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Simple Summary: Primary liver cancer is a frequent cause of cancer-related death with high mortality
rates. Cellular components of the heterogeneous tumor microenvironment (TME) play a crucial role
in promoting or inhibiting tumor growth. Indeed, a multitude of immune populations, including B
cells, have been found within the liver TME. This review offers a comprehensive summary of B-cell
biology and maturation process, as well as their phenotypic and complex functional properties in
cancer. We also summarize the prognostic impact of B lymphocytes in liver malignancies and their
potential benefit in the development of new immunotherapies for primary liver cancer treatment.

Abstract: Hepatocellular carcinoma and cholangiocarcinoma are the fourth most lethal primary
cancers worldwide. Therefore, there is an urgent need for therapeutic strategies, including immune
cell targeting therapies. The heterogeneity of liver cancer is partially explained by the characteristics
of the tumor microenvironment (TME), where adaptive and innate immune system cells are the main
components. Pioneering studies of primary liver cancers revealed that tumor-infiltrating immune
cells and their dynamic interaction with cancer cells significantly impacted carcinogenesis, playing an
important role in cancer immune evasion and responses to immunotherapy treatment. In particular,
B cells may play a prominent role and have a controversial function in the TME. In this work, we
highlight the effect of B lymphocytes as tumor infiltrates in relation to primary liver cancers and their
potential prognostic value. We also present the key pathways underlying B-cell interactions within
the TME, as well as the way that a comprehensive characterization of B-cell biology can be exploited
to develop novel immune-based therapeutic approaches.

Keywords: tumor microenvironment; primary liver cancer; hepatocellular carcinoma; cholangiocarcinoma;
B lymphocytes

1. Introduction

Primary liver cancer is considered the fourth most lethal malignancy worldwide [1],
with hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) being the two most
common hepatic tumors. In 2020, 905,700 people were diagnosed with liver cancer and
830,200 of them died from it. Global age-standardized incidence and mortality rates
were highest in Eastern Asia, Northern Africa, and South-Eastern Asia and increased in
males more than females. Liver cancer was among the top three causes of cancer death in
46 countries and among the top five causes of cancer death in 90 countries [2]. Whereas
HCC accounts for approximately 75–85% of the incidence of all liver cancers [3], CCA
is rarer, but its incidence and mortality has been significantly increasing over the past
decades, becoming a global health problem [4]. CCA accounts for about 10–15% of primary
liver tumors and it is the second most common after HCC [5]. Primary liver cancer
commonly arises under chronic inflammation and damage to the hepatic parenchyma or
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the biliary tract, which can originate from viral infections (hepatitis B virus (HBV) and
HCV), metabolic alterations (alcoholic steatohepatitis (ASH), nonalcoholic steatohepatitis
(NASH), chronic toxin exposure (aflatoxin), or parasite infection (flukes) [6,7]. Furthermore,
lifestyle factors such as frequent alcohol consumption, diet, and sedentary lifestyles increase
chronic inflammation and the incidence of hepatic tumors [7].

Currently, surgery is the only potentially curative treatment, sustained by other thera-
peutic options such as chemo-immune therapeutic agents (i.e., durvalumab, gemcitabine,
and cisplatin for CCA and atezolizumab plus bevacizumab for HCC) or multikinase in-
hibitors (sorafenib and lenvatinib as first-line systemic therapy in HCC) [8], which provide
only a limited extension of overall survival and a marginal increase of life quality [1,9–13].
The high recurrence rate after surgical resection, the refractoriness to systemic therapeutics
observed in most of the patients, the low rate of molecularly targeted available thera-
pies [14,15], and the inflammatory heterogeneity of liver cancer make the development
of novel curative treatments harder. Therefore, there is an urgent need for valid thera-
peutic alternatives for patients affected by primary liver cancer, including immune cell
targeting therapies. Immunotherapies approaches targeting checkpoint receptors expressed
by tumor-infiltrating lymphocytes (TILs) have increased the overall survival (OS) of pa-
tients with multiple cancers [16,17]. TILs are relevant cellular components of the tumor
microenvironment (TME) in liver malignancies (Figure 1), playing an important role in
cancer immune evasion and responses to immunotherapy as immune checkpoint blockade
(ICB) [18–22], but the value of most cellular components of the TME in the development
and progression of primary liver cancer and drug resistance remains unknown. Thus, a
comprehensive characterization of liver cancer heterogeneity, the architecture of the TME
and its infiltration status could elucidate mechanisms of liver tumor progression to develop
new and more effective therapeutic approaches. Recent studies demonstrated that a prepon-
derance of CD8+ T cells within the tumor area and CD4+ T cells in the tumor–liver interface
was positively correlated with OS [23,24], and then a high infiltration of hyperactivated
CD4+ regulatory T cells within the tumor was associated with a worse prognosis [25,26],
confirming their critical role in controlling tumor development. Many aspects of liver
cancers related to T lymphocytes are undergoing extensive studies; contrarily, the role
exerted by other immune cell components such as B lymphocytes in HCC and CCA needs
a further developing analysis.
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Figure 1. Schematic representation of the anatomic site of primary liver cancers and the cellular
components of the tumor microenvironment (TME). Abbreviations: HCC: hepatocellular carcinoma;
iCCA: intrahepatic cholangiocarcinoma; pCCA: perihilar cholangiocarcinoma; dCCA: distal cholan-
giocarcinoma; DC: dendritic cell; NK: natural killer cell; TAM: tumor-associated macrophage; Breg: B
regularity cell; Treg: T regularity cell.
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The purpose of this review was to provide insights into the biology of B lymphocytes in
liver cancers such as HCC and CCA focusing on their distribution, molecular pathogenesis,
prognosis-related importance, and potential for immunotherapy development.

2. Background of B Lymphocytes
2.1. B-Cell Biology and Maturation Process

B lymphocytes are one of the most important cellular components of adaptive immu-
nity. They develop mainly in the liver during fetal life and in the bone marrow (BM) after
birth, arising from hematopoietic stem cells (HSCs) [27] (Figure 2). B-cell development is
regulated by intrinsic genetic programs and by external signals such as cytokines present in
the microenvironments of the fetal liver and BM. BM stromal cells (including mesenchymal
cells, osteoblasts, and endothelial cells) create a particular microenvironment, known as
niches, that provide growth factors and cytokines crucial for the correct spatial distribution,
survival, and differentiation of HSCs into mature blood cells [28]. The interaction between
stromal cells and early B-cell progenitors gives rise to progenitors B (pro-B) that rearrange
their Ig heavy chain genes to differentiate into precursor B (pre-B) cells [29]. Pre-B cells
rearrange their Ig light chain genes and differentiate first into IgM+ immature B cells,
then into IgM + IgD + mature B cells (termed transitional B) [30]. The rearrangement of
B-cell receptor (BCR) genes is a unique mechanism to generate diversity in B cells from
limited numbers of variable gene segments, through genetic recombination [27,31]. Up to
75% of immature B cells possess a nonfunctional or self-reactive BCR and undergo clonal
deletion or receptor editing [31]. Transitional B cells that successfully produce functional
and non-self-reactive BCR exit bone marrow, enter the blood, and migrate to secondary
lymphoid organs (SLO) [32]. In the periphery, B cells continue their development and, since
transitional B are short-lived cells, rapidly differentiate into mature-naïve B cells. These
naïve B cells recirculate between blood and SLO, entering B-cell follicles in lymph nodes
and the spleen, where they represent the majority of the B-cell pool and respond to antigen
encounter with T-cell help, which finally leads to antibody production [33].

The cross-link between Toll-like receptors on the B cell’s surface and pathogen-
associated molecular patterns (PAMPS) induce a B-cell activation that mainly occurs within
the follicles of SLO [27,34]. Upon antigen recognition and activation, follicular B cells
present their antigens to T-helper cells, to receive additional activation signals provided by
T cells [35]. These B–T interactions promote the differentiation of activated-follicular B cells
into rapidly dividing cellular components forming germinal centers (GC), different regions
in secondary lymphoid organs composed of dividing B cells, T follicular helper (Tfh) cells,
FDCs (follicular dendritic cells), and stroma cells. Herein, activated naïve B cells undergo
a clonal expansion, introduce mutation in their immunoglobulin genes (class-switch re-
combination (CSR)), and change the specificities of their BCR by somatic hypermutation
(SHM). Therefore, they are selected for their affinity to the antigen. Only high-affinity B
cells develop into long-lived plasma cells (PCs) or switched memory B cells that express
pathogen-specific antibodies (IgG, IgE, or IgA) [36,37].

A percentage of mature-naïve B cells follow an alternative T- and germinal-center-
independent pathway and differentiate into short-lived antibody-secreting cells of lower
affinity [38]. These short-lived plasma cells do not undergo affinity maturation or somatic
hypermutation. However, they are crucial for the initial but not sustained response to
antigens [38,39].

2.2. B-Cell Function in Adaptive Immune Response

The B-cell subsets, once mature and terminally differentiated into plasma and effector
cells, are mainly involved in circulating antibodies secretion, thymic-independent IgM
antibody responses and antigen presentation [40,41]. B lymphocytes are required for the
initiation of T-cell immune responses, and recent studies have demonstrated that their
absence impairs CD4+ T-cell priming [42]. The differential activation and expansion of
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CD4+ T cells by B lymphocytes could be associated with immune responses, making this a
critical area for future studies of host defense and autoimmunity.
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Figure 2. Schematic representation of B cell development and maturation stages. B cells develop in the
bone marrow (BM) from hematopoietic stem cells (HSCs), progressing from early B-cell progenitors
to circulating transitional B. Upon antigen recognition, transitional B cells become activated-naïve B
cells that migrate to secondary lymphoid organs and enter germinal centers, where they undergo a
clonal expansion and somatic hypermutation (SHM). Only functional B cells with a high receptor
affinity interact with follicular dendritic cells (FDCs) and T follicular helper cells (Tfh), undergo a
class-switch recombination (CSR), and differentiate into switched memory B cells and long-lived
plasma cells (PCs), the final stage of B-cell development. As part of the extrafollicular response,
mature B cells differentiate into short-lived plasma cells.

Importantly, interactions between B and T cells are based on the antigen presenta-
tion process as well as cytokines production. In the first case, the antigen needs to be
internalized by the BCR, processed and then presented in an MHC-restricted manner to T
cells [43,44]. As for the second case, B cells are capable of synthesizing and releasing several
cytokines that exert a disease-causing/protecting effect on malignant tumors, infection,
and autoimmunity [36,45]. In particular, B cells release both immunosuppressive and
proinflammatory cytokines. Immunosuppressive cytokines include transforming growth
factor (TGF)-β and interleukin (IL)-10 that can negatively regulate the immune response
by suppressing T helper (Th) cell function, limiting the Th1 and Foxp3+ T regulatory cell
(Treg) differentiation, by reducing antigen-presenting cell (APC) roles and proinflamma-
tory cytokines released by monocytes, then causing CD4+ T cell death and CD8+ T cell
anergy [46]. Inhibitory cytokines (such as TGF-β and IL-10) are also crucial in maintaining
self-tolerance and immune homeostasis, with their positive role in shaping the immune
system and the inflammatory responses [47].
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On the other hand, B lymphocytes also produce positive immunoregulation factors
including proinflammatory cytokines (e.g., IFN-α, IFN-γ, and TNF-α and IL-1 IL-2, IL-6,
IL-8, IL-12, IL-16, and IL-35), Th2 cytokines (IL-13, IL-5 and IL-4), macrophage colony-
stimulating factor (M-CSF), granulocyte-macrophage colony-activating factor (GM-CSF),
hematopoietic growth factor granulocyte colony-stimulating factor (GCSF), and chemokines
as CCL7 and CCL5 [36,48]. In particular, IL-2, 1L-4, IL-12, and IFN-α promote Th1, Th2,
Th17 development and responses; GM-CSF triggers neutrophil response; IFN-α and TNF-α
are involved in DC maturation and lymphoid configurations; IFN-α improves NK cells
and macrophage activation, stimulating their own development, and promoting antibodies
production [49].

B cells have a crucial role not only in immune system development, but also in its
maintenance [50]. Overall, B lymphocytes release immunomodulatory cytokines that can
influence T cell, DC differentiation, and APC functions. They can also regulate lymphoid
tissue organization, neogenesis, wound healing, and transplanted tissue rejection and
influence tumor growth as well as cancer immunity [24,51,52].

3. Effect of B Cells on Tumor
3.1. B-Cell Function in Tumor Condition

B cells are the second most abundant tumor-infiltrating lymphocytes (TILs) and,
modulating the immune response, exert an important role in the adaptive immunity of
cancer. They account for up to 25% of all cells in some tumors [53]. In the TME, tumor-
infiltrating B lymphocytes (TIL-B) exhibit the typical hallmarks of B cells such as antigen
recognition, clonal expansion, somatic hypermutation, class-switch recombination, and
differentiation in antibody-producing plasma cells. Antibodies released by plasma cells
can alter the function of their antigenic targets on cancer cells, opsonize tumor cells for the
presentation and cross-presentation of tumor antigens by DCs, activate the complement
cascade, or contribute to NK-cell-mediated tumor killing [53,54]. Antibodies against tumor
antigens have been found in the serum of cancer patients, but their role in humoral immune
responses against cancer development and progression remains controversial [55].

Moreover, TIL-B impact the adaptive immune responses (including CD4+ and CD8+
T cells) and innate mechanisms, involving complement, myeloid, and NK cells. B-cell
effects on patient outcomes can be heterogenous, based on a specific tumor’s anatomic
sites, histology, and molecular subgroup. The presence of infiltrating B lymphocytes can
be associated with a positive prognostic value in most of the cancers, and with a negative
outcome in others [18].

B-cell populations found in the TME of many cancer types are significantly hetero-
geneous in both the immunophenotype and functional role. Some authors demonstrated
the presence of different phenotypes, including effectors and regularity B (Breg) cells that
can exert both pro- or antitumor activities [31,56] (Figure 3). The dual role of B cells is
influenced by several factors, such as hypoxia, cytokines and metabolites produced by
other immune cells (e.g., Tregs and myeloid-derived suppressor cells, MDSC), and tumor
cells [57].

TIL-B may act as APCs within the tumor tissue. They first recognize the antigens
through BCR and present them to CD4+ T cells, sustaining the CD4+ and CD8+ T cells’ ac-
tivation [58]. B cells, which exert the function of APCs, have often increased the expression
of costimulatory proteins critical for T-cell activation such as CD80, CD86, and MHC-II
proteins, suggesting the critical role of B cells in the strength and magnitude of the CD4+
and CD8+ T cell response in cancer [59].

The cytokine milieu is another crucial aspect in cancer progression or control. Tumor-
infiltrating B-cell subsets secrete a variety of cytokines to regulate tumor immunity in a
negative or positive manner. B lymphocytes can produce immunostimulatory cytokines
(e.g., IL-6, IL-4, IL12p40, IL7, INF-γ, TNF, CCL3, IL-2, and colony-stimulating factor 2 CFS2
or GM-CSF) [60] and anti-inflammatory cytokines (IL-10, TGF-β, IL-35) [61] even within
the tumor tissue [62].
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Figure 3. Immunological characterization of the dual B-cell role in cancer. Schematic representation
of the tumor growth control sustained by effector B cells and antibodies binding tumor-associated
antigens (left part of the scheme) in comparison with the circulating immune complex and regulatory
B cells implicated in the cancer growth (right part of the figure).

3.2. Protumorigenic Function of B Lymphocytes

Several studies have revealed that cancer growth can be sustained by the tumor-
promoting effects of Bregs and antibodies (Figure 3). Experiments carried out with multiple
mouse cancer models have reported that a lack of B cells impairs the tumors’ growth,
enhancing and accelerating cancer progression [63]. Indeed, B lymphocytes can exert their
protumorigenic function in different ways: boosting the development of cancer cells by
activating Fcγ receptors (FcγR) on myeloid cells, sustaining the generation of new blood
vessels in tumors, producing lymphotoxin which activates cancer resisting castration, or
modulating the signals of the IL-8/androgen receptor which increase tumor metastasis.

The tumor-enhancing capacity of B cells is mainly mediated by Bregs. Breg cells sup-
port carcinogenesis, tumor progression, and a metastatic process suppressing Th1, Th17,
and CD8+ cytolytic T-cell responses, through the production of immunosuppressive cy-
tokines (e.g., TGF-β, IL-35, and IL-10) [64,65]. IL-10 can inhibit other stimulating cytokines’
production, causing a decrease in the reactivity, not only of Th1, Th17, and CD8+ T cells,
but also of NK cells [66]. The TGF-β production can drive the polarization of CD4+ T
cells into active Tregs, inhibiting NK cells and CD8+ T cells, which are crucial for tumor
growth inhibition [67]. Additionally, Bregs can promote the apoptosis of effector CD4+ T
cells through the expression of Fas ligand (FasL) [52]. Furthermore, Bregs, releasing IL-10,
induce the differentiation of tumor-associated macrophages (TAMs), skewed toward a
M2 macrophage phenotype, that inhibits effector T and NK cells [56]. However, it is still
unclear whether Bregs actively promote tumor growth, or whether an increase in the Breg
population inhibits the immune response against tumors.
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Antibodies released by mature B cells might contribute to tumor progression through
the production of circulating immune complexes (CICs) [53]. A CIC is composed of
antibodies bound to a soluble antigen and it may have a role in the setting of cancer.
In human malignancies, CICs found in the peripheral blood or tumor tissue generally
reflect poor clinical outcomes [68]. This protumorigenic role of B cells and CICs have
been supported by studies using a genetic mouse model of squamous cell carcinoma [39],
wherein CICs, present in premalignant tissue, induce chronic inflammation through their
recognition and subsequent activation of FcγR on infiltrating myeloid cells, inducing a
myeloid suppressor cell activity that promotes tumorigenesis [69].

Another important feature for cancer induction is lymphangiogenesis, which promotes
tumor growth and metastatic process throughout the body. TIL-B may sustain tumor
progression by providing lymphotoxin (a survival factor that can induce angiogenesis)
and by promoting androgen-independent cancer progression by activating NF-κB and
STAT3 pathways [53]. In particular, androgen ablation causes damage to the stromal cells
of the TME, sustaining leukocyte infiltration into the tumor. Following androgen ablation,
intratumor Tfh cells produce the chemokine CXCL13 that recruits B cells into the tumor
through CXCR5 signaling [70–72]. These TIL-B then secrete lymphotoxin, which activates
NF-κB signaling and STAT3 in the cancer cells, resulting in androgen-refractory growth
and tumor progression [73,74].

Finally, B cells can also enhance metastasis by upregulating IL-8, which can modulate
androgen receptor and matrix-metalloproteinase signaling [74].

3.3. Antitumorigenic Role of B Lymphocytes

Recent publications have showed a positive correlation between an increased fre-
quency of CD20+ B cells and the clinical outcome of patients affected by melanoma, sar-
coma, breast cancer, esophageal cancer, non-small cell lung cancer, colon cancer, or biliary
tract cancer [72], suggesting that B cells may also exert an antitumor activity (Figure 3).
TIL-B inhibit cancer development through the production of antitumor reactive antibodies
and specific cytokines that coordinate other immune cells. B lymphocytes can enhance the
cytotoxic activity of T cells, the phagocytosis by macrophages, the NK cells’ function of
tumor killing, the tumoricidal effect by granzyme B secretion, and the CD4+ and CD8+ T
cells’ priming. TIL-B seem to be involved even in the coordination and maintenance of
tertiary lymphoid structures (TLSs) [54,73], particular cellular organizations very similar to
lymph-node aggregates characterized by separated B- and T-cell areas, specialized popula-
tions of DCs, stromal cells, and high endothelial venules (HEVs); all of them are able to
create cellular interactions similar to those that occur in secondary lymphoid organs [56].
TLSs develop de novo in inflamed nonlymphoid tissues and they are associated with
chronic inflammatory disorders, autoimmunity, and cancer [54,74–76]. They usually arise
in response to antigens and inflammatory stimuli [77].

B cells produce cytokines that can facilitate TLS formation at sites of chronic inflam-
mation [78]. Several pieces of evidence indicate that TLSs play a major role in controlling
tumor progression and they are related to better clinical outcomes in both human disease
and mouse models [54,76]; for this reason, TLS structures are considered as prognostic
markers predicting longer patient survival [79,80]. Thus, TLSs may represent the initiation
of a local antitumor B-cell-mediated immunity. Considering the B-cell ability to release cy-
tokines, B lymphocytes also recruit other immune cells to TLSs and effector sites and induce
the antitumor cytolytic T-cell activity through the interaction between CD27-expressing
B cells and CD70-expressing CD8+ T lymphocytes [81,82]. Tumor-associated TLSs may
be the place where B cells undergo cell clonal amplification, somatic hypermutation, and
class-switch recombination, revealing a local antigen-driven response and antibody affin-
ity maturation [49,79]. Thus, B cells differentiate into plasma cells producing significant
amounts of tumor-specific antibodies, or presenting tumor-derived peptides to T cells,
modulating their phenotypes [54]. This system may be exploited clinically to improve
patient prognosis and responses to immunotherapy.
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In the long-term immune response between tumors and the immune system, the
number of DCs become smaller and they can no longer sustain their role of presenting
antigens; therefore, B cells act in the TME as local APCs and contribute to the survival
and proliferation of tumor-infiltrating T cells [83]. TIL-CD20+ B have been found close to
CD8+ T cells, and the presence of both CD20+ and CD8+ lymphocytes has been associated
with longer survival especially in ovarian cancer, compared with patients affected by a
tumor lacking B cells [84]. This suggests that B cells play the role exerted by APCs [85]. In
murine models, CD4+ T-cell activation and clonal expansion in response to protein antigens
and pathogens were impaired when an anti-CD20 monoclonal antibody (rituximab) was
used for B cells’ depletion, also supporting here the critical role of B cells for an optimal
antigen-specific CD4+ T-cell priming [86,87].

Moreover, B cells stimulated from tumor cells generate antitumor reactive antibodies,
causing a strong humoral response. Tumor-specific antibodies (mainly IgG1 antibody class),
secreted by plasma cells, can bind to FcγR and trigger the complement cascade, mediate the
phagocytosis of tumor cells, the cytotoxicity of NK cells, and enhance antigen presentation
by DCs [88,89]. Activated B cells also possess the tumor-killing potential and may directly
destroy cancer cells by secreting TRAIL and granzyme B [90].

4. Clinical Application and Future Perspective of B Lymphocytes

B cells play an important role in cancer biology, exerting a protumorigenic or anti-
tumorigenic effect. For this reason, researchers have considered them next-generation
candidates for tumor immunotherapy. As mentioned before, B cells can be stimulated
by tumor antigens and produce tumor-specific IgG-dependent antibodies [91], imprint-
ing our body with a long-lasting immune memory. B lymphocytes and their subsets can
also stimulate other components of the tumor-immune system, such as promoting Th1
cells, activating cytotoxic T-cells, and secreting cytokines [53]. Therefore, there are various
categories of B-cell-based immunotherapies described below [92] (Figure 4).

Monoclonal antibodies (mAbs) are one of the most used curative treatments in support
of conventional therapy such as radiation, chemotherapy, and surgery. For example,
rituximab, an anti-CD20 able to deplete B cells, was applied for chronic lymphocytic
leukemia (CLL) and B-cell lymphoma treatment but had limited success in solid tumors [93].

Treating patients affected by CLL with an anti-CD20 mAb (such as rituximab) can lead
to the accumulation of Bregs and lymphoma-resistant cells. Since Bregs play a pivotal role
in immune suppression, the depletion of this B-cell subset by using anti-IL10 antibody or
chemicals products (resveratrol) appeared to be a promising solution for killing in vitro
breast tumor cell lines. Moreover, preventing the conversion of naïve B cells into Bregs
(using products such as lipoxins A4 and MK866) may also be an interesting strategy [66].

Cytokines released by Bregs are associated with tumorigenesis and their inhibition
can be helpful for cancer treatment. As said before, Bregs secrete immunosuppressive
cytokines, such as IL-10 and TGF-β. While IL-10 suppresses the function of cytotoxic cells
(CD8+ T, NK, and Th1 cells), TGF-β promotes the differentiation of B cells into IgA plasma
cells, which secrete IL-10 and express immunomodulatory receptors, such as PD-L1 and
FAS-L, suppressing cytolytic activity. Consequently, specific drugs which induce B-cell
depletion lead to a lack of Bregs production and mediate an antitumor activity [51,89].

B-cell activation can also have a crucial effect on tumor-growth suppression. Indeed,
thanks to the CD40–CD40L costimulatory interaction, activated B cells cause the activation
of cytotoxic T cells, which suppresses tumor growth. Thus, promoting B-cell activation and
proliferation can be an important goal. Experiments have shown that the combined use of
GM-CSF and IL-4 seems to induce B-cell activation and proliferation and be effective on
cancer cell growth as melanoma cell lines [66].
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Moreover, immunotherapy based on tumor-associated autoantibodies can also be
used for therapeutic purposes. These autoantibodies have a variety of functions, such as
antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity
(CDC), the cross-presentation of tumor antigens, and T-cell activation. A report suggested
that P53 (a tumor suppressor protein) autoantibodies were associated with increased
survival in HCC, while in other cancers, such as lung, colon, breast, and oral cancer, they
were associated with poor survival [94].

Immunoglobulins are another resource important for therapy in tumor. They are
secreted by both cancer cells and B cells. Cancer-derived immunoglobulins usually promote
tumor growth by inducing inflammation and the activation of platelet aggregation and by
escaping the infiltration of tumor cells. On the other hand, immunoglobulins derived from
B cells have a tumor suppressor role. Importantly, this type of immunoglobulins is highly
variable, since it is derived from somatic recombination during B-cell development. One of
the most relevant seems to be the IgG class type, having a prognostic value in lung, colon,
pancreatic, liver, gastric, ovarian, bladder, renal, salivary gland, soft-tissue, thyroid, and
parathyroid cancers. Cancer-derived immunoglobulins can also be a useful resource, albeit
with a limited diversity and less active function [89,92].

Recent studies have demonstrated a crucial association between B-cell-dependent anti-
tumor immunity, TLS, and responsiveness to immune checkpoint blockade immunotherapy
in different types of cancer [95,96]. TLSs are mainly composed of CD20+ B cells and CD8+
T cells, which infiltrate tumors, and their presence correlates with patient survival during
immunotherapy. Some reports have validated them in metastatic melanoma [97] and sar-
coma [98], but TLSs also have a prognostic role in breast cancer and colorectal cancer [99].
The presence of B cells and TLSs is strongly associated with a positive response to ICB
in patients with soft-tissue sarcomas [98], metastatic melanoma [97], and renal cell carci-
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noma [100]. TLS gene expression signature was able to predict clinical outcomes to ICB
with anti-CTLA-4 and/or anti-PD-1 in melanoma samples [98]. Even different maturation
stages of TLSs were related to the clinical outcome of patients; TLS creation and reduction
in GC development blunted antitumor immune response [101,102].

High-profile studies from human patients and mouse models have demonstrated
that TIL-B, present in TLSs, are important players in responses to immunotherapies and
outcomes of cancer patients [103–105]. This happens because inside mature TLSs, B-cell
clones are selectively activated and amplified and acquire an activated/memory pheno-
type, expressing markers of antigen presentation (MHC class I and II) and costimulatory
molecules such as CD40, CD80, CD86, and PD-L1; thus, they become easily affected by
anti-CTLA-4 and anti-PD-1/PD-L1 ICB [53,103]. It is still unclear whether TLS frequency
increases response to ICB treatment, but a histology analysis described that the CD20
density was higher at the baseline for immunotherapy-responding patients and increased
after ICB treatment, while nonresponding patients had a low CD20 density before and
after therapy [5]. Further studies will help to establish whether ICB administration actively
induces TLS formation, and if B lymphocytes and TLS creation have an active and benefi-
cial role in immunotherapy response. In this way, clinical strategies based on drugs that
modulate B lymphocytes or TLS formation have been studied extensively to fight solid
tumors [102,106,107].

5. Effect of B Cells on Primary Liver Tumors
5.1. Background of HCC

Hepatocellular carcinoma is considered the major subtype of liver cancer, the sixth
most common form of cancer worldwide, and the third most significant factor of cancer
mortality [108]. HCC frequently arises when the liver is affected by chronic disease and
cirrhosis [109]. Indeed, the common risk factors for HCC include chronic infection with
HBV, HCV, alcohol abuse, and exposure to aflatoxin B1, as well as smoking, obesity, NASH,
diabetes, inherited disorders such as hereditary hemochromatosis, and adenomas [100,101].
HCC is often diagnosed in an advanced stage, when the only treatment includes surgery,
combined with radio and chemotherapy. However, the rate of recurrence in HCC patients
is high, and the death rates increase by 2–3% per year [101].

HCC is a highly heterogeneous malignancy. This heterogeneity is reflected in the
disease progression and treatment of the individual patient and it is closely related to
the TME, which comprises cellular and noncellular components [102]. The major cellular
components include tumor cells, activated hepatic stellate cells, MDSCs, cancer-associated
fibroblasts (CAFs), tumor-associated macrophages (TAMs), tumor-associated neutrophils
(TANs), immune and endothelial cells [103]. The tumor stroma is considered the noncel-
lular component and includes extracellular-matrix (ECM) proteins, proteolytic enzymes,
cytokines, and growth factors [104].

Based on tumor-infiltrating immune cells, Zhang et al. classified HCC samples into
three immune subtypes: “immunocompetent”, “immunosuppressive”, and “immunod-
eficient” subtypes [110]. The immunocompetent subtype was characterized as CD45high

FOXP3low, with normal T-cell infiltration. On the other hand, the immunosuppressive
subtype showed high frequencies of immunosuppressive cells (as regulatory T and B cells
and immunosuppressive macrophages) and a higher expression of immunosuppressive
molecules (PD-1, PD-L1, TIM-3, CTLA-4, VEGF, TGFβ, and IL-10). Finally, the immunode-
ficient subtype exhibited a lower infiltration of lymphocytes [111,112].

Current studies have demonstrated a marked heterogeneity in HCC tumors and high-
lighted that the crosstalk between cancer cells and the liver microenvironment promotes
tumorigenesis and HCC pathogenesis, by pushing cell proliferation, survival, and the
ability of migration and evasion [108]. In detail, the TME in HCC appears to be immuno-
suppressive, promoting the proliferation, invasion, and metastasis of tumors [106,107].
Thus, a better characterization of the immune landscape of HCC at high resolution would
facilitate refining patient stratification and identify putative immune-therapeutic targets in
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order to develop novel therapies for HCC. For this reason, targeting the TME with new
immunotherapy strategies (including vaccines, antibodies, immune checkpoint inhibitors,
and adoptive cell therapy (ACT)) is the pivotal goal for HCC treatment [107]. Furthermore,
the immunological classification could guide immunotherapy for HCC, thus deciding to
administer an agonist antibody for the immunosuppressive subtype or immune checkpoint
inhibitors (as PD-1 blocking antibody) for the immunoreactive subtype [113].

The research on the biological characteristics of T cells is exponentially increasing but
gaining more insights into B-cell biology related to liver HCC cancer is needed. Indeed, B
cells infiltrate the HCC tissue becoming an active component of the TME and they can be
identified at various phases of HCC development [36]. Importantly, their presence may be
different according to the stage and histology-related subcategory [36]. The knowledge of
B-cell biology related to cancer is not complete, but we know B lymphocytes impact even
the humoral and cellular immunization of HCC.

5.2. B Lymphocytes in HCC

B cells are considered an important part of the TME, but the distributing process,
frequency, and prognosis-related importance exhibited by invasive B-cell subsets within
HCC is still controversial [50]. So far, it has been speculated that CD20+ B cells may
have a dual effect on HCC [114]. Previous studies have revealed that CD20+ B cells can
promote Tregs proliferation, suggesting a correlation between B cells and a worse overall
survival and recurrence-free survival (RFS) [115]. Contrarily, Li et al. demonstrated that
an increased CD20+ infiltration, supported by a high frequency of CD8+ T cells, was
related to a decreased infiltration of Foxp3+ Tregs and CD68+ macrophages [116]. Im-
munofluorescence and flow cytometry analyses performed on HCC tissues showed that all
B-cell subpopulations generally were reduced in tumors, with respect to the tumor-free
liver area [117]. In detail, B-naïve (BN) cells and switched memory B (SM B) cells were
considered prognostic factors for HCC survival, and, if highly concentrated within the
tumor tissue, they led to more effective clinical results [117]. However, another study
reported that the presence of TIL-B in human HCC was related to an increased tumor
invasiveness and a decreased disease-free survival [118]. All these data suggest that
multiple B-cell subpopulations coexist in the TME of HCC and exert dual effects on
the tumor.

As for the antitumor function, in HCC, BN and SM B cells are positively correlated
with a higher survival rate [36,119]. Indeed, BN cells, characterized by a higher expression
of CD80, CD86, CXCR3, CCR5, and PD1, help the T-cell activation, which is also essential
for HCC tumor control. In addition, SM B cells can produce IgG or IgA to promote humoral
immunity. In brief, B cells infiltrate HCC tumor tissue and thus exhibit an anticancer effect
at different stages [83].

Experiments carried out with mouse models showed that B-cell depletion enhanced
HCC tumor growth and decreased local T-cell activation [86]. In humans, researchers
highlighted that a high infiltration of CD20+ B cells caused the prolonged survival of
patients. B lymphocytes may produce antitumor effects in different ways: they secrete
specific antibodies to directly interact with tumor cells and exert humoral immunity; B
cells can also act as an alternative APCs promoting CD4+ and CD8+ T cells’ response; they
stimulate NK cells to directly kill tumor cells and release proinflammatory factors involved
in T-cell activation [119]. According to Shi et al., TIL-B of HCC produce high levels of
IFN-γ and IL-12p40, stimulating the CD8+ T cell response and exerting a direct killing
effect [36,89].

On the other hand, the protumorigenic role in HCC cancer type may be exerted by
Bregs, which exercise an inhibitory effect on the immune system by upregulating the ex-
pression of genes involved in tumorigenesis or by reducing the immune response. In this
way, they can inhibit cytotoxic CD8+ T cells, the inflammation of Th1 cells and Th17 cells,
facilitating the differentiation of Treg cells [114]. In human HCC, the phenotype, function,
and clinic-related relevance of Breg cells have rarely been investigated, but whether or
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not the percentage of Breg cells is significantly higher within the tumor, especially in the
late stage, they directly interact with HCC cancer cells through CD40/CD154 signaling
and promote the growth and invasion of this malignancy [116]. Bregs secrete immunosup-
pressive cytokines to promote cancer, inhibiting T-cell function. They operate through an
IL10-dependent pathway to induce T-cell dysfunction, creating conditions that lead to tu-
mor progression [117]. Moreover, Ouyang et al. reported that more than 50% of infiltrating
B cells in HCC were characterized by a low/activated phenotype of FcγR, and the high
infiltration of these types of cells was positively correlated with cancer progression [118].

5.3. Background of CCA

Cholangiocarcinoma is a rarer and heterogeneous type of cancer originating at any
point of the biliary tree, from the intra- and extrahepatic regions, and it is the second
most common liver cancer accounting for 10–15% of all primary hepatobiliary
malignancies [120,121]. Based on the different anatomical regions where the tumor grows,
we can describe three different CCA subtypes: intrahepatic CCA (iCCA), perihilar CCA
(pCCA) and distal CCA (dCCA) [121,122]. Different risk factors seem to lead to CCA
development: liver flukes (Opistorchis viverrini and Clonorchis sinensis), primary sclerosing
cholangitis (PSC), viral hepatitis (HBV and HCV), even metabolic syndrome, alcohol, and
smoking [123,124]. Its incidence and mortality rate have been significantly increasing in
Europe and North America over the past decades, due to the aggressive evolution of the
disease and the lack of efficient diagnostic and therapeutic treatments [3,116]. CCA is very
often diagnosed in an advanced stage, when potentially curative treatments, such as surgi-
cal resection, cannot be applied [124]. Indeed, the patient’s prognosis has not improved
substantially, due to the high recurrence rate after surgical resection, the refractoriness to
systemic therapeutics observed in most the patients, the low rate of molecularly targeted
available therapies [125], and the lack of prognostic and predictive biomarkers. However,
13–14% of CCA patients showed a remarkable response to immune checkpoint inhibitors
with a stabilization of the disease, demonstrating that immune-targeted therapies could
be achievable for at least a subset of patients [126–128]. Why some patients respond to
immunotherapy, whereas others do not, remains unclear.

Current research implies that the CCA phenotype is determined by genetic and
epigenetic alterations in the cancer cells, by the molecular crosstalk between malignant cells
and the components of the TME [129]. Based on the specific TME, CCA can be categorized
depending on the presence or lack of immune cell infiltration. Overall, CCA is poorly
infiltrated by the immune system, and is generally defined as a “cold” tumor; otherwise,
the tumor infiltrated by lymphocytes is called “hot” [23]. The TME includes diverse
populations of immune cells, e.g., T cells, B cells, myeloid lineage leukocytes, NK cells,
macrophages and/or dendritic cells, that contribute to pro- or antitumor activities. Tumor-
infiltrating lymphocytes (such as T cells, B cells, and NK cells) are the most involved in the
immune response against tumor cells, and they are also responsible for the development
of antitumor immune responses [130]. What we know is that the superior responsiveness
to immune checkpoint inhibitors (such as anti-PD-1) is mediated by the reactivity of
expanded CD8+ T cells towards the tumor antigens [131,132], especially in tumors with a
high mutational burden, with mismatch repair deficiency and a high DNA microsatellite
instability, typical of CCA [133,134].

As mentioned before, little is known about the nature, phenotype, and functions of
other tumor-infiltrating lymphocytes such as B cells and their subsets in primary liver
tumors, especially in CCA. However, future perspectives should pursue this direction:
understanding B-cell molecular mechanisms involved in CCA progression or control will
help to develop new potential target therapies.

5.4. B Lymphocytes in CCA

In contrast to T cells, B lymphocytes have been poorly examined in CCA and less
evidence is available. Phenotypic and molecular studies carried out in CCA patients have
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shown that the frequency of CD20+ B cells in the TME is lower with respect to CD8+ and
CD4+ T lymphocytes that represent the majority of TILs [26,135]. In one study, Kasper et al.
demonstrated that CD20+ cells infiltrated more in the peritumoral area than in the tumoral
site [23], but the transcriptomic landscape of B cells from tumoral and peritumoral tissues
looked very similar based on gene expression profiles [26]. However, further studies are
needed to explore their specific location under different situations.

In a cohort of 308 CCA patients affected by high-level microsatellite instability (MSI-
H), Goeppert et al. discovered that higher numbers of CD8+ T cells and CD20+ B cells
were related to a longer overall survival [134]. Current single-cell sequencing data of CCA
demonstrated high B-cell infiltration levels in the TME were positively correlated with the
prognosis [134]. Unfortunately, due to the limited number of studies, the prognostic role
of B cells is not conclusive and more related research is needed to unravel their defined
impact on long-term outcome.

TLSs are associated with favorable prognoses in several cancers, but their role in
cholangiocarcinoma remains unclear. A comprehensive evaluation of the spatial distribu-
tion, abundance, and cellular composition of TLSs was performed in iCCA patients and
revealed the opposite prognostic impacts of TLSs located within or outside the tumor. This
suggests that the difference may be mediated by the different immune cell subsets present
within the TLSs [135].

5.5. B-Cell-Based Immunotherapeutic Strategies in Primary Liver Cancer

Regulatory cells, including Tregs and Bregs, participate in monitoring internal im-
mune homeostasis, and they have inhibitory roles in antitumor immunity in liver cancer.
Innovative strategies based on B cells’ value are mainly focused on negative lymphoid
regulatory cell blockage and B-lymphocyte targeted strategies [136,137].

In the first case, the strategy aims to block regulatory cells that mediate immunosup-
pression by depleting effector regulatory cells or modulating activating pathways. This can
be a solution to achieve immunotherapy against liver cancers.

Secondly, therapeutic strategies, which correct dysregulations in B cells, are likely to
generate beneficial antitumor immunity [138]. For example, clinical studies carried out
on patients with type II diabetes have shown a high frequency of immature/transitional
B cells, which might be liable for the progression of chronic hepatitis C (CHC) to HCC
and are considered a potential disease predictor for CHC [139]. The correlation between B
cell dysregulations, metabolic changes, or subset redistributions and the tumorigenesis of
primary liver cancers is still less clear.

Experiments performed in Mdr2−/− mice under liver fibrosis condition showed that
the depletion of CD20+ B cells with CD4+/CD8+ T induced inhibitory effects on liver
cancer progression [139], while clinical studies in human patients revealed that B cells
were notably decreased in HCC, and the density of tumor-infiltrating CD20+ B cells was
positively correlated with superior survival [19,83]. Therefore, the deletion of specific B-cell
subsets could be a solution.

A comprehensive characterization of molecular interaction between TIL-B and other
cellular components of the liver TME is needed to improve the immunotherapy’s efficacy.
For example, CD40L/CD40 interaction is a molecular mechanism engaged in the immune
system activation. CD40, a member of TNF receptors, is expressed on the surface of cells
such as DCs, monocytes, B cells, and some tumor cells [140]. The agonistic reagents to
CD40 are promising immunotherapeutic candidates, since they have showed activation
impacts on antitumor immunity. Indeed, mAbs that bind CD40 activate DC, myeloid cells,
as well as B cells and increase their ability to process and present tumor-associated antigens
(TAA) to local cytotoxic T lymphocytes [141,142]. The combination of anti-CD40/PD-1 with
chemotherapy significantly impaired tumor growth and prolonged survival in advanced
iCCA murine models [137]. A clinical trial to evaluate the efficiency and tolerability of
an agonist CD40 antibody (CDX-1140) in advanced malignancies including primary liver
cancers has recently commenced and it is recruiting for the next-step estimation [143].
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A novel PD-1hi B-cell subset, with a protumorigenic role, was identified in the TME
of patients with HCC, whose frequency correlated with the disease stage and was asso-
ciated with an early recurrence of HCC [144]. PD-1 hi B cells suppress tumor-specific
T-cell response via IL10-dependent pathways upon interacting with PD-L1 to cause T-cell
dysfunction and disease progression. Therefore, targeting immune checkpoint inhibitors
and blocking the PD1/PDL1 axis through antibodies or miRNAs is a promising therapeutic
strategy, since they may enhance immune cell antitumor responses [145]. Anti-PD-1 or
anti-PD-L1 antibodies may block not only the PD-1 co-inhibitory pathway in T cells, but
may also abolish the suppressive function of regulatory B cells [146].

TIGIT is another inhibitory receptor usually expressed on Tregs, that contributes to
their suppressor function by limiting proinflammatory Th1 and Th17 responses. Indeed,
TIGIT directly acts on CD155 expressed on activated T cells, resulting in the suppression
of the T-cell response. It has been found significantly expressed in memory B cells, with
the capacity to limit CD4+ T-cell proliferation and Th1/Th17 activation. Neutralizing
TIGIT with anti-TIGIT antibodies has resulted in the partial recoveries of IFNγ and IL-17
expression by CD4+ T cells, suggesting it is a considerable marker to reactivate the immune
system against tumor development [146].

Considering that cellular organized aggregates (such as TLSs) found in the TME of
primary liver cancer can influence carcinoma occurrence and immunotherapy efficacy,
the identification and modulation of TLSs is another powerful weapon against cancer in
clinical practice. TLSs have been considered a marker of immunotherapy able to predict its
effect and help to identify patients who respond to immunotherapeutic treatment [147–149].
Modulating TLS formation using chemokines/cytokines, immunotherapy, or the induction
of the high endothelial vein has been studied extensively in primary liver cancer, in order
to interfere with tumor growth and solve the problem of the low response rate to ICB
therapy [149].

6. Conclusions and Perspectives

Our knowledge of the origin and detailed molecular characterization of primary liver
cancer has progressed in the past years, but unfortunately, treatment options that con-
fer to patients a longer survival and improvement in their quality of life have remained
scarce [109]. A better understanding of the phenotype and molecular landscape of liver
TME components could allow for an enhanced lymphocyte infiltration and effector function
inside the tumors. In this way, it would be easy to target and reshape the hepatic inflamma-
tory and/or metabolic microenvironment, to re-establish an effective immunosurveillance
and response to immune checkpoint blockade [150].

B cells are an important component of the TME of various solid tumors, includ-
ing primary liver cancers, and play different roles in the immune system. They have a
contradictory value in tumor development: TIL-B can limit tumor growth by secreting
immunoglobulins, boosting T-cell response, and directly killing cancer cells; then, they are
also involved in the generation and maintenance of TLSs, promoting TILs infiltration into
the tumor [151]. B-cell populations within the TLS and B-cell-related pathways mainly
contribute to an antitumor response, improving patient outcomes. On the other hand, an
increased frequency of a regulatory B-cell subset can facilitate tumor growth by secreting
immunosuppressive cytokines including IL10 and/or TGF-β [51].

The complex distribution, multiple functions (pro- and antitumorigenic), and the
presence of different B cell subsets in the TME, especially in liver cancer types, make it
challenging to identify optimal targets for developing novel immunotherapy approaches.

In HCC, TIL-B mainly have an anticancer effect, but the immunoregulation function
of Bregs cannot be ignored [152]. Further research on Bregs should be performed since
they may represent a great potential for the development of new therapeutic strategies for
hepatic malignancies. At different stages of HCC development, diverse subgroups of B
cells play different roles, which are determined by the changes in the TME. Overall, the



Cancers 2023, 15, 2182 15 of 22

complex relationship among B cells with the TME of HCC and CCA remains unclear, but
novel breakthroughs may be performed in the future.

Even though liver cancer such as CCA is poorly infiltrated, and B cells represent a
small portion of TILs, a high frequency of B lymphocytes seems to be present in some
CCA patients and has been related to longer OS and RFS. This might be attributed to a
local immunological activation that leads to an increased number of cytotoxic CD8+ T
cells [4,135]. However, given the limited quantity of quality data on B cells in CCA patients,
further research is warranted to draw valid evidence-based conclusions.

The advent of immune checkpoint blockade in combination with radiotherapy and
chemotherapeutic drugs has changed the treatment for multiple types of cancer, includ-
ing liver cancer such as HCC, by extended survival times for a subset of patients. An
immunosuppressive TME, typical of HCC, allows cancer cells to escape destruction by the
immune components and develop resistance to immunotherapy [153]. Consequently, the
development of novel targeted therapies can be helpful. The research focused on innova-
tive immunotherapeutic approaches based on B-cell reprogramming/deletion is still in
progress, but more studies on B-cell molecular features in primary liver cancers and associ-
ated mechanisms with the TME are needed to reach the next clinical stage. Considering the
dual role of B lymphocytes within the tumor tissue, the new therapeutic strategies include
specific monoclonal antibodies or chemical products with the main goal of depleting TIL-B
subsets and blocking the regulatory cell response whether B cells are associated with worse
clinical outcome, or targeting B lymphocytes to boost their APC capacity and the direct
tumor killing effect if their high frequency is related to a better OS.

Moreover, since CD20+ B cells seem to be well aggregated and structurally organized
in the TME of liver cancers, modulating TLS development in the hepatic tumor milieu may
be a promising strategy in cancer treatment, as well as extend the use of TLSs and B cells as
prognostic/predictive biomarkers for the ICB response.

However, a rigorous and deeper phenotypical and molecular analysis of B-cell sub-
types in HCC and CCA is required to elucidate the effective role of B cells in tumor
progression or control, to adjust the responsiveness to the immunotherapy that is already
in the clinical stage and to develop new ones.
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HBV hepatitis B virus
HCV hepatitis C virus
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NASH nonalcoholic steatohepatitis
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OS overall survival
TME tumor microenvironment
ICB immune checkpoint blockade
iCCA intrahepatic cholangiocarcinoma
pCCA perihilar cholangiocarcinoma
dCCA distal cholangiocarcinoma
DC dendritic cell
NK natural killer cell
TAM tumor-associated macrophage
Breg regularity B cell
Treg regularity T cell
BM bone marrow
HSCs hematopoietic stem cells
Pro-B progenitor B
Pre-B precursor B
BCR B cell receptor
SLO secondary lymphoid organs
PAMPS pathogen-associated molecular patterns
GC germinal centers
Tfh T follicular helper
FDCs follicular dendritic cells
CSR class-switch recombination
SHM somatic hypermutation
PCs plasma cells
TGF transforming growth factor
Th T helper
APC antigen-presenting cell
M-CSF macrophage colony stimulating factor
GM-CSF Granulocyte-macrophage colony-activating factor
GCSF granulocyte colony-stimulating factor
MDSC myeloid-derived suppressor cells
FcγR Fcγ receptors
CICs circulating immune complexes
TLS tertiary lymphoid structures
CLL chronic lymphocytic leukemia
ADCC antibody-dependent cellular cytotoxicity
CDC complement-dependent cytotoxicity
CAFs cancer-associated fibroblasts
TAMs tumor-associated macrophages
TANs tumor-associated neutrophils
ECM extracellular matrix
ACT adoptive cell therapy
RFS recurrence-free survival
BN B naïve
SM B switched memory B
PSC primary sclerosing cholangitis
CHC chronic hepatitis C
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