
Citation: Al-Adli, N.N.; Young, J.S.;

Sibih, Y.E.; Berger, M.S. Technical

Aspects of Motor and Language

Mapping in Glioma Patients. Cancers

2023, 15, 2173. https://doi.org/

10.3390/cancers15072173

Academic Editors: Alfredo Conti

and Eiichi Ishikawa

Received: 9 March 2023

Revised: 29 March 2023

Accepted: 4 April 2023

Published: 6 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Technical Aspects of Motor and Language Mapping in
Glioma Patients
Nadeem N. Al-Adli 1,2 , Jacob S. Young 1, Youssef E. Sibih 3 and Mitchel S. Berger 1,*

1 Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA;
nadeem.al-adli@ucsf.edu (N.N.A.-A.); jacob.young@ucsf.edu (J.S.Y.)

2 School of Medicine, Texas Christian University, Fort Worth, TX 76109, USA
3 School of Medicine, University of California, San Francisco, CA 94131, USA
* Correspondence: mitchel.berger@ucsf.edu

Simple Summary: Intraoperative stimulation mapping is a technique used to identify and preserve
functional tissue during the surgical resection of gliomas. This form of functional brain mapping
allows neurosurgeons to remove the most tumor tissue possible while minimizing the risk of a
neurological deficit after surgery. The data supporting brain mapping and the technical nuances of
performing these operations safely are described in this review.

Abstract: Gliomas are infiltrative primary brain tumors that often invade functional cortical and
subcortical regions, and they mandate individualized brain mapping strategies to avoid postoperative
neurological deficits. It is well known that maximal safe resection significantly improves survival,
while postoperative deficits minimize the benefits associated with aggressive resections and diminish
patients’ quality of life. Although non-invasive imaging tools serve as useful adjuncts, intraoperative
stimulation mapping (ISM) is the gold standard for identifying functional cortical and subcortical
regions and minimizing morbidity during these challenging resections. Current mapping methods
rely on the use of low-frequency and high-frequency stimulation, delivered with monopolar or bipolar
probes either directly to the cortical surface or to the subcortical white matter structures. Stimulation
effects can be monitored through patient responses during awake mapping procedures and/or with
motor-evoked and somatosensory-evoked potentials in patients who are asleep. Depending on the
patient’s preoperative status and tumor location and size, neurosurgeons may choose to employ
these mapping methods during awake or asleep craniotomies, both of which have their own benefits
and challenges. Regardless of which method is used, the goal of intraoperative stimulation is to
identify areas of non-functional tissue that can be safely removed to facilitate an approach trajectory
to the equator, or center, of the tumor. Recent technological advances have improved ISM’s utility in
identifying subcortical structures and minimized the seizure risk associated with cortical stimulation.
In this review, we summarize the salient technical aspects of which neurosurgeons should be aware in
order to implement intraoperative stimulation mapping effectively and safely during glioma surgery.

Keywords: glioma; intraoperative stimulation mapping; motor mapping; language mapping;
maximal safe resection; functional brain mapping; awake craniotomy; stimulation techniques

1. Introduction

Gliomas are diffuse, infiltrative primary brain tumors, often presenting with seizures
or neurological deficits referrable to their location within the brain parenchyma. The current
standard of care to improve survival for these patients involves surgical resection followed
by chemoradiation for higher-grade malignancies [1]. During tumor resection, the primary
goal is to maximize the extent of resection—often performing a supratotal resection (SpTR)
of lesional tissue when possible—while also preserving neurological function and patient
quality of life [2–7]. The benefit of aggressive surgical resections must be balanced with
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the preservation of neurological function, as neurological deficits, particularly hemiparesis,
have been shown to abrogate the procedure’s survival benefits [8–10].

Technical and technological advances in the operating room have focused on improv-
ing postoperative functional outcomes and intraoperative detection of residual tumor cells
to facilitate the goal of maximal safe resection [11]. Unfortunately, these infiltrative tumors
are often near functional cortical and subcortical regions, making intraoperative electrical
stimulation mapping (ISM) critical to safely remove the lesion [12]. Originally introduced
by Penfield [13], the field of brain mapping has advanced to allow for intra-operative
identification and preservation of functional tissue during surgery [12,14–23]. In a large
meta-analysis, De Witt Hamer et al. reported ISM to be associated with more extensive
resections and fewer late severe neurological deficits, despite more frequently involving
tumors located in functional regions [12]. In addition, when compared to asleep resections,
awake mapping is associated with fewer neurological deficits, as well as improved overall
and progression-free survival [24].

As the arsenal of techniques has expanded and evolved for cortical and subcortical
mapping in glioma patients, neurosurgeons need to be aware of the techniques available for
safely identifying functional regions for the purpose of maximizing the extent of resection.
In this review, we describe the technical aspects of intraoperative mapping, both awake
and asleep, for tumor resection.

2. Maximizing Extent of Resection Is the Standard of Care

Maximal safe resection is defined as resecting as much tumor-infiltrated tissue as
possible to improve survival while minimizing the risk of postoperative neurological
deficits and retaining quality of life [2,25–27]. As mentioned, SpTR has recently been
associated with improved overall survival (OS) for both LGG and GBM [2,28]; however,
the survival advantage of these more aggressive resections is lost when patients have a
postoperative deficit [8–10]. As such, significant efforts have been made to develop pre-
and intra-operative methods for maximizing EOR. Furthermore, neurological deficits and
poor functional outcomes are associated with the development of medical complications,
depression, and an overall poorer quality of life [29–31].

Intraoperative stimulation mapping (ISM) remains the gold standard for the identifi-
cation of functional tissue during surgical resections [32,33]. Preoperatively, it is important
to consider several factors, such as tumor localization, the patient’s cognitive and func-
tional status, preoperative neurological deficits, and preoperative anxiety level, when
determining the surgical plan. Preoperative tools include functional MRI (fMRI), mag-
netoencephalography (MEG), diffusion tensor imaging (DTI), and navigated transcranial
magnetic stimulation (nTMS) [16,34], which can be used as adjuncts during surgical plan-
ning, but they lack the accuracy and specificity to be used in place of intraoperative cortical
and subcortical direct electrical stimulation [27,35].

Recent technological advances have improved the reliability of direct cortical and
subcortical electrical stimulation, as well as transcranial cortical stimulation [36], which can
be used in conjunction with neurophysiological monitoring of motor-evoked potentials
(MEPs) and somatosensory-evoked potentials (SSEPs) to provide constant insight into the
functional integrity of the corticospinal tract or dorsal columns/medial lemniscus sensory
system during tumor resection [33]. Cortical mapping is used to identify functional sites
that are vital in the language, motor, somatosensory, and executive/cognitive domains and
must be preserved. Non-functional sites revealed as negative sites during mapping can be
safely used for the initial corticectomy to approach the tumor [27]. Testing and monitor-
ing of cognitive functions such as language, visual perception, and spatial orientation is
dependent on having the patient awake and cooperative during the procedure; therefore,
these functions cannot be accurately assessed in asleep craniotomies [27]. While motor
mapping may be performed during either awake (AC) or asleep (AS) craniotomies, there is
no consensus on the superiority of one technique over the other, and the choice of awake
versus asleep mapping often depends on the patient’s symptoms and the tumor’s location
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and size [27,37,38]. For example, in a matched cohort analysis, Gerritsen et al. reported
that awake craniotomies resulted in more extensive resections in the entire cohort, and on
subgroup analyses based on cutoffs of 70 years of age, a preoperative National Institutes
of Health Stroke Scale (NIHSS) score of 2 and a Karnofsky Performance Scale (KPS) of
90 [24]. In addition, the authors reported OS and PFS benefits in younger patients, as well
as those with a NIHSS of 0–1 and a KPS of 90–100. Importantly, two currently recruiting
trials aim to assess the safety and efficacy of awake and asleep craniotomies in glioma
patients (Table 1), the results of which should aid in corroborating these findings and in
surgical decision making.

Table 1. Ongoing clinical trials for glioma surgery.

Study Name (NCT) Interventions Primary Endpoint Secondary Endpoint Est. Enrollment Start Date Est. End Date

PROGRAM
(NCT04708171) [39]

Awake mapping
Asleep mapping

Asleep no mapping
NIHSS, EOR

OS, PFS, Onco-functional
outcome, SAE, RTV,

MRC motor
453 1 January 2022 1 October 2026

SAFE
(NCT03861299) [40]

Awake craniotomy
Asleep craniotomy NIHSS, EOR

EQ-5D,
EORTC-QLQ-BN20/C30,

OS, PFS, SAE
246 1 April 2019 1 April 2024

Abbreviations: NIHSS, National Institutes of Health Stroke Scale; EOR, extent of resection; OS, overall survival;
PFS, progression-free survival; SAE, serious adverse events; RTV, residual tumor volume.

3. Nuances of Intraoperative Motor Mapping Techniques and Measurements
3.1. Cortical and Subcortical Motor Mapping

Intraoperative motor mapping is critical for preserving function when resecting tu-
mors near the Rolandic cortex and subcortical corticospinal tract, as postoperative motor
deficits have been shown to abolish the survival benefit associated with maximal extents of
resection and greatly impair patients’ quality of life [9,10]. Advances in MEP monitoring,
neuronavigation, cortical/subcortical mapping, and intraoperative surgical techniques
have all contributed to safer resections for tumors near motor regions by minimizing direct
damage and/or ischemic injury to these pathways [41,42].

3.2. Tractography for the Corticospinal Tract (CST)

In a prospective randomized control trial published in 2007, Wu et al. reported
a dramatic improvement in overall survival and better postoperative KPS in patients
who underwent resections of tumors involving the pyramidal tracts. This was achieved
using DTI fiber tracking of the CST integrated into the neuronavigation, which was more
successful compared to standard neuronavigation with structural MRI sequences [43].
While there is no doubt that DTI tractography is helpful for guiding surgeons regarding
proximity to vital structures, and is a part of the standard practice for these operations, DTI
is not based on physiological parameters; as such, its intraoperative accuracy is subject
to numerous limitations. For example, the region-of-interests used as seeds to generate
the tractography projects can alter their appearance, and intra-operative brain shift can
dramatically impair the navigation/DTI accuracy [23]. As such, DTI alone cannot be used
to identify the CST, and instead should be incorporated into the intraoperative decision-
making strategy for the pursuit of subcortical mapping.

3.3. Motor Evoked Potentials (MEPs)

Intraoperative MEPs are also considered part of the gold standard for supratentorial
glioma resections near the primary motor cortex or corticospinal tract. Transcranial MEPs
(tcMEPs) utilize a high-voltage electrical stimulus through the scalp/skull to activate the
motor cortex and descending pathways to generate an MEP, which can be measured by
electrodes on the limbs. Alternatively, MEPs can be obtained by direct cortical stimulation
(dcMEPs) after opening the dura by stimulating through a strip electrode that is placed
over the primary motor cortex [44]. Following ‘train of 5’ anodal stimulation, a drop
in signal amplitude by >50%, with the same stimulus intensity serving as the baseline
established at the beginning of the case, or a 20% increase in the stimulus threshold needed
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to achieve a response compared to the ipsilateral muscle groups, are generally considered
to be warning signals for postoperative weakness, and are monitored with the goal of
avoiding false negative (i.e., normal MEP signals in patients who ultimately suffer from
postoperative weakness) and overly sensitive false positive stimulation results (i.e., drops
in MEP amplitude in patients without postoperative motor deficits) [45,46]. MEPs can be
obtained every 30 s during the entirety of the tumor resection to monitor the tract integrity,
although brain shift as the resection progresses can provide false positive MEP changes that
the surgeon can often identify by dynamically returning the cortex to the dural opening
with irrigation, manual manipulation, and/or transitioning from tcMEPs to dcMEPs for a
more reliable signal.

3.4. Awake versus Asleep Motor Mapping

The choice of AC or AS for motor mapping is nuanced, and may be influenced by
the patient’s clinical examination and the tumor size/location [47]. There are significant
differences in neuroanesthetic regimen, intraoperative neuromonitoring technique, and
the complexity of patient tasks between awake and asleep mapping. A recent systematic
review reported that both methods are safe in perirolandic tumors [48]; however, AC may
offer better EOR and functional outcomes [49]. Alternatively, some studies have argued
that patient-level characteristics are the most important for making one method preferable
to the other [50].

While determining the optimal approach is a multifaceted process, intraoperative
mapping techniques in both scenarios have ultimately enabled surgeons to resect tumors
that were once considered inoperable within and near the primary motor cortex [51], and
as such, have become the gold standard [12]. Nevertheless, there are inherent technical
differences between the two methods. For example, in AS, responses are monitored through
electrical responses to stimulation and/or passive patient movement, whereas assessment
in the awake setting is geared towards impairment during patient-dependent tasks and/or
involuntary movement [16,27,50]. Additionally, tcMEPs, which provide the added benefit
of motor cortex stimulation without overt craniotomy exposure [46], are modified in awake
cases to avoid the pain associated with corkscrew stimulators and subdermal needle EMG
electrodes [52]. Rather, in awake craniotomies, stickers can be used for EMG recording, and
the ground and reference must be placed close to one another to minimize the amount of
current needed to achieve MEPs. Even with these modifications, direct cortical stimulation
with a strip electrode on the motor cortex surface with the ground and a reference electrode
placed close by is often needed to minimize the current needed to generate MEPs. Finally,
given that awake patients do not have bite blocks in place (all asleep patients need to have
two carefully placed bite blocks that secures the tongue in the middle of the mouth), the
stimulation current must not cause involuntary contraction of the masseter or jaw muscles
to avoid tongue lacerations.

Advances in asleep motor mapping, particularly with respect to high-frequency corti-
cal and subcortical stimulation, have resulted in very good functional outcomes following
asleep resections of lesions involving the central sulcus and in patients with preopera-
tive weakness [50]. Regarding tumors located within the primary motor cortex, studies
have demonstrated that there are no differences between the two with regard to EOR or
postoperative morbidity [53,54], while others have suggested that AC is associated with
more frequent 100% resections and better postoperative functional status [24,49]. While
additional studies are needed to directly compare the two methods, generally speaking,
both techniques can be used safely in this high-risk cohort, and outcomes likely depend
on the intraoperative techniques used. For example, permanent postoperative deficits
have been reported in as few as 2% of AS cases when using adaptive high-frequency
monopolar mapping [51], which is preferred in the asleep setting due to the variability of
neuromonitoring measurements when the patient is awake [51]. On the other hand, in AC
cases, continued resection past the point of failed recovery of an intraoperative deficit is
associated with permanent deficits [55].
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For lesions involving the supplemental motor area (SMA) and motor–praxis network,
some groups argue for awake motor mapping, while others advise against AC for lesions
in this region, since avoidance of postoperative SMA syndrome is unnecessary given the
transient nature of this deficit [50,56]. Still, debate abounds regarding the superior method
and the associated risk factors. While the degree of regional resection has been suggested
as a risk factor [57], Kumar et al. reported in a small series of SMA region tumors resected
using AS, that all tumors were completely resected with intact MEPs. Additionally, despite
the development of a case of SMA syndrome, all of their patients recovered completely [58].
Aligned with the hypothesis that these resections can be performed in both settings, Young
et al., in their larger cohort of newly-diagnosed SMA region tumors, reported no association
between the type of craniotomy (AC vs. AS) and the development of the syndrome [56].
Furthermore, they reported that while larger resection cavities were associated with the de-
velopment of an SMA syndrome and prolonged recovery, the severity of the symptoms was
unaffected [56]. Some studies argue that resection of the frontal aslant tract (FAT) is critical
in the development of the syndrome [59], whereas others have suggested that preservation
of the FAT is insufficient for prevention [56,60,61]. Alternatively, extensive resection of
the posterior SMA region [62,63] and cingulate gyrus are perhaps more important risk
factors [56,64]. Taken together, these findings suggest that premature cessation of resection
due to insignificant intraoperative deficits may occur in the awake setting [61,65] and with-
out subsequent benefit to the patient. Importantly, during preoperative discussions with
their patients, neurosurgeons should highlight the possibility of these temporary deficits
when pursuing aggressive resections of tumors in this location, as well as the possibility of
these deficits emerging during intraoperative mapping if an awake approach is chosen.

3.5. Stimulation Techniques and Nuances

Motor mapping can be performed using either high- or low-frequency stimulation
and either a monopolar or bipolar probe (Table 2). In both paradigms, stimulation aims
to identify the lowest intensity at which MEPs are produced (i.e., the cortical or subcor-
tical motor threshold) for accurate boundary identification [52]. Low-frequency bipolar
stimulation (biphasic-wave, 1 ms pulse duration, 60 Hz, 4–16 mA) can be used for cortical
mapping in order to identify function-free zones for the corticotomy [36]. However, this
method only identifies positive sites in subcortical mapping ~40% of the time, giving this
technique high specificity, but poor sensitivity [42]. As such, monopolar, high-frequency
stimulation is preferred, particularly for subcortical mapping, as it is not only sensitive
for functional sites but also provides quantitative estimates of the distance from critical
subcortical tracts depending on the intensity of the stimulation used to elicit a response
(i.e., 1 mA ' 1 mm) [27]. In some instances, a bipolar probe may be used to increase spatial
resolution when needed during subcortical mapping [33].

Traditionally, high-frequency monopolar stimulation is administered as a monophasic
wave pulse in trains of 5 (0.5 ms pulse duration, 1–4 ms interstimulation interval, 0–20 mA);
however, more recently, reduced trains of 1 to 2 [51,66] have demonstrated added utility as
well. Rossi et al. directly compared these two protocols and identified tumor subgroups
in which shorter trains may offer additional insight. In tumors outside of the primary
motor cortex and cortical spinal tracts, those only affecting the cortical spinal tracts, or
those originating within the primary motor cortex with normal cortical architecture, ‘train
of 2’ stimulation better segregated the anterior and posterior regions of the primary motor
cortex—a distinction that may aid in maximizing EOR while preserving long-term func-
tion [66]. In addition, only the two trains of stimulation identified function-free zones in
primary motor cortex tumors with distorted cortical architecture. The authors identified
similar patterns regarding subcortical mapping where two trains of stimulation may have
provided added specificity to mapping within the primary motor cortex. In a separate
study, Rossi et al. evaluated increased and decreased trains of stimulation and found that
in patients with well-controlled seizures and well-defined tumors, maximal safe resection
was possible using the standard five trains of stimulation and resecting until reaching a
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subcortical motor threshold of 3 mA. Alternatively, in those with a complex treatment
history, prior seizures, or deficits at presentation, this may need to be adapted by increasing
the number of pulses and/or duration of pulses to achieve adequate resection. Lastly, the
authors reported that in diffuse tumors, the combination of the five trains and the modified
two trains should be used to define functional boundaries at the cortical and subcortical
levels [51].

High-frequency monopolar stimulation, first described by Taniguchi et al., has become
an emerging tool for cortical mapping and may be delivered in short trains of 3 to 10
(250–500 Hz, 0.5–0.8 ms pulses, 0–20 mA), similarly to subcortical parameters [67–69].
However, in contrast to subcortical stimulation, an anodal current should be used, as it more
effectively produces corresponding MEPs at lower thresholds [67,68,70]. In comparison
to bipolar cortical stimulation, this technique offers equal sensitivity over the primary
motor cortex, but in other areas, such as the premotor frontal cortex, bipolar stimulation
is superior [68]. The advantages of monopolar cortical stimulation primarily include the
lower rate of seizures and the ease of continuing subcortical mapping during resection [71].
Taken together, these techniques are complex and most effective when used in combination
with one another to minimize postoperative morbidity [36]. However, neurosurgeons
should utilize these methods according to their experience and the available resources.

Table 2. Overview of intraoperative motor mapping parameters.

Cortical Subcortical Transcranial

Monopolar Bipolar Monopolar Bipolar Scalp Electrodes

Frequency (Hz) 250–500 50–60 250–500 50–60 200–1000

Wave form Monophasic
rectangular Biphasic square Monophasic

rectangular Biphasic square Monophasic

Polarity Anodal Alternating Cathodal Alternating Anodal
Intensity 0–20 mA 0–16 mA 0–20 mA 1–6 mA 0–800 V

Duration (ms) 0.5–0.8 1 0.5–0.8 1 0.75
Pulses (Trains) 5–10 60/s 5–9 60/s 3–9

Interstimulus interval (ms) 2–4 16.7 2–4 16.7 1–5
MEP threshold (mA)

Awake 5–15 2–7
Asleep 2–7 7–16

Stimulation amplitudes *
(mA) [42,72,73]

Awake 1–20 2–8 1–20 2–8
Asleep 1–20 3–16 1–20 3–16

Abbreviations: Hz, hertz; ms, milliseconds; mA, milliamp. * EcoG should be used with higher stimulation
amplitudes to monitor for after-discharge potential, as the risk of a stimulation-induced seizure is higher.

4. Sensory Mapping

Somatosensory mapping may be performed in awake or asleep settings, and in the for-
mer, may be assessed by patient-reported sensations during electrical stimulation [74–76].
Nonetheless, somatosensory evoked potentials (SSEPs) may assist with structural local-
ization and deficit prediction [77]. For the purpose of localizing the central sulcus, phase
reversal is one reliable method [78]. Some studies have suggested that SSEPs may ad-
ditionally be used for monitoring sensorimotor function during glioma resection and
predicting neurological deficits [79]. The warning criteria, which were initially defined
as a >50% amplitude reduction or >10% propagation of latency from the baseline, have
now been adapted to suggest that an obvious, abrupt, and not otherwise explainable visual
deviation from pre-change values may be concerning for intraoperative injury [77]. Ulti-
mately, recent literature has reported mediocre predictive statistics associated with these
criteria [80], and has failed to demonstrated a significant association with postoperative
neurological deficits [81]. Therefore, SSEPs may provide indirect localization of important
structures; however, concerning recordings should be interpreted with caution, as they
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may lead to premature completion of the resection [82]. Moreover, sensory deficits, when
reported, have little association with the patient’s functional independence [31], and as
such, SSEP monitoring is not necessary given the superiority of MEPs for primary motor
cortex identification [33].

5. Language Mapping

Awake language mapping is critical for glioma surgery within the dominant hemi-
sphere [15,83–86]. Previous works have established that language networks are variable,
and as such, mapping only when tumors involve specific anatomic regions is inade-
quate [14,83,87,88] because no structural landmark on preoperative MRI can precisely
predict functional tissue [84]. Combined with the possibility of functional tissue being
present within the tumor region [89,90] and tumor-induced reorganization [91–94], these
factors complicate language localization [95]. While ISM is the gold standard, intraoperative
MRI (iMRI), 5-aminolevulinic acid (5-ALA), and intraoperative ultrasound (iUS) are notable
adjuncts that can be used in the operating room to increase the extent of resection [96–98].

5.1. Patient Selection and Preoperative Assessment

Although no guidelines on patient selection for awake surgery exist, some contraindi-
cations include uncontrolled coughing, severe dysphagia, and greater than 33% naming
errors despite dexamethasone and mannitol treatment [99]. Some commonly cited relative
contraindications include significant diuretic- and steroid-resistant mass effect, obesity
(BMI > 30), psychiatric and/or emotional instability, under 10 years of age, intraoperative
seizures, current smoker, intraoperative nausea, reoperation, and significant preoperative
functional impairment; however, specific solutions for each relative contraindication have
been described to safely perform awake procedures in patients with these comorbidities or
conditions [99,100].

Preoperative evaluation includes anatomic imaging, diffusion tensor imaging tractog-
raphy, functional connectivity maps with magnetic source imaging (MSI) and magnetoen-
cephalography (MEG), neurolinguistic testing, patient counseling, and, in some cases, a
neuropsychological evaluation. Additional functional imaging techniques may be used
for preoperative language mapping, such as fMRI and nTMS, although these noninvasive
imaging modalities are not specific enough to determine the location of language function
beyond hemispheric dominance [17,101].

5.2. Anesthetic Considerations

While a dedicated neuroanesthesia team is essential to providing the optimal care for
patients, various neuroanesthetic regimens can be used during an awake craniotomy [102].
A recent meta-analysis reported that the commonly used asleep–awake–asleep (AAA) and
monitored anesthesia care (MAC) techniques are equally safe [103]. Propofol-remifentanil
and/or dexmedetomidine may be used for the AAA approach [99,104,105], while
dexmedetomidine is typically the only agent used in MAC cases. While a nasal can-
nula is used for supplemental oxygen in all cases, a laryngeal mask airway or nasal trumpet
should be available and used when needed [99,103]. Generous local analgesia is essen-
tial for Mayfield placement, and a scalp block can be useful for pain relief prior to skin
incision [100].

5.3. Current Technique

A focused exposure begins with a tailored craniotomy site over the lesion and any
adjacent structures that may require mapping. Dural opening is typically more challenging
in reoperation cases due to dural scars and adhesions. During the dural opening process,
lidocaine may be used to provide a dural block, particularly near the middle cranial fossa
floor, if the patient is experiencing discomfort. Sedation is significantly reduced or stopped
all together prior to opening the dura, and once adequate cortical exposure is achieved,
anesthesia should have propofol in line and iced Ringer’s solution should be available for
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seizure control if needed. In both techniques, a short assessment of the patient’s wakeful-
ness is performed prior to cortical mapping and linguistic testing. Regarding task selection,
these vary widely between institutions and there is currently no agreement on the optimal
test to use. Picture naming, text reading and writing, sentence completion, syntax, auditory
naming, and spelling are some of the most common assessments performed [100]. While
language assessment protocols exist to standardize intra-operative task selection [106],
they are not widely used, and ultimately, care should be taken to avoid tests with poor
sensitivity or specificity during baseline testing [106,107].

Various techniques for cortical and subcortical mapping have been reported using
varied parameters [108,109]. Low-frequency bipolar stimulation (60 Hz, 1.25 ms biphasic
square waves in 4 s trains) generated across 1 mm electrodes separated by 5 mm is tra-
ditionally used. However, some studies have reported using high-frequency monopolar
stimulation (HFMS) for language mapping with comparable results when utilizing high-
frequency trains at a repetition rate of 3 Hz [110,111]. Compared to low-frequency bipolar
stimulation (LFBS) for motor mapping, HFMS is known to be more efficacious and less
likely to induce intraoperative seizures [111], which makes its potential implementation for
language mapping intriguing. However, in the few studies that have directly compared
the two methods, seizures occurred in 7–11% of patients [110,111], which suggests that
additional data are still needed.

Nonetheless, standard cortical mapping typically begins at a 2 mA stimulus, which can
be increased until somatosensory or motor function is identified or, in the case of language,
until after-discharge (AD) or epileptiform activity are noted on electrocorticography (ECoG)
by an epileptologist. In the case of language mapping, classically, the AD-induced intensity
is reduced by 1 mA and then used for the remainder of the language mapping process,
which usually ranges from 3 to 4 mA, to avoid false positive results from AD-induced
errors and minimize the risk of seizures [112]. If motor or somatosensory sites are not
exposed, a 4-contact strip electrode can be advanced subdurally to establish positive
somatosensory/motor sites.

Cortical testing sites, separated by 1 cm, are non-sequentially tested 3 times each for
3 to 4 s, with a 4 to 10 s inter-task interval. If patients are fatigued or struggling with the
testing, the inter-task interval can be prolonged to give the patients more recovery time
between tests. A site is considered ‘positive’ when it produces either speech arrest without
a simultaneous motor response, anomia, or alexia in two of the three attempts [104,113]. A
trained neuropsychologist engages with the patient while coordinating with the neurosur-
geon during mapping to identify positive and negative sites. These are recorded along with
the stimulation parameters and marked using numbered indicators. Cortical dissection
using an ultrasonic aspirator proceeds through ‘function-free’ corridors, while a 1 cm
margin should be preserved around ‘positive’ sites [99,114]. Importantly, we found that
this method of negative mapping has an exceedingly low false-negative rate [99], and as
such, if cortical mapping reveals no ‘positive’ sites, greater exposure to find a ‘positive’ site
is not necessary [15]. Subcortical mapping is performed in a similar fashion, but is focused
on nearby areas with presumed language function, for which preoperative tractography
superimposed within the intraoperative neuronavigational space can be useful [115,116].
Critical subcortical tracts involved in language include the arcuate fasciculus (AF), superior
longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), inferior fronto-occipital
fasciculus (IFOF), uncinate fasciculus (UF), and subcallosal fasciculus (SF) [117]. In addition,
each subcortical tract and their associated pathways are responsible for highly specific
functions that are individually and collectively important for language and conflictive
function [118]. As such, an individualized approach is taken when choosing tasks and
stimulation sites which is tailored towards the characteristics of both the patient and the
tumor [116,118].
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6. Executive Function—Beyond Language and Sensorimotor

Executive function (EF) describes the way in which one can coordinate and control
higher-order behaviors, social abilities, and cognitive tasks. Despite advances in neuroimag-
ing and brain mapping that have resulted in improvements in functional outcomes and
EOR, patients may still develop an array of cognitive deficits that impact their quality of life,
ability to return to work, and capacity to complete activities of daily living [119]. Although
a recovery of cognitive function to the preoperative level is possible, much of the literature
lacks robust discussion of EF [120]. In addition, a complete understanding of the cortical
and subcortical networks involved in EF has not yet been achieved; however, functional
imaging has revealed that these networks are primarily located in the frontocorticostriatal
region of the brain [25]. The incomplete understanding of these networks and their impor-
tance to postoperative patient performance status and quality of life makes intraoperative
mapping a relatively complex challenge, and likely explains the limited research on the
subject [121]. In addition, EF testing is intricate and time-consuming, which may reduce
patient cooperation during the awake portions of their surgery [25,118,122].

Despite these challenges, studies have begun to evaluate the feasibility of EF map-
ping, with a primary focus on LGG patients due to their potential for deeper subcortical
infiltration and longitudinal impacts on cognition [4,123] (Table 3). Accordingly, the fron-
toparietal and the frontal cortico-subcortical networks along with the FAT have been shown
to have roles in executive function, and, when disrupted during LGG resection, may be
implicated in EF deficits [124]. Wager et al. were the first to report the operative feasibil-
ity of the Stroop Test, which is a well-established tool for evaluating executive function
during cortical mapping [125]. Puglisi et al. added to these results by demonstrating the
efficacy of a simplified version, the “intraoperative version of the Stroop task” (iST), during
subcortical mapping [126]. Their study revealed that iST-positive subcortical sites were
correlated with executive function and, when spared, patients experienced minimal deficits
at their 3-month follow-ups. Importantly, the implementation of this task did not affect the
extent of resection [126]. Erez et al., in their novel implementation of ECoG monitoring,
demonstrated the potential of resection to support and guide direct electrical stimulation
in order to identify the functional regions of the cortex which are involved in EF [127].

Table 3. Intraoperative tasks for assessing executive function.

Task Function Result

ST/iST [125,126] Selective attention and inhibition Feasible and associated with improved deficits at
3 months

WAIS-III-PA [128] Social cognition Feasible and associated with maintenance of baseline
performance at 3 months

mJFE [129] Basic emotion Positive sites preserved, postoperative decline in
function, 3-month improvement

Facial expression pictures [130] Emotional recognition No postoperative deficits when positive sites
were preserved

Abbreviations: ST, Stroop test, iST, intraoperative Stroop test; WAIS-III-PA, Wechsler Adult Intelligent Scale, 3rd
edition—picture association; mJFE, modified Japanese facial expressions of basic emotions test.

Taken together, considering the diverse array of EF-related behaviors and the limited
time frame allotted for functional mapping during an awake craniotomy, it would be
extremely difficult to assess all aspects of this domain. Therefore, it would be most appro-
priate to perform comprehensive preoperative neuropsychological batteries to identify the
most patient-centered, clinically relevant functions in order to potentially assess intraop-
eratively. Ultimately, however, larger, prospective studies assessing EF with an intent to
provide clinically relevant improvement are needed before the wide implementation of
such techniques is possible.
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7. Managing Expected and Unexpected Intraoperative Events
7.1. Intraoperative Seizures

A risk associated with direct cortical stimulation during intraoperative mapping is
the development of stimulation-induced seizures [131], occurring in 2.5 to 54% of awake
craniotomies [132]. These may complicate the operation and are the leading cause of
aborted awake operations [133], although their incidence is relatively low [134]. Intra-
operative ECoG analyses have previously demonstrated that intraoperative seizures and
after-discharges can be avoided by limiting the charges transferred per second and the total
number and duration of stimulations [132]. A practical approach for management involves
the application of cold Ringer’s solution to the cortex until cessation [131]. Rarely, recurrent
seizures may require propofol and/or laryngeal mask airway intubation for airway protec-
tion [135]. Neither intraoperative nor after-discharge seizures have a significant effect on
the presence of postoperative neurological deficits, length of hospital stay, or perioperative
seizure activity [136].

7.2. Changes in Neuromonitoring or Task Performance

Currently, there are no set criteria for classifying a significant intraoperative change
in the setting of MEPs. The American Society of Neurophysiological Monitoring has
published a position statement that a marked reduction in the amplitude of the evoked
response, acute threshold elevation, and signal disappearance are indicators of potential
motor injury [137]. As previously mentioned, similar warning criteria exist for SSEPs, but
with limited reported utility. Nonetheless, the monitoring of MEPs have demonstrated
utility in predicting and helping to prevent motor tract injury [138,139], particularly related
to ischemia. In the event of MEP deterioration or loss, in most instances, the resection
should be stopped and the field evaluated for any potentially obvious causes. Subsequent
actions may include irrigation, filling the cavity with fluid to reduce brain shift, papavarine
to treat vasospasm of small lenticulostriate vessels, relaxing any fixed retractors, and/or
complete cessation of resection in the associated region [138].

In addition to neuromonitoring and preoperative deficits, intraoperative performance
on selected tasks and/or positive mapping sites may also be associated with postoperative
deficits [85,140]. A recent systematic review reported that intra-operative anomia and
production errors were significantly predictive of postoperative language deficits in the
acute phase (1 to 10 days), and when combined with a preoperative deficit, the probability
further increased [140]. Importantly, these factors were not associated with postoperative
deficits at 3 to 8 months. Similarly, identifying positive subcortical sites during motor
mapping and preoperative deficits have been reported as independent risk factors for
transient or permanent postoperative motor deficits [85]. When both factors were present,
there was a significant increase in the odds of a transient deficit; however, for permanent
deficits, only the presence of a positive bipolar subcortical site was a risk factor. As such,
neurosurgeons should pay particular attention to these specific intraoperative findings
during resection and utilize them to guide further surgical decision-making, as well as
during postoperative patient counseling regarding expectations.

7.3. Avoiding Intra-Operative Awake Craniotomy Failures

Awake craniotomies require intensive preparation and precise timing of the patient
awakening’s to avoid intraoperative complications and reduced patient cooperability [27].
Failure rates have been reported to be as high as 6.4%, and are associated with poor preoper-
ative patient selection and adverse effects from intraoperative medications [134]. Although
studies have reported that emergency intubations rarely occur [141–144], seizures and res-
piratory complications are most frequently the cause [134]. Alternatively, communication-
related failures occur more frequently, and are associated with preoperative deficits and
functional status [134]. As such, preoperative evaluations in order to predict intraoperative
difficulties with an AC are currently under development [145].
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Other intraoperative major events, such as respiratory or hemodynamic events re-
quiring intervention, have been associated with remifentanil infusion, increased duration
of tumor resection following cortical mapping, and a history of asthma [146]. Regarding
the neuroanesthetic technique, Eseonu et al. reported shorter mean operative times in
MAC versus AAA awake craniotomies (283.5 min vs. 313.3 min; p = 0.038); however, there
were no differences in mean length of stay or rate of conversion to general anesthesia
between the two groups [147]. Finally, in a large cohort study of 611 patients undergoing
awake craniotomy over a 27-year period, Hervey-Jumper et al. reported that neither tumor
location, ASA classification, tumor pathology, seizure history, Mallampati score, smoking
status, nor BMI impacted the safety or efficacy of awake operations [99]. Taken together,
awake operations are generally safe when performed by an experienced neurosurgical
team and with proper preoperative evaluation and patient counseling.

8. Conclusions

Gliomas are a highly prevalent cause of major disability and mortality across the
globe. During the surgical management of this disease, neurosurgeons should aim to
resect the maximal amount of tumor-infiltrated tissue while preserving motor, sensory,
language, and cognitive function to provide patients with the best quality of life. A
deep understanding of the technical, anatomical, and functional nuances is needed to
safely resect these infiltrative tumors. Intraoperative stimulation mapping is a safe and
effective method for achieving these goals; however, it requires a multifaceted and patient-
centered approach during surgical decision-making. Finally, regardless of the techniques or
additional adjuncts implemented by brain tumor neurosurgeons, emphasis should always
be placed on feasibility and safety, all while considering the patient’s goals for their care.
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