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Simple Summary: Prostate cancer (PCa) is the leading cancer in incidence and second leading
cause of cancer mortality in US men. Recent data showed a 3% increase in PCa incidence rate
each year from 2014 through 2019. African American (AA) men have 1.6-fold higher incidence and
2.2-fold higher PC mortality rates than European American (EA) men. Growing evidence shows that
miRNAs are closely associated with aggressiveness and racial disparity in prostate cancer and might
facilitate the prediction of prognosis and a treatment plan. In this study, we identified differentially
expressed miRNAs, which are significantly correlated with the aggressiveness and health disparity of
prostate cancer. These findings may assist personalized medicine, suggesting miRNAs as promising
biomarkers for prostate cancer, especially in African American men.

Abstract: Prostate cancer is the leading cancer in incidence and second leading cause of cancer mor-
tality in US men. African American men have significantly higher incidence and mortality rates from
prostate cancer than European American men. Previous studies reported that the disparity in prostate
cancer survival or mortality can be explained by different biological backgrounds. microRNAs
(miRNAs) regulate gene expression of their cognate mRNAs in many cancers. Therefore, miRNAs
may be a potentially promising diagnostic tool. The role of miRNAs in prostate cancer aggressiveness
and racial disparity has not been fully established. The goal of this study is to identify miRNAs
associated with aggressiveness and racial disparity in prostate cancer. Here we report miRNAs that
are associated with tumor status and aggressiveness in prostate cancer using a profiling approach.
Further, downregulated miRNAs in African American tissues were confirmed by qRT-PCR. These
miRNAs have also been shown to negatively regulate the expression of the androgen receptor in
prostate cancer cells. This report provides a novel insight into understanding tumor aggressiveness
and racial disparities of prostate cancer.
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1. Introduction

Prostate cancer (PCa) is the leading cancer in incidence and second leading cause of
cancer mortality in US men [1]. In 2023, new prostate cancer cases and deaths expected in
the US are 288,000 and 34,700, respectively. In addition, recent data showed a 3% increase in
PCa incidence rate each year from 2014 through 2019 [2]. African American (AA) men have
1.6-fold higher incidence and 2.2-fold higher PC mortality rates than European American
(EA) men [3]. Previous studies have reported that PCa survival or mortality disparities
cannot be fully explained by different socioeconomic status [4,5]. These results suggest that
biological background accounts for a significant portion of PCa disparity with regard to
mortality, incidence, and progression in AA men compared to EA men. However, further
investigation is required to uncover the mechanisms underlying abnormal gene regulation
and racial disparity. Also, there is an unmet need to develop prognostic biomarkers that
enable the reduction of AA PCa racial disparities.

MiRNAs are endogenous, short (19-24 nucleotides) non-protein-coding RNAs that
regulate gene expression at the posttranscriptional level via binding to 3'-untranslated
regions of protein-coding transcripts [6]. MiRNAs are pleiotropic in terms of functions;
they regulate the expression of a broad range of genes involved in cancer [7]. MicroRNAs
(miRNAs) are involved in gene silencing through inhibition of translation and destabiliza-
tion of mRNAs, and thereby regulation of a variety of signaling pathways [8]. Dysregulated
expression of miRNAs contributes to the abnormal expression of mRNAs which mediates
phenotypic changes in various cancers [9]. Recently, several studies were reported on the
role of miRNAs in risk, progression, and prognosis of prostate cancer. miR-5100, miR-199b-
3p, miR-26b-5p, and miR-98-5p were associated with the risk of prostate cancer [10-12]. In
addition, miR-26b-5p, miR-4732-3p, miR-181A, miR-205, miR-3195, and miR-4417 were
suggested as potential biomarkers for differentiating advanced cases from an early stage of
prostate cancer [11,13,14]. miRNA-532-5p, miR-17-5p, and miR-199b-3p were proposed as
biomarkers for prognosis [12,15,16]. However, the role of miRNA-mediated gene expres-
sion regulation in the biological contribution to the observed racial disparities in prostate
cancer has not been established. Thus, the goal of this study is to identify miRNAs involved
in the racial disparities of PCa. Additionally, these miRNAs may be a risk factor for poor
prognosis among AA patients. Thus, regulation of these miRNAs may offer a preventative
and therapeutic approach for men at risk of PCa in the AA population.

2. Materials and Methods
2.1. Patient Selection and Procurement of Human Prostate Tissues

Prostate tissues obtained by radical prostatectomies were procured in the Cooperative
Human Tissue Network (Southern division) at the University of Alabama at Birming-
ham (UAB) in accordance with an approved IRB protocol. Formalin-fixed and paraffin-
embedded (FFPE) tissues from 25 PCa patients, including 10 AA patients, were evaluated
by a pathologist, and tumor and adjacent non-involved areas were macro-dissected for
RNA extraction followed by qRT-PCR for the expression of candidate miRNAs in patient
tissues, as described previously [17,18]. Cases were selected based on the Cancer of the
Prostate Risk Assessment (CAPRA)-S score, a prognostic tool for predicting a patient’s risk
for biochemical failure following radical prostatectomy [19].

2.2. RNA Extraction and cDNA Synthesis

RNA extraction from FFPE tissue sections was conducted using the RecoverAll kit
(Life Technologies, Carlsbad, CA, USA). Before RNA was extracted, the tissue sections were
evaluated for the presence of tumor lesions. Adjacent non-involved tissue blocks were used
for the control group. The non-involved tissue sections were evaluated for the presence
of tumor lesions by a pathologist. If tumor cells were observed in more than 10% of the
section, additional sections were evaluated in a similar manner. Total RN A was isolated
from 20 pm thick sections from tissue blocks and used for subsequent cDNA synthesis
using the QuantiMir RT kit (System Biosciences, Palo Alto, CA, USA). Poly-A tail synthesis
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was first conducted using PolyA polymerase, and oligo dT anchor was annealed to the
RNAs. RNA samples were next used for reverse transcription and quantitative RT-PCR
(gRT-PCR).

2.3. Quantitative Real-Time PCR

The expression of mature miRNAs from FFPE tissues was determined by using the
miRNome miRNA Profiling Kit (System Biosciences). The kit provides specific primers
for 1,113 mature miRNAs and includes primers for 3 internal control RNAs (U6 snRNA,
RNU43 snoRNA, RNU1A snRNA). MiRNA IDs listed in the text are based on Sanger
miRBase identifiers. Primers were designed to maintain uniform amplification efficiencies.
qRT-PCR reaction mixtures were prepared using 2X Maxima SYBR Green/ROX qPCR
Master Mix (Thermo Fisher Scientific, Waltham, MA, USA). For profiling and validation,
qRT-PCR was conducted using the 7900HT thermal cycler (Applied Biosystems Inc., Foster
City, CA, USA). The data were initially analyzed using the SDS v2.3 software (ABI). DNA
concentrations were reported through SYBR Green fluorescence and normalized to that
of the passive reference dye, ROX. Ct values calculated by the SDS 2.3 software were
transferred to the miRNome analysis software (SBI) to derive AACt values. The miRNome
analysis software calculates the ACt values based on the mean of the reference genes. The
individual ACt values are then compared across samples to generate the AACt values for
each miRNA. miRNAs that showed significant changes in expression were then subject
to further analysis. The statistical analysis of the qRT-PCR data is described below. We
used macro-dissected prostate tumor tissues and corresponding adjacent uninvolved areas
to monitor the expression of mature miRNAs. Patients were selected based on specific
criteria including no prior treatments, Gleason scores, pre-surgical prostate-specific antigen
(PSA), local invasion, and CAPRA-S score [19] stratified into low, medium, and high risk of
biochemical recurrence (Table 1). We used a profiling approach with miRNome miRNA
profiling kit (System Biosciences) to identify miRINA expression patterns for each patient’s
tumor and associated adjacent uninvolved prostate tissue.

Table 1. Selected characteristics of patients.

PatientID  Age Race PSA G;‘Zzsr‘;“ SM!  ECE? InV]j:ion SVI3 Stage C";Ef;:'s Risk
1 78 White 14.3 3+2=5 Neg Neg Neg Neg PT3NOMO 2 low
2 43 Hispanic 5.9 3+3=6 Pos Neg Neg Neg PT2CNXMX 2 low
3 53 Black 4.3 3+3=6 Pos Neg Neg Neg T2cRINXMX 2 low
4 69 White 8.2 3+4=7 Neg Neg Neg Neg PT2CNOMX 2 low
5 62 White 7.8 3+4=7 Neg Neg Neg Neg PT2CNOMX 2 low
6 40 Black 8.8 3+4=7 Neg Neg Neg Neg PT2CNXMX 2 low
7 58 White 6.6 3+4=7 Neg Neg Neg Neg PT2CNXMX 2 low
8 61 White 3.7 3+4=7 Neg Pos Neg Neg PT3ANOMX 2 low
9 69 Black 23.3 3+3=6 Neg Neg Neg Neg PT2NOMX 3 med
10 60 NA 6.3 3+4=7 Pos Neg Neg Neg PT3BNOMX(IV) 3 med
11 67 White 6.2 3+4=7 Pos Neg Neg Neg PT2CRINXMX 3 med
12 72 Black 47 3+4=7 Neg Neg Neg Pos T3bNOMX 3 med
13 61 UK* 5.1 3+3=6 Pos Neg Neg Pos PT3BNOMX 4 med
14 54 Black 87.4 3+3=6 Neg Pos Neg Neg PT3aNOMX 4 med
15 61 Black 9.8 3+4=7 Pos Neg Neg Neg PT3ARINOMX 4 med
16 48 Black 9.4 3+4=7 Pos Neg Neg Neg PT2CNOMX 4 med
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Table 1. Cont.

Gleason LN CAPRA-S

PatientID  Age Race PSA Score sm1 ECE? Invasion Svi? Stage Score Risk
17 65 Black 8.8 3+4=7 Pos Neg Neg Neg PT2cNXMX 4 med
18 61 White 5.4 4+3=7 Neg Neg Neg Pos PT3BNOMX 4 med
19 48 Black 6.5 3+4=7 Pos Pos Neg Neg T1eNXMX 5 med
20 53 White 8.5 3+4=7 Pos Pos Neg Neg PT3aR1INXMX 5 med
21 63 White 48 3+4=7 Pos Pos Pos Pos PT3BRINIMX 7 high
22 62 Black 14.9 3+4=7 Pos Neg Neg Pos pT3bNOMX 7 high
23 54 White 13.9 4+3=7 Pos Pos Neg Neg PT3bRINOMX 7 high
24 60 White 5.6 4+3=7 Pos Pos Pos Pos PT3bN1MX 8 high
25 64 White 51.8 4+5=9 Pos Pos Neg Neg NA 9 high

1 SM: surgical margin 2 ECE: extra-capsular extension % SVI: seminal vesicle invasion  UK: unknown.

The analysis of miRNA expressions stratified by CAPRA-S score identified patterns
consistent with our hypothesis and previous reports [10,11].

2.4. Data Analysis

Normalization of qRT-PCR expression values was further refined using the qBasePlus
software 2.0 (Biogazelle: Zwijnaarde, Oost-Vlaanderen, Belgium). Using the Genorm
functionality included with the qBasePlus software, 7 additional stably expressed miRNAs
were identified. The ACt value for each miRNA was then re-calculated utilizing the
7 additional miRNAs plus the 3 original controls. Following normalization, the expression
of the reference miRNAs was re-evaluated to ensure their stability across samples was
maintained. For the fold change, values were calculated next to determine expression
differences between paired adjacent uninvolved and tumor tissues. After normalization,
the software assigned relative expression values where the mean expression of the reference
genes is determined to be a value of 1. The expression of each miRNA is then assigned a
relative expression value with respect to the geometric mean of the controls. The geometric
means were compared using the formula:

ACt control = 2~ (CMc-GM) "

where GMc is the geo-mean of the control sample and GMr is the geo-mean of the reference
sample. The fold change or AACt, for each miRNA was then calculated using the formula:

AACt = 2~ (CRCC) 5 (ACt control) (2)

where CtR = Reference sample miRNA Ct value, and CtC = Control sample miRNA Ct
value.

Additional analysis was conducted using Cluster 3.0 software. For cluster analysis,
log?2 transformed normalized Ct values for each miRNA in each tumor, and uninvolved
samples were used in an expression matrix where each miRNA is presented in rows and
samples are presented in columns. For hierarchical clustering, we used a gene-centric
(miRNA) approach to analyze and display the expression pattern upon centering; which,
shows the relative up—down expression pattern for a particular miRNA across the samples
based on its median expression value in shades of red (up) and green (down). The results of
cluster analysis are displayed as heat maps generated by Java TreeView software. Heatmaps
of differentially expressed miRNAs are created for viewing similar miRNA groups in a
dataset using Pearson correlation with Average Linkage.
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2.5. Statistical Analysis

Statistical analysis of the expression data was performed using log2 transformed Ct
values using GraphPad Prizm. The p-values were calculated by the Mann-Whitney U test
to estimate the statistical significance between the two groups.

3. Results
3.1. miRNA Expressions Deregulated in Human Prostate Tumors

Normalized relative expression values were used for Cluster analysis. Hierarchical
clustering of the normalized and log2-transformed expression data showed four distinct
clusters of miRNAs (Figure 1).

j| Uninvolved
| Tissues

Tumors

Figure 1. Clustering of miRNA expressions in tumor tissues and uninvolved prostate tissues. Hierar-
chal clustering of log2-transformed relative expression values of miRNAs in uninvolved prostate and

tumor tissues.

Clusters 1 and 3 identified miRNAs distinctly expressed between malignant and
uninvolved tissues (Figure 2A). The Log2-transformed relative expression values were
extracted from each cluster and the average expression of each miRNA was calculated
for both uninvolved tissue and tumor tissue samples. The average relative expression for
individual miRNAs (unidentified) in both uninvolved and tumor groups is presented in
Figure 2B,C for clusters 1 and 3, respectively. Thejittered strip chart displays the distribution
of average miRNA expression values for both groups including the average of all miRNAs
in the cluster (black bars) 1 SD. In cluster 1 (Figure 2B), we identified 24 miRNAs (average
values) that displayed downregulation in tumor tissues compared to uninvolved tissues.
Examination of this cluster distinguished six miRNAs (miR-143. -133a, -133b, -204, -221,
-222) with on average greater than 2-fold downregulation (p = 0.0002, 1.68 x 10>, 0.005,
0.0009, 1.17 x 107>, 0.0005, respectively) in expression in malignant tissues. Alternatively,
the trend of average miRNA expression presented in cluster 3 identified 17 miRNAs with
increased expression in tumor tissues compared to uninvolved tissues (Figure 2C). Cluster
3 also contained a subset of six miRNAs that displayed on average a change in expression
greater than 2-fold. These six miRNAs (miR-375, -183, -93, -96, -127-5p, and -380) expressed
higher levels in malignant tissues compared to uninvolved tissue samples (p = 0.06, 0.0003,
0.0002, 0.032, 0.012, 0.013, respectively).
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Figure 2. Analysis of clusters 1 and 3 identified from miRNA profiling of prostate tissues. (A) Heat
maps of expression data for miRNAs in clusters 1 and 3; uninvolved tissue samples grouped under
the blue line (left side) and tumor samples grouped under the red line (right side). (B,C) The
average expression value of each miRNA was calculated for uninvolved tissue samples (blue circles)
and tumor samples (red squares). These values were used to generate dot plots for cluster 1 (B)
(p = 4.83 x 10718) and cluster 3 (C) (p = 1.70 x 10~10).

3.2. Deregulation of miRNA Expressions Associated with Aggressiveness of Prostate Tumors

Initial analysis of clusters 2 and 4, identified from miRNA array expression analysis
(Figure 1), did not show the visibly unique expression patterns between tumor and unin-
volved prostate tissues, as identified in clusters 1 and 3. The cluster 2 heat map (Figure 1)
depicts similar levels of expressions for all miRNAs (miR-103, -107, -29a/b/c, -199a/b-3p,
and let-7a/b/d/e/g/i) within individual patient tissue; while, miRNAs display heteroge-
neous expression across samples. Further interrogation of the cluster revealed a correlation
of miRNA expression profiles with the patient’'s CAPRA-S score (Figure 3C). Fifty percent
(9/18) of tumor tissues from low- and medium-risk patients (CAPRA-S score 0-5) expressed
cluster-specific miRNA averages below the average expression observed in all benign sam-
ples. However, 83% (5/6) of tumor tissues from high-risk patients (CAPRA-S score >6)
expressed cluster-specific miRNA averages below the average expression observed in all
benign samples (Figure 3A,C). When the cluster was dissected into individual miRNAs,
there was a 2-fold change in expression (£0.2) for nine of 13 miRNAs in cluster 2, while
there was no significant reduction observed in low- and medium-risk patient tumors. In
cluster 4, the trend of increasing miRNA expression correlates positively with increasing
risk of disease recurrence as predicted by CAPRA-S score groups: low risk (CAPRA-S: 0-2),
medium risk (CAPRA-S: 3-5), and high risk (CAPRA-S: >6) (Figure 3B,D). Based on the
fold change in the expression of miRNAs stratified by CAPRA-S risk groups, and have
identified the top 60 miRNAs with >1.5-fold changes in expression in high-risk groups
(30 upregulated and 30 downregulated).
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Figure 3. Analysis of clusters 2 and 4 identified from miRNA profiling of prostate tissues. Correlation
of miRNA expressions with CAPRA-S risk group. (A,B) Heat maps of expression data for miRNAs
in clusters 2 (A) and 4 (B). (A) Uninvolved tissue samples (U) grouped under the blue line, low- and
medium-risk (L+M) patient tumor samples grouped under the gold line, and high-risk (H) patient
tumor samples grouped under the red line. (B) Uninvolved tissue samples appear under the blue
line, low-risk patient tumor samples are grouped under the purple line, medium are grouped under
the orange line, and high-risk patient tumor samples are grouped under the red line. (C,D) The
average expression value of each miRINA was calculated for uninvolved tissues and tumor tissues
grouped by CAPRA-S risk. Values were used to generate dot plots for cluster 2 (C) (p = 0.024 U vs.
L+M, 2.14 x 10712 U vs. H, 1.57 x 1071% L+M vs. H) and cluster 4 (D) (p = 1.46 x 107 U vs. L,
2.60 x 1075 U vs. M, 251 x 10 Uwvs. H, 0.06 L vs. M, 1.01 x 10~ L vs. H, 0.0002, M vs. H).

3.3. Differential Expression of miRNAs in Prostate Tumors from African American and European
American Patients

Next, we sought to identify miRNA expression profiles differentially expressed in
malignant prostate tissues from AA men, specifically. From the data generated in our
miRNA profiling study, we compared the relative expression of miRNAs in prostate tumor
tissues from AA and European American (EA) men. Our analysis identified miRNAs that,
on average, exhibited a >2-fold difference in expression (increased and decreased) in AA
compared to EA men. Expressions of some miRNAs, miR-541, -34c-5p, -135b, -299-3p,
-491-5p, and -30e, were reduced in the tumors of AA men compared to EA men. These
miRNAs also have been shown to negatively regulate the expression of the androgen
receptor in PCa [20]. To better understand how these miRNAs are regulated, we examined
the fold change in expression of these miRNAs in patient-specific tumor tissues compared
with matched benign prostate tissue. The patients were grouped by race and subdivided
by CAPRA-S score (0-3 or >4). This analysis highlighted the consistent pattern of down-
regulation of these six miRNAs in AA men. In comparison, EA patients displayed a much
broader distribution in expression. No significant difference in expression was noted in
samples with a CAPRA-S score lower than or equal to 3 (Figure 4A); while, a significant
difference in expression of five miRNAs at a 5% level and one at a 10% level was noted in
AA tumors with a CAPRA-S score >4 compared to EA tumors (Figure 4B).
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Figure 4. Top miRNAs with differential regulation between European American (EA) and African
American (AA) men: (A,B) the fold change in expression of AR-regulating miRNAs grouped by
race. Patients with CAPRA-S scores lower than 3 (A) and greater than 3 (B) are presented (p values:
*<0.07, ** < 0.05.

4. Discussion

African American (AA) men are at a 2.2-fold increased risk of prostate-cancer-specific
(PCa) mortality compared with European American (EA) men. However, the relationship
between this observation and miRNAs, and how this relationship explains PCa racial
disparities, is not well established. This study represents an ongoing effort to investigate
miRNAs in AA men with PCa. We observed that several differentially expressed miRNAs
were found in tumor tissue from AA PCa patients. Our findings may help us to understand
potential mechanisms for tumor aggressiveness and racial disparity. Once we identify these
unique miRNA profiles at diagnosis, this information may provide biomarkers to determine
treatment strategies for men with aggressive PCa. In this study, we identified miRNAs
associated with PCa, aggressiveness, and potential health disparities among AA men.

4.1. miRNAs Associated with Tumor Status

Several miRNAs showed at least a 2-fold difference in expression between the tumor
and adjacent uninvolved tissues. These miRNAs are miR-375, -183, -93, -96, -127-5p, -380,
-143, -133a, -133b, -204, -221, and -222. Among these miRNAs, several miRNAs have been
extensively investigated in previous studies.

For example, miR-375 was identified as a biomarker with a high-level sensitivity and
specificity in PCa detection [21]. Several studies have observed that miR-375 is upregu-
lated in primary tumor tissues and serum [22,23]. Further, Schaefer et al. reported the
combination of six miRNAs including that miR-375 was used; the AUC was significant
(0.88) in discriminating normal and tumor tissue [24]. miR-375 is also associated with
clinical variables. Including, a high Gleason score, lymph-node-positive status, biochemical
recurrence, and metastasis [25-27]. Cheng et al. [28] observed upregulation of miR-375 in
serum samples from patients with metastatic, castration-resistant PCa. These results were
found in the screening cohort; the serum level of miR-375 was significantly increased in PCa
cases as compared with the testing cohort (AUC = 0.77) and a validation cohort. Haldrup
et al. [29] confirmed dysregulation of miR-375 using genome-wide miRNA profiling of
serum samples and was able to identify 84% of all PCa patients. However, these findings
of miR-375 in tumor tissue are not always consistent. Kachakova et al. reported that miR-
375 was significantly downregulated in 83.5% of PCa patients compared to benign prostatic
hyperplasia (BPH) controls [30]. Although functional studies might define certain miRNAs
as onco-miRNAs or tumor-suppressor miRNAs, their expression in prostate tumors might
not correlate with these classifications. For instance, normally, miR-375 is upregulated as
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an onco-miRNA in PCa tumor tissue relative to normal tissue. However, forced expression
of miR-375 decreased proliferation and invasion of androgen-independent PC-3 cells [31].

The overexpression of miR-183 in PCa tissues was reported in previous studies [32-34].
Larne et al. proposed a formula that can predict aggressive progression characteristics.
This formula, consisting of four miRNAs including miR-183, is associated with tumor
grades, PSA levels, metastasis, and survival. More importantly, this signature distinguishes
aggressive tumors from non-aggressive PCa with an Area under the ROC Curve (AUC) of
0.90 [35]. Martens-Uzunova et al. found that levels of several miRNAs, including miR-183,
significantly differ in lymphocytes and could be used in the evaluation of the progression
of PCa [36]. Recently, miR-183 was suggested as one of the oncogenic clusters for PCa after
a series of analyses using various data including TCGA [37].

miR-96 was reported as one of the overexpressed miRNAs in malignant prostate tissue
compared with normal adjacent prostate tissue [32-34,38—40]. Schaefer et al. reported
that miRs-96 showed a significant correlation with the Gleason score. Furthermore, the
combination of six miRNAs including miR-96 provided a significant AUC (0.88) in discrim-
inating normal and tumor tissue [24]. Larne et al. developed a formula that can predict
poor outcomes, such as grades, PSA level, metastasis, and survival. More importantly,
this formula distinguishes aggressive tumors from non-aggressive PCa with an AUC of
0.90 [35]. Martens-Uzunova et al. found miRNA-96 expression was significantly differ-
ent in lymphocytes from progressed PCa [36]. Recently, miR-96 was suggested as one of
the onco-miRNAs after a series of bioinformatic analyses using various data including
TCGA [37].

4.2. miRNAs Associated with Prognosis

Deregulated miRNA expression has been associated with tumor progression in PCa [41].
Previous studies reported differentially expressed miRNAs associated with PCa progres-
sion [21,42-44]. Although those results are not consistent, several miRNAs, such as miR-1,
-145, -205, -221, and -375, were suggested as good candidates for the prognosis of prostate
cancer [42,44,45]. We identified several miRNAs, miR-1, -127-5p, -139-5p, -145, 296-5p, -302a,
-330-5p, -365, -495, -509-3-5p, -511, and -518d-5p, as potential biomarkers for prognosis in this
study. Among these miRNAs, some miRNAs were evaluated in previous studies.

miR-1 is known as an oncomiRNA, and is involved in bone metastasis by activating the
epidermal growth factor (EGFR) [46]. Previous studies reported that the downregulation
of miR-1 in PCa tissues is linked to PCa progression, castration-resistant disease, and
metastasis [36,47]. Furthermore, downregulations of miR-1 contribute to the proliferation,
migration, and invasion of PCa cells. Therefore, miR-1 was suggested as a candidate
prognostic biomarker for PCa in previous studies [22,46,48-52].

miR-139-5p downregulation in prostate tumor tissue has been previously reported [36,53].
Prior findings indicate that miR-139-5p inhibits the proliferation of PCa cells by interfering
with the cell cycle [54], functioning as a tumor suppressor in PCa through regulation of
SOX5 [55].

miR-145 binds to the 3'UTR of MYO6 and is regulated inversely, resulting in a decrease
in myosin VI; which, is involved in cancer-related cell migration and {3-actin in the LNCaP
PCa cell line [23]. Ectopic expression of miR-145 in LNCaP cells significantly reduced the
proliferation [21,56-58]. miR-145 expressed in endothelial cells of blood vessels but not
stromal cells [21]. Several studies reported downregulation of miR-145 in prostate tumor
samples [23,24,57-61] and metastatic lymph nodes [36]; especially miR-145, which showed
significant downregulation in aggressive PCa [58]. The reduction of miR-145 expression
was also correlated with clinical variables, such as the Gleason score, clinical stage, tumor
size, and PSA level. Further, miR-145 expression was correlated with risk for biochemical
recurrence and shorter disease-free survival [35,50,62,63]. Based on these studies, miR-
145 was suggested as a biomarker with a high-level sensitivity and specificity in PCa
detection [21].
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4.3. miRNA Associated with Racial Disparity

We are interested in investigating the role of miRNAs associated with health disparities
in PCa. We used prostate tissue samples obtained from AA and EA patient cohorts. We
used microarray analysis and qRT-PCR techniques to confirm our results.

The relative expression of miR-34c was significantly lower in the tumor tissues com-
pared to the benign prostatic hyperplasia (BPH) tissues, and inversely correlated with a
high Gleason score [39], PSA level, metastatic status, survival [34,64,65], clinical stage, and
status of TMPRSS2-ERG [66]. Low expression of miR-34c was suggested to occur due to
DNA methylation, loss of heterozygosity in the 1123 region, or p53 mutation. Hagman
et al. demonstrated that the function of miR-34c in PCa is mediated by targeting MET [67].

Previous studies have shown the tumor suppressor role of miR-30 in various cancers,
with this miR-30e being extensively studied and well-characterized [17]. The relative
expression of miR-30e was significantly lower in the tumor tissues compared to the normal
tissues [23,33]. Recently, a multidimensional function of miR-30e through the regulation of
genes involved in various signaling pathways was reported. Ganapathy et al. observed
low expression miR-30e in prostate tumors and experimental upregulation led to cell cycle
arrest, apoptosis, drug sensitivity of PCa cells, and reduced tumor progression [17].

miR-299-3p, another androgen receptor (AR) targeting miRNA, which showed down-
regulation in PCa from AA patients, has also been shown to function as a tumor suppressor
in a number of cancers including colon cancer and hepatocellular carcinoma [68,69]. Re-
cently, Ganapathy et al. showed loss of expression of miR-299 in prostate tumors, and
restored expression of this miRNA improved drug sensitivity and exhibited a tumor sup-
pressor function that is mediated through targeting AR and vascular endothelial growth
factor (VEGF)A [18].

miR-135b has been reported to be downregulated in prostate cancer and to play a
role in the progression of PCa. Tong et al. developed the 48-miRNA signature, including
miR-135b, that predicted biochemical recurrence after prostatectomy [57]. Previous studies
reported that downregulation of miR-135b was associated with the status of tumor and
tumor metastasis [70]. These data suggested that low expression of miR-135b in the primary
tumors may be a risk factor for bone metastatic [71].

Among miRNAs identified in this study, many of them were extensively investigated
previously, and we confirmed their results. However, the role of some miRNAs in prostate
cancer was not previously reported. This may be partly due to differences in methodology,
platforms used, or sample size. These miRNAs observed in this study may help to inves-
tigate potential mechanisms in different PCa outcomes between AA and EA men. There
are some limitations to this study. First, the small number of PCa samples is a limitation.
Therefore, these results need to be validated in larger studies. Furthermore, our results
were based on analyses of radical prostatectomy specimens; whereas, a future diagnostic
test for PCa should use more clinically relevant non-invasive sample types, such as urine
or blood.

5. Conclusions

In summary, miRNA expression studies provide evidence for the role of miRNAs in
PCa diagnosis, prognosis, and elimination of health disparities. Despite these promising
studies, there is currently a limited number of PCa-related miRNAs used in the clinical
setting. Our findings underscore an important opportunity for the implementation of
miRNA-based biomarkers, including miR-1, -30e, -34c, -96, -135b, -139, -145, -183, -299-3p,
and -375 for diagnosis, prognosis, and elimination of health disparities for men with PCa.
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