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Simple Summary: Targeted therapies have revolutionized the management of hematological malig-
nancies and solid organ cancers. These new treatments present numerous infectious complications.
We aim to present the main infectious complications related to immune checkpoint inhibitors, Bru-
ton’s tyrosine kinase (BTK) inhibitors, phosphatidylinositol 3-kinase inhibitors (PI3K), antiapoptotic
protein BCL-2 inhibitors, Janus kinase inhibitors and CAR-T cell infusion treatments. The knowl-
edge of complications allows the physician to better identify patients at risk in order to implement
diagnostic and therapeutic strategies, or to discuss the implementation of preventive measures.

Abstract: Background: Infections are well known complications of some targeted drugs used to treat
solid organ cancer and hematological malignancies. Furthermore, Individual patient risk factors are
associated with underlying pathologies, concomitant immunosuppressive treatment, prior treatment
and use of anti-infective prophylaxis. Immune-related adverse events (irAEs) are frequent among
patients treated with new targeted drugs. Objectives: In this narrative review, we present the current
state of knowledge concerning the infectious complications occurring in patients treated with immune
checkpoint inhibitors (ICIs), Bruton’s tyrosine kinase (BTK) inhibitors, phosphatidylinositol 3-kinase
(PI3K) inhibitors, antiapoptotic protein BCL-2 inhibitors, Janus kinase inhibitors or CAR-T cell infusion.
Sources: We searched for studies treating infectious complications of ICIs, BTK inhibitors, PI3K inhibitors,
antiapoptotic protein BCL-2 inhibitors and CAR-T cell therapy. We included randomized, observational
studies and case reports. Content: Immune-related adverse events (irAEs) are frequent among patients
treated with new targeted drugs. Treatment of irAEs with corticosteroids and other immunosuppressive
agents can lead to opportunistic infections. Bruton’s tyrosine kinase (BTK) inhibitors are associated
with higher rate of infections, including invasive fungal infections. Implications: Infections, particularly
fungal ones, are common in patients treated with BTK inhibitors even though most of the complications
occurring among patients treated by ICIs or CART-cells infusion are associated with the treatment of
side effects related to the use of these new treatments. The diagnosis of these infectious complications
can be difficult and may require extensive investigations.

Keywords: immune checkpoint inhibitors; Bruton’s tyrosine kinase inhibitor; CAR-T cell therapy

1. Introduction

Over the past two decades, there has been a tremendous shift in cancer treatment from
broad-spectrum cytotoxic drugs to targeted drugs. As early as 1909, Paul Ehrlich predicted
that the immune system normally prevents the formation of carcinomas. Malignant neo-
plasms are known to downregulate major histocompatibility complex (MHC)-I molecules,
preventing recognition of tumor cells by cytotoxic T lymphocytes (CTLs). Recent advances
in treatment aim to provide effective immunotherapy with minimal toxicity. Therefore,
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cancer immunotherapy aims to harness the memory and specificity of the immune system
to effectively eliminate malignant neoplasms. Current therapeutic approaches include cy-
tokine therapy, CAR-T cell therapy and checkpoint inhibitor therapy. These new therapies
are often associated with inflammatory and/or infectious complications requiring intensive
care unit (ICU) admission. Among these new drugs, immune checkpoint inhibitors (ICIs),
Bruton’s tyrosine kinase (BTK) inhibitors, phosphatidylinositol 3-kinase (PI3K) inhibitors,
anti-apoptotic protein BCL-2 inhibitors, Janus kinase (JAK) inhibitors, or CAR-T cell in-
fusion have been identified as frequently associated with life-threatening side effects or
infectious complications (Table 1) [1].

Table 1. Adverse effects and frequencies of new targeted therapies.

Treatment
Adverse Effects

Infection (Grade ≥ 3) Neutropenia Diarrhea Hypertension Hemorrhage/Bleeding References

Immune
checkpoint
inhibitor

2–7% - 1–25% - - [2–4]

BTK inhibitors
Ibrutinib 11–48% 4–17% 5–68% 5–22% 3–15% [5–8]
Zanubrutinib 27% 36% 23% 12% 3% [9]
Acalabrutinib 18% 12% 37% 8% 4% [10]
Orelabrutinib 15% 29% 7% - 1% [11]
Fenebrutinib 17% 4% 29% - 1% [12]

PI3K inhibitors
Idelalisib 20–35% 56% 30–45% - - [13–15]
Duvelisib 51–68% 26–50% 43–52% - - [16,17]
Umbralisib - 14–35% 26–43% - - [18,19]

Anti-apoptotic
protein BCL-2
inhibitors

70–75% 40–50% 41% - - [20]

Janus Kinase
inhibitors 30–35% - - - - [21]

CAR-T cell
therapy 10–31% 53–87% - - - [22–24]

BTK: Bruton’s Tyrosine Kinase, PI3K: Phosphatidylinositol 3-kinase, JAK: Janus Kinase.

These adverse inflammatory effects may require the introduction of immunosuppres-
sive drugs such as corticosteroids, thereby increasing the risk of infection. In addition, the
differential diagnosis of inflammation/infection is often difficult.

In this article, we present a narrative review, from an infectious disease perspective, of
the safety profile of oral and parenteral drugs used to treat solid organ and hematologic
malignancies. We analyze the infectious complications associated with these innovative
therapies, including ICIs, CAR T cells, BTK inhibitors, JAK inhibitors, and PI3K inhibitors
(Table 2).

Table 2. Risk infections with new targeted therapies (Adapted from [25]).

Treatment Drugs Approved Indications Infectious Complications Prophylaxis Suggestions

Immune checkpoint inhibitor

CTLA-4 targeted agents Ipilimumab
Tremelimumab Melanoma

Does not appear
independently associated
with the occurrence of
infection but combination
with treatment
(corticosteroids and/or
TNF-α) for irAEs increased
infectious risk

Anti-Pneumocystis prophylaxis for
patients who are expected to receive
20 mg of prednisone daily for at least
4 weeks
Hepatitis B and C: prophylaxis or
therapy if needed.

(PD)-1 and (PD-L1)
targeted agents

Nivolumab
Pembrolizumab
Atezolizumab

Melanoma
Non-small cell lung cancer
Head and neck carcinoma
Hodgkin lymphoma
Metastatic renal cell
carcinoma (nivolumab)
Urothelial carcinoma and
lung cancer (atezolizumab)
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Table 2. Cont.

Treatment Drugs Approved Indications Infectious Complications Prophylaxis Suggestions

BTK inhibitor
Ibrutinib
Acalabrutinib
Zanubrutinib

Mantle cell lymphoma
Chronic lymphocytic
leukemia
Waldenström
macroglobulinemia
Marginal zone lymphoma

Fungal infections:
Aspergillus,
Pneumocystis jirovecii

Assess antifungal prophylaxis or
screening for fungal infections
Anti-Pneumocystis prophylaxis in
patients treated with corticosteroids

Bacterial infections:
Staphylococcus aureus
Mycobacterium tuberculosis

PI3K inhibitors
Idelalisib
Duvelisib
Umbralisib

Chronic lymphocytic
leukemia
Lymphoid malignancies

Fungal infections:
Pneumocystis jirovecii

CMV serology be performed prior to
treatment initiation and that CMV
viral load be measured monthly.
Acyclovir prophylaxis is also
recommended

Viral infections: CMV, HSV
and VZV reactivation

Antiapoptotic protein BCL-2
inhibitors

Venetoclax
Chronic lymphocytic
leukemia
Acute myeloid leukemia

Bacterial infections

Fungal infections

JAK inhibitors
Myeloproliferative
neoplasms

Bacterial infections:
mycobacterial infections

Chronic HBV infection and latent
tuberculosis screening

Fungal infections:
Pneumocystis jirovecii,
Cryptococcus spp.

Viral infections: HSV, VZV,
JC virus, HBV reactivation

CAR-T cells

Large B-cell lymphoma
Acute lymphoblastic
leukemia
Mantle cell lymphoma
Multiple myeloma

Fungal infections:
Aspergillus spp., Fusarium
spp., Mucorales,
Pneumocystis jirovecii

Anti-Pneumocystis prophylaxis
(trimethoprim/sulfamethoxazole)
Assess antifungal prophylaxis or
screening for fungal infections

Bacterial infections
including Clostridioides
difficile infections

G-CSF in case of prolonged
neutropenia

Viral infections: respiratory
syncytial virus,
cytomegalovirus, influenza,
polyomaviruses,
SARS-CoV-2

Acyclovir for at least 3–6 months
after CAR-T cell therapy
Antiviral therapy for hepatitis B
virus in case of positive HbS Ag or
AntiHbC Ac alone

BTK: Bruton’s Tyrosin Kinase, CMV: Cytomegalovirus, CTLA-4: Cytotoxic-T-lymphocyte-Antigen 4, G-CSF:
Granulocyte Colony Stimulating Factor, HBV: Hepatitis B virus, HSV: Herpes Simplex Virus, irAEs: immune
related adverse events, JAK: Janus Kinase, JC: John Cunningham, PD-1: Programmed cell death protein 1, PD-L1:
Programmed cell death protein ligand-1 PI3K: Phosphatidylinositol 3-kinase, VZV: Varicella Zona Virus.

2. Material and Methods

A PubMed search was conducted to identify studies of agents currently used to treat
solid organ and hematologic malignancies that reported infectious events. The search
focused on systematic reviews, meta-analyses, clinical trials, guidelines, and case reports,
with an emphasis on those agents considered most relevant to clinicians and a selection
of drugs with a greater impact on the risk of infection. The selection of molecules was
based on those most frequently associated with serious infectious adverse events leading
to hospitalization in intensive care units, as well as our clinical experience and expertise.

3. Monoclonals Antibodies

Work on the activity of monoclonal antibodies on tumor cells began in the 1970s.
Destruction of target cells by monoclonal antibodies (mAbs) can be achieved in several
ways, including immune-mediated cell killing, direct antibody action (blocking of receptors
or delivery of the target toxic agents), tumor environment and specific antibody action on
the vascular system.

Immune Checkpoint Inhibitors

Checkpoint inhibitor immunotherapies (also known as immune checkpoint inhibitors
(ICIs)) are immunomodulatory antibodies used to boost the immune system. Over the
past decade, the development of immune checkpoint blockade antibodies, such as those
directed against cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed death receptor 1
(PD-1) and programmed death ligand 1 (PD-L1), has shown great results in the treatment
of melanoma and other cancers making it a reference treatment for melanoma and other
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cancers. The anti-CTLA-4 antibody ipilimumab was the first immune checkpoint antibody
approved for the treatment of patients with advanced melanoma [2,26,27].

The first marketed human IgG4 anti-PD-1 checkpoint inhibitor antibodies were pem-
brolizumab and nivolumab. Their main indication was the treatment of refractory and
unresectable melanoma [28–30]. ICIs are now indicated as first-line treatment for these
pathologies [31–34]. Phase 2 randomized controlled trials evaluating the safety of CTLA-
4-targeted agents [2–4] or (PD)-1 and (PD-L1)-targeted agents in patients with advanced
melanoma did not suggest an increased risk of infection.

However, the use of immune checkpoint blockade drugs is associated with the occur-
rence of numerous adverse events related to the stimulation of the immune system. These
side effects affect many organs (lungs, pancreas, liver, etc.). Treatment of these side effects
is based on symptomatic treatments for benign forms and low or high dose corticosteroids
or even the use of tumor necrosis factor alpha (TNF-α) inhibitors (infliximab), azathio-
prine and mycophenolate mofetil. Among patients taking anti-CTL4 agents, 70% develop
adverse events, 20% of which are severe [35]. In addition, 30% of patients treated with
anti-CTLA-4 develop an infectious complication [36]. In patients treated with anti-PD-1 or
anti-PD-L1, 80% develop adverse events, 8% of which are severe [35]. The safety profile of
PD-1/PD-L1 targeted agents appears to be better than that of CTLA-4 targeted molecules,
with a lower proportion of exposed patients developing severe irAEs. Indeed, irAEs appear
to be less common in patients exposed to PD-1/PD-L1 targeted agents. However, the
common combination of ipilimumab and a PD-1 inhibitor carries a higher risk of irAEs
than either agent alone [26,37].

Adverse events occur primarily during the first 4 months of treatment with a median
of 6 weeks for anti-CLTA-4 and 2.5 months for anti-PD-1/anti-PD-L1. Seventy percent
of adverse events resolve with discontinuation of ICIs with a median of 4–8 weeks after
discontinuation [38].

In a study of 740 patients treated with ICIs (73% anti-CTLA-4), 54 (7.3%) presented
with a serious infectious episode (n = 58), mostly lower respiratory tract infections [39].
Of these, 46% received concomitant corticosteroid therapy and 16% received anti-TNF-
alpha therapy. The most common infectious agents isolated in the included patients were
bacterial (79.3%), fungal (10.3%), viral (8.6%) and parasitic (1.7%). Two cases of invasive
pulmonary aspergillosis, three cases of Pneumocystis jirovecii pneumonia, one case of can-
didemia and one case of strongyloidiasis were reported. Serious infectious events were
significantly more frequent in patients treated with corticosteroids (85% vs. 43%, p < 0.0001;
OR = 7.71 (3.71–16.18)) or infliximab (24% vs. 6%, p < 0.0001; OR = 4.74 (2.27–9.45)).

In addition, there are several case reports that have also highlighted opportunistic
infections with a variety of pathogens, including Aspergillus fumigatus [40–45], Pneumocystis
jirovecii [41,46–48], John Cunningham (JC) virus [49–51], CMV [41,52,53] and Campylobac-
ter [54]. These reports highlight the need to have a threshold for investigation of oppor-
tunistic infections after treatment of immune-related adverse events and consideration
of Pneumocystis jirovecii prophylaxis. Indeed, Pneumocystis jirovecii prophylaxis should be
considered when secondary immunosuppression is given for at least four weeks [55,56].

Tuberculosis reactivation was one of the first infections associated with immune check-
point inhibitors to be described. Indeed, the PD-1/PD-L1 pathway plays a substantial role in
tuberculosis physiopathology. PD-1/PD-L1 deficiency has been associated with an increase in
TNF-α, IL-1 and IFN-γ and dysregulation of the innate immune system [27–30]. Thus, two
mechanisms explain the risk of tuberculosis in patients treated with ICIs: (1) downregulation
of the PD-1/PD-L1 pathway induces an exacerbated inflammatory response; (2) treatment of
irAEs with corticosteroids and TNF- inhibitors favors the development of active tuberculo-
sis [31,32]. In a recent study, patients treated with PD-1/PD-L1 inhibitors had an increased risk
of active tuberculosis (OR = 1.79 (95% CI 1.42–2.26; p < 0.0001)). In addition, a Japanese study
of 297 lung cancer patients treated with PD-1/PD-L1 inhibitors showed a 1.7% incidence of
Mycobacterium tuberculosis reactivation. The infection developed between 22 and 398 days after
the start of immune checkpoint inhibitor therapy. A recently published study prospectively
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evaluated the value of the interferon-gamma release assay (IGRA) in patients treated with
ICIs for lung cancer. The test was performed prior to ICI and at 6 and 12 months. Of the
178 patients enrolled, 3 had IGRA reversal during immunotherapy and 4 had IGRA reversal.
One of the four patients with IGRA conversion developed active tuberculosis. Physicians
should be aware of the potential development of tuberculosis during ICI therapy, and IGRA
testing is a useful tool to assess the risk of developing active tuberculosis [57].

ICI use may be associated with a risk of worsening chronic viral infections. A
meta-analysis of 186 ICI-treated patients with chronic viral infections (HBV (n = 89) or
HCV (n = 98)) found an increased risk of hepatic cytolysis in chronic liver infections, but
no deaths from fulminant hepatitis.

4. Bruton’s Tyrosine Kinase Inhibitors

The BTK gene was discovered in 1993 and over 800 mutations in the BTK gene
have been described. Most result in a deficiency in the production of the BTK protein.
Ibrutinib, acalabrutinib and zanubrutinib are oral drugs that irreversibly inhibit Bruton’s
tyrosine kinase (BTK) in the pathway or at the B-cell receptor (BCR). Stimulation of the
transmembrane BCR protein leads to activation of several tyrosine kinases, including BTK
and phosphatidylinositol 3-kinase (PI3K), which in turn activate proliferation and survival
signals of B lymphocytes. Occupation of the BTK activation site by ibrutinib does not
appear to have a direct effect on the normal B cell. B cells in chronic lymphocytic leukemia
(CLL) or mantle cell lymphoma (MCL) differ from normal B cells in that they often have
higher levels of ongoing BCR or other signaling pathway activity. This suggests that the
effect of ibrutinib is likely to be minimal in normal B cells but marked in CLL or MCL cells.

BTK inhibitors are currently approved for the treatment of several lymphoproliferative
disorders, including mantle cell lymphoma, chronic lymphocytic leukemia, Walden-Strom
macroglobulinemia and marginal zone lymphoma [25,58].

One of the most common adverse effects observed in patients treated with Bruton’s
tyrosine kinase inhibitors is infection. In a systematic review of ibrutinib clinical trials that
included 48 studies and more than 2000 patients, infections (of any grade) were reported
in 56% of patients treated with ibrutinib [59]. A more recent study found a cumulative
incidence of 0.55 infections per 1000 person-days during the first year of targeted therapy,
with higher rates in the first 3–6 months [60]. In a retrospective study of 378 patients
receiving ibrutinib for chronic lymphocytic leukemia (CLL) or non-Hodgkin’s lymphoma,
43 (11.4%) patients developed serious infections. Of those with serious infections, 23 (53.5%)
developed serious bacterial infections, 16 (37.2%) developed invasive fungal infections,
and 4 (9.3%) developed viral infections [61]. The main infections reported in the literature
are bacterial infections, especially those related to Staphylococcus aureus. Invasive fungal
infections, although rarely reported in clinical trials, have also been associated with the
use of ibrutinib in several observational studies [61–63]. The most common causative
agents were Aspergillus spp. although non-Aspergillus infections including disseminated
cryptococcosis, endemic fungal infections and Pneumocystis jirovecii pneumonia have also
been reported [64–66]. Other rare infections such as tuberculosis and progressive multifocal
leukoencephalopathy (PML) have also been reported [67].

According to the literature, one of the peculiarities of these infections is the non-
neutropenic status of the patient at the time of diagnosis and the very early onset, typically
during the first six months after initiation of treatment [61,68]. One possible explanation is
inhibition of the BTK pathway in macrophages, which is involved in fungal defense [62,69].
The incidence of invasive aspergillosis among patients treated with BTK inhibitors is high.
The central nervous system was involved in 25–40% of cases [70]. Furthermore, despite the
early introduction of effective antifungal treatment, mortality in this population is high.
This highlights the importance of identifying infectious complications, especially fungal
ones. Currently, antifungal prophylaxis is not recommended for all patients. However, the
introduction of regular screening, particularly using serum markers of fungal infection,
or even the implementation of a preventive pharmacologic strategy should be discussed,
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especially in patients identified as being at highest risk, such as those concomitantly treated
with other immunosuppressive drugs or with a history of invasive fungal infection [63].
Finally, there is a CYP3A4 interaction between ibrutinib and voriconazole, the current
standard of care for invasive aspergillosis. Studies in patients treated with idelalisib have
shown a five-fold increase in the risk of Pneumocystis jirocevii pneumonia, justifying the
systematic prescription of Pneumocystis jirocevii prophylaxis in this population. Impaired
responses to vaccination have also been reported in ibrutinib-treated patients [71].

5. Phosphatidylinositol 3-Kinase (pi3k) Inhibitors

PI3K inhibitors are orally administered small molecules that inhibit the PI3K signaling
pathway, which plays a central role in the development of B lymphocytes and is overex-
pressed in many lymphoproliferative disorders. Currently, three PI3K inhibitors (idelalisib,
duvelisib and umbralisib) are approved for the treatment of chronic lymphocytic leukemia
and/or other lymphoid malignancies.

A variety of adverse events have been reported. In particular, inflammatory manifes-
tations such as colitis, hepatitis and pneumonitis often require treatment with high-dose
corticosteroids, which increases the risk of infection [14]. In an observational study of 110
patients treated with idelalisib, lower respiratory tract infections were reported in 34.5%,
diarrhea in 30.9% and colitis in 9.1% of patients [15].

Neutropenia is also a common AE during the first weeks of idelalisib treatment, occur-
ring in half of patients and in approximately 20% of patients with grade 3–4 neutropenia.
Neutropenia is associated with an increased rate of infections, including opportunistic
infections (Pneumocytis jirovecii pneumonia and CMV reactivations and infections) [72].

Pneumocystis jirovecii infections have been reported in up to 3.5% of patients not
receiving prophylaxis. Therefore, some guidelines recommended that patients treated
with PI3K receive prophylaxis against PJP from the start of treatment until 2–6 months
after completion of treatment [33]. Cytomegalovirus (CMV) reactivation occurred in 2.4%
of patients during the first six months of treatment [25,72–74]. Current expert opinions
recommend that CMV serology be performed prior to treatment initiation and that CMV
viral load be measured monthly [72]. Acyclovir prophylaxis is also recommended because
of the potential for serious skin infections and varicella zoster infections.

6. Antiapoptotic Protein BCL-2 Inhibitors

Venetoclax is a potent oral inhibitor of the anti-apoptotic protein BCL-2, which is
overexpressed by tumor cells. Venetoclax is currently approved as a single agent or in
combination with anti-CD20 monoclonal antibodies for the treatment of chronic lympho-
cytic leukemia and/or acute myeloid leukemia (AML). The immunosuppressive effect
of veneto-clax is associated with cytopenia. Neutropenia occurred in 40–50% of patients
treated with venetoclax [20,75]. In a study of 350 patients treated with venetoclax for
chronic lymphocytic leukemia, infections of any grade occurred in 72% of patients [20]. The
most commonly reported infectious complication was lower respiratory tract infection. In
a study of 235 patients receiving venetoclax and hypomethylating agent therapy for acute
myeloid leukemia, the overall incidence of bacterial infections was 33.6% and the incidence
of probable or confirmed invasive fungal infections was 5.1%.

Venetoclax is metabolized by CY3A4 and therefore has drug–drug interactions with
many anti-infectives, including azoles.

7. Janus Kinase Inhibitors

Janus kinases (JAKs) are protein tyrosine kinases that bind to transmembrane cytokine
receptors and mediate cellular responses to numerous cytokines and growth factors. JAKs
phosphorylate sites on the cytoplasmic tail of a variety of hematopoietic and inflammatory
cytokine receptors, activating downstream targets via the signal transducer and activator
of transcription (STAT) pathway. Through these mechanisms, JAKs play important roles in
hematopoiesis and immune cell differentiation.
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Ruxolitinib targets JAK1 and JAK2 and induces downregulation of the T helper cell
type 1 (Th1) response and cytokines such as interleukin IL-1, IL-6 and tumor necrosis
factor α (TNF-α). The most commonly reported adverse events are generally not serious,
but an increased risk of serious infectious events has been reported. A systematic review
found a high incidence of herpes zoster infections in patients treated with ruxolitinib
(OR = 7.39 (95% CI 1.33–41.07)) [76,77]. Whenever possible, patients should be vacci-
nated against herpes zoster before starting a JAK inhibitor. In addition, patients with
complicated herpes zoster or recurrent herpes zoster may be switched to an alternative
therapy, or the patient may be treated with daily suppressive antiviral therapy indef-
initely if the JAK inhibitor needs to be restarted. In a study of 1144 patients, the most
common infectious complications were herpes zoster (8%), bronchitis (6.1%) and urinary
tract infections (6%). Rare cases of opportunistic infections (mycobacterial infections,
Pneumocystis jirovecii pneumonia, invasive fungal infections, PML, disseminated cryp-
tococcosis, HBV reactivation) have also been reported [25,78–80]. We may suggest that
patients receiving Janus kinase inhibitor therapy be screened for chronic HBV infection
or latent tuberculosis prior to initiation of therapy.

8. CAR-T Cell Therapy

Adoptive cellular therapy (ACT) has traditionally referred to three different ap-
proaches: tumor-infiltrating lymphocyte (TIL) infusion; genetically modified T cell receptor
(TCR) therapy; and chimeric antigen receptor (CAR)-modified T cells (CAR-T cells) [81].

CAR-T cells are lymphocytes that have been genetically modified to produce a CAR
that specifically targets tumor cell antigens [82,83]. CAR-T cells therapies have pro-
duced impressive initial responses in patients with refractory B-cell acute lymphoblas-
tic leukemia [84,85]. CAR T-cell therapy is currently approved for the treatment of
diffuse large B-cell lymphoma, acute lymphoblastic leukemia, mantle cell lymphoma,
and multiple myeloma [22–24,86,87]. Despite excellent anti-malignant activity, adverse
events are common with CAR T-cell therapy and include cytokine release syndrome
(CRS) (77–93%), neurotoxicity or neurologic events (40–64%), neutropenia (53–87%), and
grade 3 or 4 infections (10–31%) [22–24].

Most patients undergoing CAR-T cell therapy are at risk of infection (intensive care
unit admission, presence of a central venous catheter, prolonged cytopenias). Risk factors
for infection have been identified as the presence of severe cytokine release syndrome, the
use of multiple lines of treatment prior to CAR-T cell prescription, and the prescription
of high doses of CAR-T cells. According to published studies, most infections occur early
after CAR-T cell infusion. Bacterial infections are the most common, while fungal infections
appear to be rare. The reported viral infections are mainly related to viral reactivations,
especially gastrointestinal viruses such as adenovirus, but few respiratory viruses.

8.1. Bacterial Infections

Infections following CAR-T cell infusion are common, but their microbiological diag-
nosis is challenging. In fact, only 72% of infections are microbiologically documented [88].
Most patients undergoing CAR-T cell therapy have often received multiple lines of prior
antibiotic therapy and are therefore at risk of colonization and infection with multi-drug
resistant bacteria, especially during the neutropenic phase. A recent study showed that 40%
of infections occur within the first 90 days after CAR-T cell infusion [89]. In addition, there
appears to be a high rate of Clostridioides difficile-related infections in the community,
with infection rates ranging from 12.5% to 20% [90–92].

Several risk factors are associated with the occurrence of severe bacterial infection.
These include severe CRS, neurotoxicity, use of tocilizumab and corticosteroids, and bridg-
ing therapy [91]. In addition, failure to respond to CAR-T cell therapy appears to be a
strong predictor of severe bacterial infection [88].
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8.2. Viral Infections

In contrast to bacterial pathogens, viruses are more common later in the course of
CAR-T cell therapy. After the first month following CAR-T cell inoculation, lymphope-
nia (either B- or T-lymphocyte) and hypogammaglobulinemia occur, exposing patients
to infectious risks, particularly viral risks. Viral infections typically include respiratory
syncytial virus, cytomegalovirus, influenza, and polyomaviruses [91–93]. The incidence of
viral infections after the first month following CAR-T cell infusion ranged from 9.2 to 28%.
In addition, many patients have profound CD4 lymphopenia associated with B-cell aplasia,
and reactivation of herpesviruses is frequently observed 6–12 months after CAR-T cell infu-
sion [94]. In addition, cytomegalovirus reactivation has been reported in 1–2% of patients.
These data are probably underestimated because most centers do not monitor CMV viral
replication in patients undergoing CAR-T cell therapy [67,95]. More recently, it has been
shown that patients with hematologic malignancies, especially those treated with CAR-T
cell therapy, are at risk for severe forms of SARS-CoV-2 respiratory infection [96,97]. In a
study of 57 patients with SARS-CoV-2 infection, 39.3% had a severe form of the infection
and the mortality rate was 50%. Lymphopenia was the factor statistically associated with
severe infection [98].

In addition, in the population, the viral shedding time of SARS-CoV-2 virus in patients
receiving CAR-T cells could be up to two months [99].

8.3. Fungal Infections

Despite the high degree of multifactorial immune suppression, fungal infections have
been rarely reported in patients receiving CAR-T cell therapy [100], with an incidence
ranging from 1 to 5% [100–102]. Most fungal infections occur early in the period of initial
neutropenia or CRS and are mainly candidemia [102]. Several species of molds have
been observed to cause lung disease (Aspergillus spp., Fusarium spp., Mucorales). The
most important risk factors for fungal infections are the duration of neutropenia and the
prolonged course of systemic corticosteroids prescribed for severe adverse reactions.

8.4. Prevention Strategies

Recommendations for prophylaxis and management strategies for infections after
CAR T-cell therapy are largely based on guidelines used for HSCT recipients [103,104].

Antibacterial prophylaxis: Most bacterial infections are secondary to the onset of
neutropenia and are often related to the depth and duration of neutropenia. The use of
granulocyte colony-stimulating factors to shorten the duration of neutropenia in combina-
tion with antibiotic prophylaxis has been widely debated.

There have been some concerns that G-CSF may interfere with the CAR T cell response
or worsen cytokine release syndrome by activating myeloid-related cytokines [105,106].
Currently, most recommendations are to consider the use of G-CSF only in patients with
prolonged neutropenia [84,107]. For example, studies on a possible adverse effect of G-CSF
by exacerbation of cytokine release syndrome have shown that its prescription two weeks
after CAR-T cell infusion is safe [108].

Antiviral Prophylaxis: Acyclovir prophylaxis is recommended from the start of lym-
phodepleting chemotherapy and is usually prescribed for at least 3–6 months after CAR-T
cell therapy [88]. This duration of prophylaxis is controversial, as cases of herpes virus
reactivation have been reported some time after CAR-T cell therapy [92]. For patients with
hepatitis B virus (positive HbS antigen or positive anti-HbC antibody alone), it is important
to ensure the absence of viral replication prior to CAR-T cell therapy, and antiviral prophy-
laxis should be administered for at least 6 months and associated with close monitoring of
liver enzymes and/or HBV replication.

Given the significant risk of severe SARS-CoV-2 pulmonary infection in the CAR-T
cell therapy patient population, many prescribe pre-exposure prophylaxis with monoclonal
antibodies (tixagevimab/cilgavimab) despite their lower efficacy against the omicron
variant [109].
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Antifungal prophylaxis: Because fungal infections are uncommon in patients under-
going CAR-T cell therapy, antifungal prophylaxis is not routine. Thus, for low-risk pa-
tients with no history of invasive fungal infections, treatment with fluconazole is most
commonly prescribed during the neutropenia period. On the other hand, for high-risk
patients with a history of previous fungal infections or high-grade CAR-T cell-associated
complications, later-generation antifungal azoles may be indicated [101,104,110]. Trimetho-
prim/sulfamethoxazole is currently recommended as the gold standard for prophylactic
treatment of Pneumocystis jirovecii infection and should be initiated approximately one
month after CAR-T cell infusion.

Vaccination: Patients undergoing CAR-T cell therapy have significant immune dys-
regulation, affecting innate immunity in the early phase and both humoral and cellular
adaptive immunity in the later phase. A lower rate of seroprotection after vaccination in
patients treated with CAR-T cell infusion and its large inter-individual variability argues
for the systematic implementation of vaccinations. It is recommended to start vaccination
with killed or inactivated vaccines 3 to 6 months after CAR-T cell treatment and to delay
the administration of live vaccines until 12 months after CAR-T cell infusion [111].

9. Conclusions

New targeted therapies have revolutionized the treatment of hematologic and solid
organ malignancies. A high proportion of patients treated with these targeted therapies
experience infectious complications, sometimes secondary to the management of side
effects. Screening for latent infections and individualized prophylaxis may be advisable.
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