Less than 60 s are
needed to administer regadenoson (400 µg) and 99mTc-tetrofosmin. As a result, it is
expected that the heart rate will increase while the blood pressure will decrease after the
injection. Patients are advised to maintain a seated or lying position and should be closely
monitored at regular intervals until ECG parameters, heart rate, and blood pressure have
returned to their pre-injection levels.

The most reported adverse events following administration of regadenoson as a stress
agent were dyspnea (28%), headaches (26%), rash (16%), and chest discomfort (13%), which
typically occurred within 30 min. Overall, regadenoson was found to be well tolerated,
with an incidence of serious adverse events of 1% [39,40]. Aminophylline may be used to
attenuate severe and/or persistent adverse reactions to regadenoson. Due to the rupture
issues that are currently encountered with regadenoson, two other molecules should be
chosen for use in patients undergoing stress ECG-gated SPECT for the purposes of this
study, namely, dipyridamole or dobutamine, according to the patient’s comorbidities. In
the absence of rupture, administration of regadenoson will be preferred.

2.5. Objectives
2.5.1. Primary Endpoint

The primary outcome measure of this study is the occurrence of perfusion defects on
cardiac SPECT scans during follow-up periods of 3, 6, and 12 months after radiation therapy.

2.5.2. Secondary Endpoints

The secondary endpoints are as follows:

- The incidence of left ventricular wall motion disorder and LVEF quantification on
follow-up cardiac SPECT scans at 3-, 6-, and 12-months post-irradiation.

- Measurement of the delivered doses to the cardiac volumes and their substructures.
- The influence of cardiac risk factors on postradiation myocardial perfusion.
- Assessment of the influence of chemotherapy/trastuzumab/trastuzumab emtansine

exposure on postradiation myocardial perfusion.
- Assessment of tumor-bed boost location on cardiac dose.

2.6. Participant Timeline

Figure 1 shows the different stages of the clinical trial.

2.7. Data Collection, Management, and Analysis
2.7.1. Assessment of Myocardial Perfusion

A nuclear medicine physician (blinded to clinical information) will independently
determine a visual score for each patient’s cardiac SPECT, aided by the quantification
software (QGS/QPS Cedars-Sinai software), as performed in clinical practice. The
17-segment model cartography of the left ventricle recommended by the American Heart
Association will be used for the evaluation of myocardial perfusion [41]. The relative
perfusion to each segment will be quantified in five gradations of perfusion defect, with
each assigned a numerical value as follows: 0 = no defect; 1 = mild defect/equivocal;
2 = moderate defect; 3 = severe defect; and 4 = absent perfusion. Normal studies,
therefore, will have a summed stress score (SSS) or summed rest score (SRS) of 0 and
the highest possible score of 68 (absent perfusion in all 17 segments).
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Figure 1. EDIPE trial schema. Abbreviations: CT: computed tomography; DIBH: deep inspiration
breath hold; IMRT: intensity modulated radiation therapy; M: month; RT: radiotherapy; SPECT: single
photon emission computed tomography.

2.7.2. Qualitative Scoring of Changes on Cardiac SPECT

Postradiotherapy cardiac SPECT will be compared to baseline to assess changes in
cardiac perfusion. Increases in SSS or SRS ≥ 3 points in one segment or ≥ 2 points in at
least two segments between post- and pre-RT scans will be considered clinically significant.

2.7.3. Assessment of Ventricular Ejection Function

The QGS/QPS Cedars-Sinai software will automatically calculate left ventricular
ejection fractions (EFs). This will be accomplished by estimating the LV endocardial surface
throughout the cardiac cycle and calculating LV volumes as the sum of the voxels within
the contours of each frame. End-diastolic and end-systolic volumes will be determined
from the LV volume curves, and EFs will be calculated accordingly.

2.7.4. Assessment of Wall-Thickness Abnormality

The presence or absence of wall-motion abnormalities will be noted for each of the
17 cardiac segments, with any wall-thickness abnormalities visually categorized as hypoki-
netic, akinetic, or dyskinetic. The size of the affected wall (a small or large portion) will be
classified as mild or severe.

2.7.5. Dosimetric Data

Dosimetric parameters that will be collected are: mean dose (Dmean), maximum dose
(Dmax), and minimum dose (Dmean) for all substructures; V5Gy and V25Gy for cardiac
cavities (left atrium, left ventricle, right atrium, right ventricle); V30Gy and V40Gy for coro-
nary arteries (left main coronary artery, left anterior descending artery, left circumflex artery,
right coronary artery), according to DEGRO breast cancer expert panel constraints [42].
Data will be extracted manually from the Varian Eclipse treatment planning system (Varian
Medical Systems).

2.7.6. Clinical Data

Other clinical data will be collected during consultation, from clinical exams, and from
medical files.
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2.7.7. Data Management

Data will be collected and managed with the use of the clinical data management
system CleanwebTM.

2.8. Statistical Analysis
2.8.1. Sample Size

The estimation of the anticipated incidence of perfusion defects is approximately 17%.
The two radiotherapy techniques evaluated (DBIH and IMRT) reduce heart exposure to
irradiation. The objective of this dose reduction is to reduce the incidence of perfusion
defects to 0%. Assuming an α of 0.05 and 80% power, and since two irradiation techniques
are evaluated, the study should include at least 58 subjects to ensure adequate power and
compensation for possible loss of patients during the protocol (Rosner B. Fundamentals of
Biostatistics, 7th ed., Boston, MA: Brooks/Cole).

2.8.2. Statistical Methods

Medians, proportions, and percentages will be used to describe the population and
resulting observations.

The incidence of perfusion defects on follow-up cardiac SPECT will be calculated
based on the number of patients with an increase in SSS or SRS ≥ 3 points in one segment
or ≥2 points in at least two segments between post- and pre-radiotherapy cardiac SPECT.
For comparison among cardiac SPECT results at different time points, the Wilcoxon rank-
sum test will be used. The Bonferroni technique will be applied to account for multiple
comparisons. Spearman rank correlation will be employed to examine the link between
cardiac SPECT changes at 6 months and irradiated heart structures. A univariate linear
regression analysis will be conducted to investigate the association between various car-
diovascular risk factors and alterations in cardiac SPECT defects. Standard proportional
hazard regression analysis will be used for the subsequent multivariate analysis. A p value
of 0.05 will be considered indicative of statistical significance.

2.8.3. Project Duration and Expected Outcomes

The estimated period of inclusion will be one year. The estimated study completion
date will be the end of 2023. The follow-up duration will be one year. The complete
duration is estimated to be two years.

The study is expected to demonstrate that both radiotherapy techniques studied avoid
the appearance of early- and medium-term perfusion defects. For this purpose, this trial
proposes to reinforce the methodology of the previous studies by including a significant
number of patients and by performing cardiac SPECT that follows a reversible abnormality
detection protocol (resting and stress phases) and is administered at a frequency that covers
the other data in the literature.

3. Discussion

Breast cancer patients are expected to have a prolonged lifespan, and the potential for
a significant cardiovascular event is a significant public health concern. Recent findings
indicate that RIHD may arise as an earlier complication and that subclinical cardiac damage
can be detected. The conventional irradiation technique for breast cancer is opposite
tangential field radiotherapy; however, this technique can cause early perfusional defects,
according to the literature. Modern radiotherapy techniques, such as IMRT or DBIH, can
result in reduced heart doses and probably do not cause alterations in myocardial perfusion.

4. Conclusions

If the hypothesis of the absence of perfusion defects is confirmed, then the benefit of the
use of these two irradiation techniques will be real and could be considered as new references.
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Cardiac follow-up is regularly questioned after breast radiotherapy; if these tech-
niques show no negative impact, specific post-irradiation monitoring will probably no
longer be necessary.

5. Patents
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