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Simple Summary: Epigenetics, which leads to specific differentiation events and determines gene
expression states, has been recognized as a developmental landscape. Epigenetic modifications
are widespread in mammals. Dysregulation of epigenetic modifications is closely related to the
occurrence of diseases, especially cancer. The relationship between epigenetic modification and
cancer has been widely studied. This review aims to summarize the different epigenetic modifications
events that occur in prostate cancer and improve our understanding of the biological role of epigenetic
modifications in prostate cancer metastasis.

Abstract: The gradual evolution of prostate tissue from benign tumor to malignant lesion or distant
metastasis is driven by intracellular epigenetic changes and the tumor microenvironment remodel-
ing. With the continuous study of epigenetic modifications, these tumor-driving forces are being
discovered and are providing new treatments for cancer. Here we introduce the classification of
epigenetic modification and highlight the role of epigenetic modification in tumor remodeling and
communication of the tumor microenvironment.
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1. Introduction

The concept of epigenetics was developed by Conrad Waddington and was originally
used to describe heritable changes in cell phenotypes independent of DNA sequence [1].
At present, a variety of epigenetic modifications have been identified, including at least
seventeen kinds of DNA modifications and 160 kinds of RNA modifications [2,3]. As
a rapid and dynamic method to regulate cell behavior without altering DNA sequence,
epigenetic modification plays an important role in cell remodeling during communication
between cells and the environment where they exist [4,5]. The most important DNA
modification is DNA methylation (5mC), which mainly affects DNA–protein interactions
in the double helix structure but does not affect Watson–Crick pairing [6]. It has been
shown that global alterations to the DNA methylation landscape contribute to alterations
in the transcriptome and deregulation of cellular pathways [7]. At the same time, DNA
methylation provides a driving force for tumor cell remodeling. For example, in early-stage
prostate cancer, genes such as APC, RASSF1, GSTP1 undergo DNA hypermethylation [8].
In particular, GSTP1 shows promoter hypermethylation in approximately 90% of PCa
and 70% of prostatic intraepithelial neoplasia (PIN) patients [9]. In addition to DNA
methylation, chromosome-related regulatory means such as histone modification [10],
nucleosome localization [11], and higher-order chromatin organization [12] play important
roles in the phenotypic transformation of prostate cancer. Recently, due to the breakthrough
of high-throughput sequencing technology, the research for detecting RNA modifications
has exploded [13]. The main mRNA modifications include N6-methyladenosine (m6A),
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N6, 2′-o-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytosine (m5C),
N4-acetylcytidine (ac4C), pseuduridine (Ψ), N7-methylguanosine (m7G) and so on. m6A
methylation is the most abundant mRNA modification in mammals and is also crucial in
prostate cancer [14]. As a result of copy number variations (CNVs) events in PCa, m6A
methylation is altered at high levels in most prostate cancer patients and is considerably
associated with a recurrence-free survival of prostate cancer [15]. In addition, m6A-related
regulatory molecules also experience different events in prostate cancer, and most are
associated with poor prognosis [14]. The dysregulation of RNA modification is based on the
regulation of DNA methylation on the one hand [16], and is closely related to intercellular
communication on the other hand [7]. Additionally, non-coding RNAs (ncRNAs) raised
from RNA modification can also participate in the communication between tumor cells
and microenvironment [17]. Here, we discuss the role of different epigenetic modifications
in the development of prostate cancer (PCa), especially when they metastasize, as well as
the application prospect of epigenetic regulation in cancer therapy.

2. Chromatin-Related Regulation
2.1. DNA Methylation

DNA methylation is a process associated with chromatin closure and repression of
gene expression, and is the addition of a methyl group (CH3) at the 5-carbon position
of cytosine (5-methylcytosine, 5mC) [7]. DNA methylation often occurs on CpG islands,
a region of more than 200 bases formed by aggregation of CpG dinucleotides [18], and
the methylation process is mainly mediated by DNMT family enzymes. The enzyme
catalyzes the transfer of methyl groups from S-adenosylmethionine to DNA, and it is
currently thought that only DNMT1 (DNA methylases 1), DNMT3A, and DNMT3B contain
methyltransferase activity. Methylation of 5′ carbocytidine (5mC) in CpG dinucleotides
in gene promoters is considered to be the most direct epigenetic mechanism to maintain
gene silencing [19]. Therefore, the dysregulation of DNA methylation under the influence
of environmental and genetic factors has long been considered as a major driver of cancer
development. 5mC can be oxidized to 5-hydroxymethylcytosine (5hmC) by the ten-eleven
translocated (TET) family enzymes, resulting in a reversal of methylation. Unlike 5mC
modification, the number of 5hmC modifications represent only a small fraction of the
total DNA methylation modifications, and are enriched in the transcription active region.
In fact, most cancer-related sites undergo epigenetic changes early in prostate cancer
development [20]. DNA methylation profiles between adjacent benign and noncancerous
prostate tissues are also significantly different [21,22]. Thus, gene hypermethylation caused
by improper catalysis of DNMTs may represent an early onset event for prostate cancer
development [23]. It has been found that 5hmC modification was enriched in the binding
sites of AR, FOXA1 and HOXB13, which are the major driver genes for development of
PCa, especially for metastatic castration resistant PCa (mCRPC) [24]. These hint that 5hmC
may be involved in gene reprogramming during the development of metastatic PCa.

2.2. Histone Modification

Core histones in cells include H2A, H2B, H3, and H4. Histones are predominantly
globular, and their N-terminal tails are the site of post-transcriptional modifications,
including acetylation, methylation, phosphorylation, ubiquitination, SUMO, and ADP-
ribosylation [25,26]. Histone modifications play an important role in transcriptional reg-
ulation, DNA replication, DNA repair, alternative splicing, and chromosomal agglutina-
tion [27,28]. Histone modification-related enzymes thought to be associated with prostate
cancer progression include histone methyltransferase EZH2 [29], lysine-specific demethy-
lase 1 (LSD1) [30], histone methyltransferase SET9 [31], and others. Different histone
modification patterns also exist in primary prostate cancer, including acetylated histone H3
lysine 9, acetylated histone H3 lysine 18 (H3K18Ac), H4K12Ac, di-methylated H4 arginine
3 (H4R3me2) and di-methylated H3 lysine 4 (H3K4me2) [32]. High levels of H3K18Ac and
H3K4me2 are associated with a risk of prostate cancer recurrence [33].
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2.3. Nucleosome Positioning

Nucleosomes regulate gene expression by participating in polymerases that inhibit
transcript elongation and prevent transcription factors from entering the transcriptional
start site (TSS). The precise localization of nucleosomes is affected by different histone
variants [34]. Nucleosome remodeling is regulated by DNA methylation [35], histone
modification [34], chromatin remodeling complexes [18], etc. Nucleosomes are remodeled
in a manner dependent on ATP hydrolysis by chromatin remodeling complexes, which
can be divided into four families (SWI/SNF, ISWI, CHD, and INO80) [18]. CDH1 deletion
in prostate cancer is strongly associated with early recurrence of prostate cancer, a high
Gleason score, and advanced tumor stage [36,37]. In addition, the localization of nucleo-
somes will be changed after androgen therapy. Based on this model of androgen-responsive
nucleosome behavior, researchers can accurately predict the binding of disease-associated
transcription factors during treatment [11].

2.4. Higher-Order Chromatin Organization

Unlike local chromatin regulation, the ‘higher order’ level of chromatin regulation
occurs at a more global level, involving changes in nuclear localization, associations or
larger chromatin regions with repressive compartments, such as the nuclear periphery or
pericentromeric heterochromatin, and large-scale changes in DNA structure, such as the
formation of DNA loops or locus contraction [38]. There is controversy over the status
of the higher-order chromatin organizations in prostate cancer. It has been suggested
that the higher-order chromatin organization status in prostate cancer is stable relative to
benign tissues, and the changes in local chromatin interactions mediate the development
of prostate cancer [12]. Conversely, other studies suggest that the higher-order chromatin
organization is disordered and co-exists with the change of epigenetic in prostate can-
cer [39], among which the factor CAF-1, which is involved in the conformation of the
higher-order chromatin organization, is thought to be significantly associated with adverse
biological behavior in prostate cancer [40]. In addition, PCa-related risk SNPs containing
CREs (rCREs) screened by CRISPRi were shown to have interactions with CTCF. As a key
regulator of the three-dimensional (3D) genome architecture, CTCF-mediated 3D chro-
matin interactions may lead to dysregulation of neighboring genes in Pca. The interaction
between DNA-methylation-dependent CTCF deposition and rCREs indicates that the DNA
methylation that affects the 3D architecture contributes to causes of prostate cancer [41].

3. RNA Modification

3.1. m6A

As a widespread RNA modification in mammals, the abundance of m6A modification
is the highest among all kinds of RNA modifications [42]. m6A modification has regula-
tory effects on a variety of RNA processes, such as RNA alternative splicing, translation,
translocation, and stability [43,44]. The modification site of m6A is generally located in the
region consisting of a conserved motif DRACH (D = A/G/U, R = A/G, H = A/U/C). The
process of m6A includes recruiting methyltransferase (METTL3/14) to ‘write’ methylation,
attracting m6A binding protein (YTHDF1/2/3, YTHDC1/2, HNRNPA2B1, IGF2BP1/2/3)
to ‘read’ methylation, and finally the methylation is ‘erased’ by demethylase (ALKBH5,
FTO) [45]. Therefore, m6A modification is a dynamic process. In prostate cancer tissue, an
increasing level of m6A methylation has been shown, probably due to the CNVs (DNA copy
number loss) events of demethylase genes, as well as the overexpression of methyltrans-
ferases [15]. At the same time, m6A modification has also been found to be associated with
therapy resistance of immunotherapy or androgen receptor inhibitor (ARPI) in PCa [46,47].

3.2. m6Am

m6Am shares the same demethylase (FTO) with m6A modification [48]. It has been
shown that if the first nucleotide adjacent to the m7G cap is 2′-O-methyladenosine (Am),
it can be further methylated at position N6 to form m6Am [49]. To date, phosphorylated
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CTD interactor 1 (PCIF1) has been identified as the only known m6Am-programmed
protein [50]. However, the research on cancer-related m6Am is still limited, and it requires
a breakthrough at the technical level to distinguish m6A and m6Am by using conventional
experimental means [51]. So far, it has been shown that the expression level of PCIF1 in
prostate cancer tissue is significantly different compared with those adjacent normal tissues
or infilled immune cells [52].

3.3. m1A

There are similar ‘readers’ and ‘erasers’ between m1A and m6A. The ‘writers’ of m1A
are TRMT6/61A/61B/10C and NML [53]. It has been shown that the total level of m1A
modification is about one-tenth of m6A modification [54,55]. The modification on the
majority of m1A sites is at the ultra-low level, except for a single site in the mitochon-
drial encoding gene ND5, in which it shows high m1A methylation levels [42]. Although
the role of m1A in prostate cancer has not been reported yet, some studies have shown
that nitrogen atoms can undergo Dimroth rearrangement from m1A to m6A in the alka-
line environment [56], suggesting a dynamic regulation between m1A and m6A under
certain conditions.

3.4. m5C

m5C is conserved and widespread, especially in rRNA and tRNA [57]. m5C is cat-
alyzed by the NOL1/NOP2/Nsun family, DNMT2 and TRDMT1 [58], recognized by YBX1
and ALYREF, and finally ‘erased’ by the TET family (TET1/2/3) and ALKBH1 [59]. It is
known that there is high frequency of copy number deletions for many m5C regulators
in prostate adenocarcinoma, such as ALYREF, NSUN5, DNMT3A, and NSUN2, whereas
a high frequency of copy number amplifications are found in some other m5C regula-
tors. Seventeen m5C regulators have been identified with different expression levels in
normal or tumor tissues. m5C ‘writers’ and ‘readers’ show high expression, whereas
most m5C ‘erasers’ show low expression in tumor tissues. m5C modification level is
significantly associated with older patients, higher Gleason scores, advanced T stages,
advanced N stages and higher risk scores. Activation of m5C modification may promote
tumorigenesis and progression of PRAD (prostate adenocarcinoma) [60]. According to the
bioinformatics model, the functions of m5C-regulated genes are potentially related to the
tumor immune biological process, and they also have a potential role in remolding the
tumor microenvironment [61].

3.5. ac4C

ac4C is a cytidine modification widely distributed in non-coding and coding RNA
in human cells; it is highly enriched near the translation initiation codon [62]. NAT10 is
the only one cytosine acetyltransferase identified at present. The ac4C-modified RNA has
the characteristics of a longer half-life and a higher translation efficiency than non-ac4C-
modified RNA [63]. The specific modification mechanism of ac4C is not clear, but the
expression of NAT10 in prostate cancer is associated with lymph node metastasis and high
Gleason scores [64].

3.6. Ψ

Ψ is generated by isomerization of the C-C glycoside of the uridine base. The conver-
sion of uridine to Ψ can be formed by RNA-dependent and RNA-independent catalysis,
mediated by Box H/ACA small nucleolar RNAs (snoRNAs) and Ψ synthases (PUSs),
respectively [65]. The presence of Ψ in mRNA affects the local secondary structure and
protein coding potential [62]. It has been shown that Ψ plays a role in affecting mRNA
half-life, alternative splicing and RNA stability [62,66]. The most common mutated form of
pseuduridine synthase NAP57 is the formation of the NAP57·SHQ1 complex [67]. Interest-
ingly, in integrative genomic profiling studies of prostate cancer, both of the chromosome
3p regions containing SHQ1 and the androgen-driven serine protease-transcription factor
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fusion TMPRSS 2-ERG have been identified as a tumor inhibitor [68]. Higher Ψ levels
are also positively correlated with the progression of prostate cancer, not only in terms of
somatic mutations [69–71].

3.7. m7G

N7-methylguanosine (m7G) is also a common RNA modification, and the main methyl-
transferases are METTL1, RNMT, TRMT112, etc. [72]. At present, it is believed that m7G
has a potential role in regulating the tumor immune microenvironment and metastasis of
prostate cancer [73].

Finally, we summarize the epigenetic modification events that occur in prostate cancer
(Table 1).

Table 1. Epigenetic modification events in prostate cancer.

Modification Structure Molecular Events on PCa Experimental Evidence Reference (PMID)

m6A
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4. Epigenetic Modifications in PCa

As we know, the development of prostate cancers is largely driven by AR signaling.
In PCa, AR cistrome (the universe of AR-binding sites) undergoes massive reprogram-
ming, leading to the repeated gain and loss of AR-binding sites [74]. In contrast, the
reprogramming degrees of the prostate-cancer-specific enhancers FOXA1 and HOXB13
are significantly reduced during the disease progression, and both of them are pre-bound
to the AR-binding sites. Therefore, the reprogrammed AR sites are not formed de novo,
but are AR-bound to these enhancers. As a result, the degree of DNA methylation at
these sites is relatively low, and the mutation burden at these AR-binding sites is also
increased [75]. In the case of androgen depletion, AR enhancer modules TMPRSS2, KLK2,
and KLK3 show nucleosome-depleted regions (NDRs). In the absence of androgen ligands,
AR enhancers exist in an equilibrium, and a proportion of these enhancer modules display
NDR status [76]. This “receptive” enhancer activation mode can activate AR for a short time
at low ligand concentrations, and also reflects the rapid response of epigenetic regulation
to cellular adaptation. It is supposed that the dynamic changes of the AR gene meet the
needs of prostate cancer evolution, and the continuous progression of prostate cancer also
provides the motivation for AR remodeling. This also reflects the driving role of DNA
methylation in the remodeling process of tumor cells.

Circulating tumor cells (CTCs), as the primitive metastasis cells, undergo a remodeling
process when entering blood compared with orthotopic tumor cells. This process is defined
as EMT. Epigenetic regulation is an important method of regulating EMT [77,78]. For
example, in metastatic prostate cancer, the depletion of histone methyltransferase (MMSET)
leads to transcription dysregulation, and further regulates EMT and invasion of tumor cells
by regulating TWIST1 [79]. Another piece of evidence is that both GSTP1 and RASSF1A
show high DNA methylation in circulating tumor cells or paired plasma-derived exosomes
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of mCRPC [80] and some genes related to androgen synthesis are also hypermethylated
(such as CYP11A1, CYP11B1, CYP17A1 and CYP19A1) [81]. As far as we know, GSTP1
has a wide range of physiological functions, and plays an important role in anti-DNA
damage, oxidative stress, cell proliferation and death [82]. RASSF1A is a well-known
tumor suppressor gene, which crosslinks with many signaling pathways and coordinates
multiple cellular processes [83]. The methylation of the promoter region of GSTP1 and
RASSF1A represents not only a common feature of tumor cells that escape in situ, but also
a plastic change of tumor cells to adapt to the new environment after colonization. These
changes are inseparable from the effect of DNA methylation modification. In addition, in
advanced prostate cancer, different nucleosome localization models in circulating tumor
DNA (ctDNA) also have a significant impact on different phenotypes of prostate cancer.
Among them, AR, ASCL1, HOXB13, HNF4G, and GATA2 have been identified in the
activity of key phenotype-defining transcriptional regulators from ctDNA [84]. At the same
time, research has accurately predicted different clinical phenotypes of prostate cancer by
identifying ctDNA and establishing prediction models, which is of great significance for
accurate oncology diagnosis. In summary, dynamic epigenetic modifications in prostate
cancer provide great help to understand different cancer types and the progression of cancer.

5. Epigenetic Modifications in Tumor Microenvironment (TME)

In general, the tumor microenvironment provides tumor cells with inflammatory
cytokines, angiogenesis factors, and extracellular matrix (ECM) proteins to create niches
for tumor cells [85]. In the metastatic microenvironment, cancer cells acquire stem-like
properties through paracrine interactions between cancer-associated fibroblasts (CAF) and
cancer cells, which include IL-6 [86]. CHD1 has been shown to active NF-κB in PTEN-
deficient prostate cancer cells, which in turn promotes the secretion of IL-6. Mechanistically,
CHD1 is stable in PTEN-null prostate cancer cells and interacts with the active epigenetic
marker trimethylation of H3K4me3 in the IL-6 gene [87]. GDF15 (MIC-1), a member of
the TGFβ/BMP family in tumor stroma, was found to be downregulated in BPH and
increased in some PCa samples [88]. Ectopic expression of MIC-1 in fibroblasts leads
to a significant paracrine effect on prostate cancer cell migration, invasion and tumor
growth [89]. Although the underlying mechanisms have not been reported, a study based
on the urine sample analysis of DNA in bladder cancer showed that the methylation level
of GDF15 was higher than normal tissue [90]. Thus, there may be a close relationship
between MIC-1 alterations and DNA methylation in the TME. In addition, lactic acid
secreted by CAF increases the expression of genes involved in lipid metabolism in PCa
cells, thereby promoting the growth and transfer of PCa. In this process, CAF enhances
PCa intracellular lipid accumulation and provides acetyl moieties for histone acetylation,
establishing a regulatory loop between metabolites and epigenetic modification. This work
shows that stromal-derived tumor metabolic changes stimulate epigenetic rewiring, and
foster metastatic potential in prostate cancer [91].

It has been well known that blood vessels in the tumor microenvironment are very
important for tumor growth and distant metastasis. The functional characteristics and
cytology between tumor endothelial cells (TEC) and normal endothelial cells (NEC) in the
microenvironment are different [92]. The CXCR4/CXCL12 axis has been identified as an
anti-angiogenic target that affects the composition of TME and the characteristics of the
PCa metastatic vascular network [93]. CXCL12 is a key chemokine in many homeostatic
processes such as angiogenesis, inflammation and leukocyte migration, and its active form
is strictly regulated and controlled by upstream molecules [94]. In humans, CXCL12 has
six kinds of splice variants with specific tissue distribution and properties [95,96]. For
example, CXCl12γ has shown weak in vitro chemotaxis and less activation of CXCr4-
mediated signaling in all cleaved variants of CXCL12 [97]. This suggests that mRNA
splicing regulation based on RNA post-transcription regulation has an important influence
on the specific function and activity of CXCL12. As the receptor of CXCL12, CXCR4 is
also dysregulated through epigenetic regulation [98]. For example, miR-494-3p has been
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shown to inhibit CXCR4 expression after transcription processes in prostate cancer [99];
lncRNA UCA1 activates CXCR4 through inhibiting the activity of miR-204 to promote
the progression of prostate cancer [100]. In addition, the gene expression of CXCR4 is
strongly affected by methylation modification. DNA hypomethylation in the CXCR4 gene
has been observed in breast cancer [101], colorectal cancer [102], pancreatic cancer [103]
and melanoma [104], and this is associated with tumor progression. Although it has not
been reported in prostate cancer, there is evidence that CXCR4 is affected by epigenetic
modification in metastatic prostate cancer. In PCa bone metastasis, ac-KLF5 (acetylated
KLF5) up-regulates CXCR4 expression through histone acetylation in the promoter region
of CXCR4 gene, and further promotes IL-11 secretion, osteoclast differentiation and the
regulation of tumor cell plasticity. In addition, the combination of docetaxel and plerixafor
(CXCR4 inhibitor) effectively inhibits ac-KLF5-induced bone metastatic lesions and restores
the sensitivity to docetaxel in ac-KLF5-expressing tumors [105]. Meanwhile, research also
demonstrates that epigenetic modification of the CXCR4 promoter plays a crucial role
in the development of bone metastasis in prostate cancer and tumor microenvironment-
related chemotaxis.

Recently, ncRNA has shown many important functions in tumor development, and
the production of ncRNA also depends on RNA modification [106–108]. As one of the
most common RNA modifications, m6A methylation is widely involved in the cleavage
and maturation of ncRNA [109]. At the same time, ncRNAs can also affect the modifi-
cation process of m6A by participating in the binding of m6A regulatory molecules to
target RNA or regulating m6A regulatory molecules [110–112]. ncRNAs may play a role
in cell communication in promoting prostate cancer metastasis. For example, delta-like 1
homolog-deiodinase, iodothyronine 3 (DLK1-DIO3) clusters were elevated in the serum
of metastasis PCa. It has been found that miR-154 and miR-379 promote prostate cancer
EMT and bone metastasis by targeting the genes of STAG2 and RSU1 [113]. In addition,
ectopic overexpression of miR-409 in normal prostate fibroblasts has also been found to
induce tumor-associated stroma-like phenotype and promote EMT of tumor cells [114].
Except for the RNA modifications effect, miRNAs also interfere with histone modifications.
EZH2 targets the metastasis suppressor RKIP promoter in prostate cancer and negatively
regulates RKIP transcription by inhibiting histone modifications. miR-101 can interfere
with this process by down-regulating the expression of EZH2 and then affect the invasion
or metastasis of PCa [115]. In this context, ncRNAs not only enrich the means of commu-
nication between tumor and stroma, but also expands the interaction between RNA and
DNA epigenetic modification [116,117].

The most common metastatic site of PCa is bone, which causes both osteolytic and
osteogenic alterations. In the bone microenvironment, there are multiple growth factors
including TGFβ, FGF, IGF, and BMP-2. They are not only capable of stimulating the growth
of metastatic cancer cells, but also induce the production of bone resorptive factors from tu-
mor cells [118]. It has been found that the promoter methylation levels of APC, TGFb2 and
RASSF2001A in prostate cancer are related to Gleason score and pathological stage [119].
During bone metastasis, prostate cancer cells target the hematopoietic stem cell (HSC)
niche in bone marrow. Studies have shown that osteoblasts in the HSC niche induce the
expression of TBK1 in PCa cells, thereby promoting the maintenance of tumor quiescence,
chemoresistance and cancer stem cell characteristics [120]. Although there is no report for
this mechanism, it can be found in another study that m6A modification mediates immune
microenvironment regulation by regulating the ALKBH5/TBK1/IRF3 pathway in neck
squamous cell carcinoma [121]. In addition, m6A modification has also been reported to be
associated with bone or lung metastasis. In this study, the wild type lncRNA NEAT1-1 was
more likely to induce bone or lung metastasis, while the m6A mutation lncRNA NEAT1-1
was shown to be less likely to form metastases. Mechanically speaking, lncRNA NEAT1-1
recruits CYCLINL1 and CDK9 to the RUNX2 promoter through RNA–DNA interaction,
thereby increasing RUNX2 expression. However, the m6A mutation lncRNA NEAT1-1
cannot effectively promote RUNX2 expression [122]. ncRNA also plays a role in the process
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of communication between tumor cells and bone microenvironment. For example, eight
kinds of miRNAs have been identified as highly expressed in PCa exosomes and extensively
induce osteoblastic lesions. Among them, miR-940 promotes osteogenic differentiation
of human mesenchymal stem cells by targeting ARHGAP1 and FAM134A [123]. Interest-
ingly, the osteolytic phenotype breast cancer cell line MDA-MB-231 cells also developed
extensive osteoblastic lesions after overexpression of miR-940. Thus, ncRNAs play an im-
portant role in the communication between tumor cells and TME. In summary, epigenetic
modification plays an important role in the relationship between tumor adaptation and
microenvironment remodeling (Figure 1).

Cancers 2023, 15, x  9 of 17 
 

 

TGFb2 and RASSF2001A in prostate cancer are related to Gleason score and pathological 
stage [119]. During bone metastasis, prostate cancer cells target the hematopoietic stem 
cell (HSC) niche in bone marrow. Studies have shown that osteoblasts in the HSC niche 
induce the expression of TBK1 in PCa cells, thereby promoting the maintenance of tumor 
quiescence, chemoresistance and cancer stem cell characteristics [120]. Although there is 
no report for this mechanism, it can be found in another study that m6A modification me-
diates immune microenvironment regulation by regulating the ALKBH5/TBK1/IRF3 path-
way in neck squamous cell carcinoma [121]. In addition, m6A modification has also been 
reported to be associated with bone or lung metastasis. In this study, the wild type 
lncRNA NEAT1-1 was more likely to induce bone or lung metastasis, while the m6A mu-
tation lncRNA NEAT1-1 was shown to be less likely to form metastases. Mechanically 
speaking, lncRNA NEAT1-1 recruits CYCLINL1 and CDK9 to the RUNX2 promoter 
through RNA–DNA interaction, thereby increasing RUNX2 expression. However, the 
m6A mutation lncRNA NEAT1-1 cannot effectively promote RUNX2 expression [122]. 
ncRNA also plays a role in the process of communication between tumor cells and bone 
microenvironment. For example, eight kinds of miRNAs have been identified as highly 
expressed in PCa exosomes and extensively induce osteoblastic lesions. Among them, 
miR-940 promotes osteogenic differentiation of human mesenchymal stem cells by target-
ing ARHGAP1 and FAM134A [123]. Interestingly, the osteolytic phenotype breast cancer 
cell line MDA-MB-231 cells also developed extensive osteoblastic lesions after overexpres-
sion of miR-940. Thus, ncRNAs play an important role in the communication between 
tumor cells and TME. In summary, epigenetic modification plays an important role in the 
relationship between tumor adaptation and microenvironment remodeling (Figure 1). 

 
Figure 1. Schematic diagram of epigenetic regulation in the microenvironment. To respond to ex-
ternal stresses, tumor cells are usually regulated in a manner of chromatin regulation, such as DNA 
methylation, histone modifications, nucleosome localization, and changes in high-grade chromatin 
conformation. This process not only affects the gene remodeling of tumor cells, but also has a huge 
effect on cell metabolism and epitranscription. Similarly, as an intermediate process between “re-
sponse” and “effect”, RNA modification also plays an essential role in tumor cell adaptation and 
survival. The ncRNAs generated under RNA modification are not only involved in the 

Figure 1. Schematic diagram of epigenetic regulation in the microenvironment. To respond to ex-
ternal stresses, tumor cells are usually regulated in a manner of chromatin regulation, such as DNA
methylation, histone modifications, nucleosome localization, and changes in high-grade chromatin
conformation. This process not only affects the gene remodeling of tumor cells, but also has a huge
effect on cell metabolism and epitranscription. Similarly, as an intermediate process between “re-
sponse” and “effect”, RNA modification also plays an essential role in tumor cell adaptation and
survival. The ncRNAs generated under RNA modification are not only involved in the commu-
nication between cancer cells and stromal cells, but are also involved in the process of epigenetic
modification. DNMPs—DNA modification proteins; RNMPs—RNA modification proteins.

Our group has been devoted to the study of RNA modification and metastatic mi-
croenvironment. At first, we found that a cold shock protein, RBM3, is upregulated in
in situ tumors and downregulated in metastatic prostate cancer. Interestingly, we found
that high expression of RBM3 significantly affected the stem-like properties of prostate
cancer cells. Through mechanistic studies, we found that RBM3 significantly reduced
stem-like properties of tumor cells by inhibiting alternative splicing of CD44v8-10 [124].
This not only leads to alternative splicing, but RBM3 also plays a role in affecting translation
efficiency and RNA stability [125–128], which aroused our interest. In our study, the RNA
functional cluster of CLIP-seq suggested that RBM3 might bind to CTNNB1 (beta-catenin
mRNA). Wnt/β-catenin plays an important role in bone development and the colonization
of bone metastases [129–131], and the bone microenvironment also confers tumor cells
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with stemness and plastic characteristics [132]. Further, we found that RBM3 upregulated
m6A methylation on CTNNB1 in a METTL3-dependent manner, resulting in decreased
stability of CTNNB1 mRNA, thus affecting the adaptive survival of prostate cancer in the
bone microenvironment [133]. Thus, our study suggests that the protein function of stress
response proteins such as RBM3 have significantly changed after the change of tumor mi-
croenvironment, and they are potentially involved in epigenetic modifications by binding
to RNA or DNA in response to the changes of the microenvironment. In the above section,
we discussed the role of epigenetic modifications in the microenvironment and metastasis
of PCa. In general, epigenetic regulation is not only reflected in the adaptive changes of
tumor cells, but also has effects on cell metabolism, communication, microenvironment
remodeling and other aspects. Unlike normal tissue, in cancer, the dysregulation of epi-
genetic modifications seems to be a manner for cancer cells to live. Similar to the law of
entropy generation, a single tumor cell’s disorder can gradually evolve into a group of cells
and even parts of tissues and organs, and eventually dies. The same is true of epigenetic
regulation, which is at various stages of the central dogma, and errors at one stage can
cause overall loss of control and eventually lead to cancerization. Therefore, it is crucial to
understand the processes of epigenetic regulation in cancer. These help us to understand
the mechanisms on which cancer depends and to eliminate them.

6. Epigenetic Modifications in Cancer Therapy

At present, 99% of oral drugs are targeted to pathogenic proteins. Target drugs have
brought patients periodic remission, but also brought new problems of drug resistance. In
the human genome, about 1.5% of the DNA sequence encodes proteins, of which disease-
related proteins account for only about 15%. The richness of the genome and transcriptome
sequences makes up for the shortcomings of the proteome. Various treatments of epigenetic
modification have appeared with the increase of epigenetic-modification-related studies.
Recently, drugs related to histone modification have been approved, for example four
histone deacetylase (HDAC) inhibitors, namely vorinostat, romidepsin, panobinostat and
belinostat [134]. In addition, some highly selective methyltransferase inhibitors have
achieved remarkable results in vivo. For example, highly selective methyltransferase
inhibitors of EZH2, GSK126 and EPZ6438 can restore androgen receptor expression and
hormone therapy sensitivity. They also significantly inhibit tumor growth when combined
with enzalutamide [135]. Targeting pathogenic proteins has certain limitations, but there are
more possibilities for targeting non-coding RNA and methylation/acetylation epigenetic
regulation. Currently, researchers have developed platforms for the delivery of specific
RNAs [136]. This new RNA-based therapy has brought a major change in the development
of drugs. RNA therapy has the natural advantages of low cost, short development cycle
and rapid effect, but there are also some problems to be improved.

7. Conclusions and Perspectives

The genomic instability of tumor cells is increased with the deterioration of tumors
and the pressure of therapeutic intervention. Molecular characteristics in metastatic tumors
are often different from primary tumors; this requires us to explore the mechanisms of
this change. As C.H. Waddington envisioned, the contours of the cell epigenetic land-
scape determine the direction of its lineage. Prostate cancer progression and metastasis
may reactivate previously developed pathways in specific lineages through epigenetic
modifications, which lead to dedifferentiation. Tumor cells often adapt to the change of
the environment and stress through DNA methylation, while RNA modification plays a
more significant role in the communication between the tumor and the microenvironment.
Genetic mutations promote tumor cell adaptive remodeling, which often makes them
more malignant and less treatment sensitive. A deeper understanding of the interplay
between epigenetic modifications and the tumor metastatic environment will provide more
mechanistic insights for therapy.
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