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Simple Summary: Breast cancer (BC) screening is significantly important for reducing disease mor-
tality. Mammography (MAM) is the gold standard for BC screening in high-income countries, while
it is usually unavailable and infeasible in low- and middle-income countries (LMICs). Ultrasound
(US) has been widely employed as an adjunct to MAM, particularly showing advantages over MAM
for women of younger ages and with dense breasts. Nevertheless, it remains controversial whether
US could be utilized as a primary tool for BC screening in underserved settings. This review focuses
on randomized controlled trials and observational studies that demonstrated the role of US in BC
screening. Furthermore, advanced techniques that might be useful to improve BC screening in
LMICs are discussed. The results suggest that US, showing high sensitivity and an early detection
rate, holds promise to achieve cost-effective screening initiatives where MAM is not available. The
resource-appropriate recommendations on implementing BC screening in LMICs are also presented.

Abstract: Breast cancer (BC) is the most prevalent cancer among women globally. Cancer screening
can reduce mortality and improve women’s health. In developed countries, mammography (MAM)
has been primarily utilized for population-based BC screening for several decades. However, it
is usually unavailable in low-resource settings due to the lack of equipment, personnel, and time
necessary to conduct and interpret the examinations. Ultrasound (US) with high detection sensitivity
for women of younger ages and with dense breasts has become a supplement to MAM for breast
examination. Some guidelines suggest using US as the primary screening tool in certain settings where
MAM is unavailable and infeasible, but global recommendations have not yet reached a unanimous
consensus. With the development of smart devices and artificial intelligence (AI) in medical imaging,
clinical applications and preclinical studies have shown the potential of US combined with AI
in BC screening. Nevertheless, there are few comprehensive reviews focused on the role of US
in screening BC in underserved conditions, especially in technological, economical, and global
perspectives. This work presents the benefits, limitations, advances, and future directions of BC
screening with technology-assisted and resource-appropriate strategies, which may be helpful to
implement screening initiatives in resource-limited countries.

Keywords: breast cancer; screening; ultrasound; women’s health; low resource

1. Introduction

Female breast cancer (BC) is the world’s most prevalent cancer and remains the major
cause of cancer-associated deaths globally. Based on the estimates from GLOBCAN 2020,
there were about 2.3 million women diagnosed with breast cancer and 685,000 breast
cancer-associated deaths worldwide [1]. BC has the highest incidence rates in high-income
countries (HICs), whereas the BC deaths are highest in most low- and middle-income
countries (LMICs) [2]. According to the Global Breast Cancer Initiative Implementation
Framework from the World Health Organization (WHO), five-year survival rates for BC
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in HICs account for over 90%, compared with 66% in India and 40% in South Africa.
Additionally, mortality rates of breast cancer in most HICs have decreased over time
but remain high and increasing in many LMICs [3]. This disparity could be due to the
late detection, inadequate diagnostic and treatment services, and low health coverage in
LMICs [4].

It is well acknowledged that implementation of effective early detection programs
is the first step to improve BC outcomes. Mammography (MAM) has been utilized as a
gold-standard screening tool for BC in developed countries and has significantly decreased
BC mortality, with a reduction of above 20% in women aged 50–69 and about 30% in
women aged ≥ 70, respectively [5]. Nevertheless, it lacks meaningful benefits in women
aged 40–49 and shows reduced accuracy in dense breasts, which not only could mask
an underlying tumor on mammogram, but is also an independent risk factor of BC [6,7].
Furthermore, MAM is not readily available in under-resource settings because of the high
cost and healthcare personnel shortage. It is reported that LMICs have less than 1 MAM
unit per million people compared to 23 per million people in HICs [4]. This disparity, to
a great extent, has contributed to the unfavorable BC detection in LMICs. Additionally,
most cases of MAM screening projects run in LMICs have been evaluated as ineffective
and unsustainable for a large population due to scarce resources [5,8–11].

Compared to MAM, ultrasound (US), including handheld ultrasound (HHUS) and
automated breast ultrasound (ABUS), is low-cost, radiation-free, portable, and available. It
is typically helpful for distinguishing between a cystic and a solid mass, which has been
used as a second-look tool in women with mammographically occult lesions [12]. Emerg-
ing evidence demonstrates that US, compared to MAM, shows similar overall accuracy,
increased sensitivity and detection rates, and relatively lower specificity [13–16].

There remains conflicting evidence whether US could be utilized as a primary tool
rather than a supplement to MAM in BC screening initiatives in LMICs. Furthermore,
the current reviews in this field have not comprehensively compared US and other main
screening tools, highlighted novel techniques including artificial intelligence (AI) and
portable screening devices that could empower US, nor presented resource-appropriate
strategies for BC screening. Therefore, this review aims to summarize available evidence by
analyzing the advantages and disadvantages of US in BC screening, discussing the clinical
performance of US and the state-of-the-art techniques that might be helpful to increase the
screening efficacy of US. Resource level-based recommendations for future BC screening
in LMICs are also presented. This work will provide new insights for future research and
practice in global women’s health.

2. Main BC Screening Tools

BC screening programs aim at the early detection of tumors in order to achieve the
lowest morbidity for individuals and least medical cost to society. Here, we summarize the
main screening tools, including MAM, HHUS, and ABUS, in terms of screening method
(Figure 1), diagnostic performance, and economic cost.
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2.1. MAM, HHUS, and ABUS

Currently, MAM is the only validated screening tool that can detect BC at an early
and curable stage. The past decades have witnessed the significant achievement of MAM
in reducing BC-related deaths and improving women’s health. According to the data
from 2007 in the UK, among 1000 women aged 50 who underwent biennial MAM for
20 years, 2 to 3 BC-caused deaths were avoided [17]. Although MAM has been evaluated
via several randomized controlled trials (RCTs) since 1980 and before its wide recommen-
dation and implementation [18], different methods used in those trails led to the variable
mortality reduction. Moreover, the main issue of MAM is the decreased sensitivity in dense
breasts. BC usually occurs 10–15 years earlier in Asian women compared to women in
western countries [19–21]. Asian women, particularly of younger ages, tend to have dense
breasts [22,23], which makes it more difficult to distinguish between abnormal and normal
breast tissues using MAM [24–28]. Additionally, there remain several intrinsic limitations
of MAM, including few availabilities to LMICs and ionizing radiation hazards to exam-
iners and patients. The benefits and harms of MAM, therefore, have been continuously
debated. In this sense, HHUS and ABUS have been employed as adjunct tools to MAM for
BC screening.

HHUS as a non-invasive, ionizing radiation-free imaging technique has been utilized
for diagnosing breast disease since the 1970s [12]. It can delineate morphological character-
istics and internal structures and accurately measure breast abnormalities. Particularly, US
is useful to detect lesions in dense breast tissues, which are often difficult to visualize using
MAM [15,29–32]. Furthermore, if additional tests are recommended, such as a biopsy, US
is the ideal tool to guide subsequent procedures [33]. Additionally, The Royal College of
Radiologists (UK) recommends US as the primary examination in symptomatic women
aged 35–39 [12]. It is now generally acknowledged that US should be used as a first-line
imaging modality in woman under 35 years and as a further assessing tool for palpable and
mammographically detected abnormalities in all patients [12]. However, HHUS is operator-
dependent, leading to poor reproducibility in diagnostic accuracy and examination time
needed for image acquisition and interpretation.

ABUS is based on automated breast scanning with a 5–14 MHz linear array US
transducer which generates three-dimensional breast tissue images [34,35]. It is designed
to standardize breast US, increase reproducibility, and reduce operator-dependence and
time for examinations and interpretations [36]. Basically, patients are in a supine position,
then ABUS starts acquiring images after placing the probe over the breasts with only mild
compression [37] (Figure 1). The image acquisition time is usually consistent in exam
workflows, which can properly allocate time slots for every patient [38]. Images are then
reconstructed in three dimensions for the radiologists to interpret in a separate workstation,
which simplifies the screening workflow and reduces the whole examination time compared
to HHUS. It is reported that the image acquisition time of ABUS is approximately 15 min
per patient [39]. In contrast, imaging acquisition of bilateral breasts per patient using
HHUS takes 19 min on average [40,41]. The interpretation time by radiologists ranges
from 3 to 10 min, depending on differences in the complexity of each case and radiologists’
experience [42]. Of note, ABUS examination only requires technologists while HHUS
requires qualified sonographers, or US physicians in some countries. However, ABUS
shows an inability to evaluate the axillary region, vascularization, and tissue elasticity.
Unlike HHUS, it is also impossible to conduct invasive procedures under ABUS guidance.
Therefore, how to incorporate ABUS into BC screening workflows in the best way remains
an issue that requires further investigations.

In brief, a comparison of the advantages and disadvantages of MAM, HHUS, and
ABUS is presented in Table 1. It is essential to maintain an appropriate balance between the
merits and limitations of each screening modality.
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Table 1. Comparison of MAM, HHUS, and ABUS for BC screening.

MAM HHUS ABUS

Sensitivity to dense breast Low High High
Sensitivity to microcalcification High Low Low

Specificity High Decreased Decreased
Reproducibility High Low High

Guiding further biopsy Non Yes Non
Radiation Yes Non Non

Breast compression pain Yes Non Non
Equipment availability Less Wide Less
Examination expense Relatively expensive Less expensive Less expensive

Examination provider Technologist Experienced
sonographer Technologist

2.2. Diagnostic Performance Comparison between MAM and US

Over recent years, with improvements in US image quality, US screening has become
more feasible and more desirable. Several systematic reviews conclude that adjunct US
screening could detect suspicious breast lesions missed by MAM, with a higher detection
rate and diagnostic sensitivity for women with dense breasts [13,14,16,43,44]. Some HICs,
including Finland, Austria, Belgium, Monaco, and Italy, have evaluated the performance of
US as a supplementary tool for population-based BC screening [45].

US shows a higher sensitivity and detection rate than MAM, particularly for women
with dense breasts or of younger ages. Generally, supplementary US examination after neg-
ative MAM increased cancer detection (1.8–4.2 per 1000). A study in Italy [46] evaluated the
performance of breast US in 22,131 asymptomatic women with negative tests in MAM. In-
cremental cancer detection rates in women aged <50 years (1.95 per 1000) and women with
dense breasts (2.21 per 1000) were observed. Another RTC (J-START) in Japan [47] enrolling
72, 998 women showed that screening sensitivity of MAM + US (91.1%, 95% CI: 87.2–95.0%)
was significantly higher than that of MAM alone (77.0%, 70.3–83.7%; p = 0.0004), with a
remarkable reduction in specificity (87.7%, 87.3–88.0% vs. 91.4%, 91.1–91.7%; p < 0.0001).
Additionally, the cancer detection rate was higher in MAM + US than that of MAM alone
(0.50% vs. 0.32%, p = 0.0003). Particularly, the trial found that, for dense breasts, the sensi-
tivity of MAM alone was 74% (95% CI: 69–79%), while MAM + US showed a significantly
higher sensitivity of 96% (95% CI: 93–97%), indicating that US could detect some mam-
mographically occult lesions. However, screening specificity in dense breasts remarkably
decreased from 91.4% (95% CI: 91.1–91.7%) in the MAM alone group to 87.7% (95% CI:
87.3–88.0%) in the combined assessment group. Other similar studies [15,29–31,48] also
showed that the overall sensitivity of MAM was 65–91%, while it could decrease to between
47.8–64.4% in women with dense breasts, leading to the omission of a certain proportion of
malignancies. Moreover, MAM screening disparity in HICS and LMICs is reported. For
example, in the United States, the MAM has an overall sensitivity of 87.8% whereas the
sensitivity in LMICs could decrease to 63% [49,50], suggesting that MAM in LMICs is not
as feasible as in HICs.

US detects small, invasive, node-negative, early-stage cancers (stage 0 or I) [48,51].
Boo-Kyung and coworkers compared the BC seen on a sonogram and mammogram. The
mean size of the invasive tumor was 1.0 cm in the US-detected lesions and 1.6 cm in the
MAM-detected groups (p < 0.001) [52]. According to recent reports [53,54], above 90%
of women with stage I or II breast cancer will survive five years or longer, whereas the
five-year survival rate greatly drops in BC above stage II. It is well acknowledged that early
detection usually brings about higher survival rates and lower medical costs. US has been
found to sensitively detect BC in early stage, such as stages 0, I, and IIA [47,51], which are
usually associated with a good prognosis. Nevertheless, it is controversial whether the
increased cancer detection rate of US could reduce BC mortality.

US decreases the interval cancer (IC) rate. The IC rate is given between two rounds
of screening and is considered as an indicator of quality and efficacy in BC screening
programs [55,56]. Dense breasts are a marker of increased risk of IC in screening. Compared
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to fatty breasts, extremely dense breasts show a 17.8-fold increase in the probability of
IC [24,25,28]. In addition, these women with IC often present locally advanced and/or
node-positive BC [26]. A study reported by Vittorio Corsetti and coworkers demonstrated
that supplemental US could bring the IC rate in women with dense breasts down to a
similar level of non-dense breast patients, suggesting that additional cancer detection via
US was likely to improve screening benefits in dense breasts [57].

2.3. US as a Primary Tool in BC Screening

Since MAM is less effective in younger women as well as women with dense breasts,
US as a primary screening tool has been put forward and implemented in some countries
where MAM is not readily available. Here we respectively describe the studies in HICs
and LMICs.

A prospective RTC (ACRIN 6666) conducted by the American College of Radiology
Imaging evaluated the performance of US as the primary screening tool. It reported that the
US yielded a comparable cancer detection percentage to MAM (52.3% vs. 53.2%, p = 0.9),
with a higher proportion of invasive cancers and node-negative cancers. However, greater
recall and biopsy rates as well as a lower positive predictive value of biopsy were more
commonly seen in US than MAM [51].

In contrast, in low-resource settings, a recent meta-analysis with a total of 76,058 patients
demonstrated that US had the potential to be an effective primary BC detection tool [16].
In six BC screening trials [51,58–62] from LMICs, including Argentina, China, Nigeria, and
Malaysia, US showed a pooled sensitivity of 89.2% and specificity of 99.1%. Notably, women
in LMICs often present with advanced stages and younger ages. In this context, they have a
higher likelihood to benefit from US than MAM [63].

A multicenter RTC in China demonstrated that US could be used as a screening tool
to detect BC in high-risk (e.g., dense breasts) women aged 30–65 years. It showed that US,
compared to MAM, had higher sensitivity (100% vs. 57.1%, p = 0.04) and accuracy (99.9%
vs. 76.6%, p = 0.01), comparable specificity (99.9% vs. 100%, p = 0.51), and lower screening
cost, which was only 17.4% of MAM and 36.5% of MAM + US screenings [58]. Additionally,
in the ‘Two Cancer Screening’ campaign in China, US was employed as the primary option
for BC screening in 1.46 million women aged 35–59 years [21,64]. These findings suggests
that, in developing countries, US could play a primary role in BC screening when MAM is
not accessible and acceptable for women.

Afterwards, Li Yang et al. conducted a cost-effectiveness analysis of a BC screening
program in China. It was found that compared with no screening, the screening program
led to higher cost in rural China, with an incremental cost-effectiveness ratio (ICER) of $916
per quality-adjusted life-year (QALY). In contrast, for urban women who generally were
at higher BC risk and more willing to pay for breast health management, the screening
services cost $84.99 and gained QALYs of 0.01, with an ICER of $6671 per QALY. The
authors concluded that rural women in China had low BC incidence, so general population-
based screening for asymptomatic women at an average risk of BC was not cost-effective.
However, compared to no screening, screening for high-risk women in urban China was
very likely to be cost-effective [65]. An up-to-date BC guideline for China recommends US
as the primary screening test for high-risk women aged between 40–44 years [66].

Although a few RTCs and evidenced-based systematic reviews evaluated the feasibility
of US as a primary screening modality of BC, global recommendations have not yet reached
a unanimous consensus due to the lack of evidence for reduced mortality with US screening.
Because of the lack of good data management and research resources currently, further
studies are needed to gain deeper insights into BC screening with US in LMICs.

2.4. ABUS in BC Screening

Kelly and coworkers conducted a multicenter study that screened 4419 women with
MAM alone and MAM + ABUS. The participants were characterized with dense breasts
and/or increased risk of BC. It was found that ABUS improved the detection rate from
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3.6 per 1000 cases (MAM) to 7.2 per 1000 cases (MAM + ABUS). Sensitivity increased
from 40% to 81% by adding ABUS. Additionally, the positive predictive values of biopsy
were 39% for MAM and 38.4% for ABUS, respectively. Similar to HHUS, the recall rate of
ABUS was also elevated, with 9.6% of MAM + ABUS and 4.2% in MAM alone [67]. Many
studies compared the performance of ABUS and MAM in screening settings, showing
improved sensitivity, detection rate, and recall rate in ABUS (Table 2). Of note, among these
studies, cancers detected only by using ABUS were predominantly small-size, invasive,
and node-negative [68–71]. When combining with MAM, ABUS plays an important role in
screening programs to overcome the limitations of MAM.

Table 2. Comparison of diagnostic metrics of MAM and MAM screening plus ABUS. Abbreviation:
NR, not reported.

References Patients
Sensitivity (%) Specificity (%) Detection Rate

(per 1000 Women)
Recall Rate

(per 1000 Women)

MAM MAM + ABUS MAM MAM + ABUS MAM MAM + ABUS MAM MAM + ABUS

Giuliano [72] 3418 76 96.7 98.2 99.7 4.6 12.3 NR NR
Brem [39] 15,318 73.2 100 85.4 72 5.4 7.3 150.2 284.9
Giger [73] 185 57.5 74.1 78.1 76.2 NR NR NR NR
Kelly [67] 4419 40 81 95.15 98.7 3.6 7.2 42 96

Wilczek [74] 1668 63.6 100 99 98.4 4.2 6.6 13.8 22.8

To evaluate the diagnostic performance of ABUS as the primary screening method for
BC, a multicenter prospective study in 2020 examined 959 asymptomatic Korean women
aged between 40–49 years. The cancer detection of ABUS was 5.2 per 1000, higher than
MAM (2.7 per 1000). ABUS also had favorable sensitivity, specificity, and accuracy ratings
of 83.3%, 90.7%, and 90.6%, respectively. It suggested that ABUS could probably be an
alternative to screening MAM among women aged between 40–49 years [75].

Current studies also compared the performance of ABUS and HHUS. As shown in
Table 3, the performance of ABUS and HHUS was evaluated in 5566 women, with ABUS
showing increased sensitivity and specificity [68]. Other studies in smaller populations also
reported that ABUS had higher sensitivity than HHUS (92.5–95.3% vs. 88.1–93.2%) and
comparable specificity (80.5–91.9% vs. 82.5–88.7%) [69–71]. However, other studies showed
that ABUS had significantly lower sensitivity [76,77]. Overall, the variable diagnostic
metrics probably resulted from the different study methods used in these studies. Future
RTCs that separately compare MAM, HHUS, and ABUS for BC screening, particularly in
LMICs, are necessary to conclude which is the better screening option. However, it could
be time- and money-consuming to conduct these studies.

Table 3. Comparison of diagnostic metrics of ABUS and HHUS.

References Patients
Sensitivity (%) Specificity (%)

ABUS HHUS ABUS HHUS

Choi [68] 5566 77.78 62.5 97.8 96.7

Wang [69] 213 95.3 90.6 80.5 82.5

Wang [70] 155 96.1 93.2 91.9 88.7

Chen [71] 175 92.5 88.1 86.2 87.5

Niu [76] 173 40 92.23 77.62 80.24

Jeh [77] 173 88.05 95.7 76.25 49.4

3. Novel Techniques in US for BC Screening

In the following section, we focus on some new techniques and feasible measures that
would facilitate US in BC screening in LMICs.
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3.1. Computer-Aided Detection (CAD) in ABUS

Due to the considerable amount of ABUS images, reviewing a full ABUS examination
can be burdensome and malignant lesions may be overlooked. CAD software has been
introduced to assist radiologists in interpretating images and generating accurate diagno-
sis [78–81], which would be a promising solution in LMICs with a lack of healthcare staff. A
study in China evaluated the role of CAD in decreasing ABUS reading times and increasing
the diagnostic accuracy of junior radiologists [82]. It demonstrated that CAD helped inex-
perienced readers to improve cancer detection accuracy in asymptomatic women. In the
reading study, all radiologists could save 32% of the reading time among 18 radiologists
by adding ABUS without compromising the diagnostic accuracy. Additionally, the mean
sensitivity of less experienced radiologists increased from 67% to 88% by using CAD in
the second-reading mode and concurrent-reading modes (p = 0.003). In this sense, several
commercial CAD-ABUS systems (i.e., QVCAD, Qview Medical Inc., Los Altos, CA, USA)
have been clinically applicable and tested for diagnostic accuracy and efficiency compared
with radiologists [83,84]. CAD systems have promising potential to improve diagnostic
accuracy and decrease the interpretation time of radiologists.

3.2. Deep Learning (DL) in ABUS

DL is a branch of AI and has drawn great attention over the past years in breast
imaging. DL algorithms pass image information through a convolutional neural network,
which processes pixel information and passes that information onto subsequent layers for
eventual image classification (Figure 2) [85]. So far, various DL models have been applied
to BC screening workflows [86–91].

Various preclinical studies have found that, compared to radiologists, the diagnostic
accuracy in BC could be improved with the assistance of DL models [84,92]. Hejduk et al.
trained and tested a deep convolutional neural network using 645 ABUS datasets from
113 patients to classify breast lesions. In a comparison study between DL model and
two radiologists, the DL model yielded an area under the curve (AUC) of 0.91 (95% CI:
0.77–1.00), comparable to radiologist 1 (AUC: 0.82 [95% CI: 0.68–1.00]) and radiologist 2
(AUC: 0.91 [95% CI: 0.77–1.00]). The DL model showed a similar sensitivity as well as a
higher specificity, positive predictive value, and negative predictive value. These findings
suggested that the developed DL model could detect and distinguish breast lesions in
ABUS with similar accuracy as experienced radiologists. In China, a population-based
BC screening with DL-assisted ABUS is underway. It aims to have three million women
screened for BC by 2023 via DL-based ABUS alone in asymptomatic women in rural China.
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Figure 2. A DL-based system for BC risk prediction [93]. (A) The construction of DL model. The DL
model was developed using multimodal US images (including US B-mode, US color Doppler, and US
elastography), trained through multiple layers from ImageNet, and subsequently acquiring features.
(B) Cancer prediction via DL model and clinical decision-making. The DL system inputs multimodal
US images and outputs an overall probability of malignancy. According to the BIRADS lexicon, three
different breast cancer risk scores (BCRS 4a+, BCRS 4b+, BCRS 4c+,) were proposed in the prediction
system to assist radiologists to make clinical decisions.
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3.3. Portable US Devices in LMICs

In low-resource conditions, the poor facilities and unstable power grid make it difficult
to install and employ high- or middle-end US machines. Smartphone/tablet-sized, battery-
powered US devices hold great promise to satisfy the demands in underserved nations since
they are portable, low-cost, and can be modified according to customized applications. For
example, Ghana explored the use of portable US devices in community healthcare facilities
for obstetric, pelvis, breast, vessel, abdomen, and genitourinary system examinations [94].
China also reported the construction of a portable US-assisted BC screening system [95].
More inspiringly, Mexico conducted a pilot study that built a DL model and incorporated
the model into a low-cost portable US machine to triage the breast lesions. In this study,
three healthcare staff without ultrasound experience were recruited to use the portable
US system to acquire breast US images from 32 patients, then these images were analyzed
using a previously trained DL model. Results demonstrated that the US device could
be easily operated by these healthcare workers and the built-in DL model had a similar
diagnostic accurate as breast radiologists [96]. It provided a new strategy of implementing
cost-effective BC screening services in scarce-resource settings with a lack of equipment
and healthcare specialists. In the future, population-based RTCs should be conducted to
validate the possibility of utilizing AI-enabled portable US systems for BC screening.

4. Implementation of US for BC Screening in LMICs

As discussed above, US (i.e., HHUS and ABUS) shows some unique advantages over
MAM, especially in LMICs, such as sensitivity to dense breasts, low cost, acceptance by
patients, and wide availability. However, US is also imperfect. It shows decreased specificity,
and HHUS requires experienced sonographers to perform a handheld exam. There is
still insufficient evidence recommending the utility of US as a primary screening tool in
LMICs. However, in certain settings, US is helpful for improving women’s breast health.
According to the Global Summit Early Detection Panel and the BHGI, screening initiatives
could be implemented based on national health resources (basic, limited, enhanced, and
maximal) [63]. It suggested that in limited-resource settings, combining clinical breast
examinations and breast US may be an acceptable approach.

For BC screening programs, a key question is to what extent mortality is reduced in
relation to results from screening services, since the observed mortality reduction could be
attributed to other dominants such as improved awareness and management of BC. The
benefits of screening should not be inappropriately propagated without addressing the
harms, such as false positives and overdiagnosis. False-positive recall, which increases
the number of unnecessary recalls for further interventional tests, is deemed as one of
the main barriers to implement BC screening programs. Overdiagnosis, where women
are diagnosed with BC which are proven to be non-life-threatening during their whole
life [9], causes unnecessary psychologic stress and is a waste of resources in the following
treatments [9,97]. Due to the high sensitivity, false-positive recalls and overdiagnosis of US
cannot be overlooked. With improved experience and revised interpretive criteria, the false
positives of US can be reduced.

Overall, it is essential to weigh the benefits and risks in every screening program. In
this sense, we present the recommendations for BC screening with US, which could be
helpful to improve the effectiveness of employing US in BC screening in LMICs.

4.1. Data Management

Accurate data, such as incidence, mortality, and survival data, are crucial for BC
screening guideline proposals and screening resource allocation. While the data are often
found missed or poorly managed in LMICs [21,64], establishing regional population-based
cancer registries and data documentation are recommended.
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4.2. Public Awareness

The lack of public awareness of breast health is a great barrier to BC screening pro-
grams. Raising BC awareness and establishing a breast health culture are cost-effective
control strategies. It probably could be achieved by involving various interventions, includ-
ing community-based education in rural areas and creating partnerships with religious
communities [98]. Besides the screening benefits, all potential participants should also be
clearly informed about the potential harms.

4.3. Target Group

Since it is not possible to screen all women, including the low-risk potential partici-
pants in LMICs, the cost-effective approach is to target elevated-risk populations based on
age, breast density, genetic mutations, family history, or other personal risk factors.

4.4. Effective Treatment

Compared to any screening program alone, it is more likely to decrease BC mortality
by developing adequate treatment facilities where patients are able to receive timely and
effective treatments. Easy accessibility to and greater affordability of cancer care facilities
are crucial for the successful implementation of any BC programs. Otherwise, screening
services would be a pure waste of resources.

4.5. Novel Techniques

Apart from its advantages, US has intrinsic limitations for BC screening. Hopefully,
these flaws could, to some extent, be compensated with the development of novel technol-
ogy (i.e., smart portable devices, DL detection/classification systems). These techniques,
expected to be feasible solutions to the lack of healthcare staff and screening machines in
LMICs, should be investigated further and incorporated into the workflows in real-world
BC screening programs.

5. Conclusions

BC screening is an essential step in decreasing the global burden of BC. Although
MAM is a gold-standard screening tool in HICs, it is not always available in LMICs, and it is
not recommended for younger women or women with dense breasts. US (including HHUS
and ABUS), showing many advantages over MAM, may be suitable in certain settings
where MAM is unavailable or unfeasible. When enabled with novel techniques, such as DL
and smart portable devices, US holds great promise for BC detection, while further trials
are needed to validate the utility of US as a primary BC screening tool in LMICs. To achieve
high cost-effectiveness and optimize benefits to potential screened participants, multiple
factors, such as local resources, risk factors, and religious and cultural values, should be
comprehensively considered before implementing BC screening services.
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