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S1 Model Structure

As described in the quick guide to our methodology, our model considers the population dynamics of
nine clones evolving under the influence of two chemotherapeutic drugs. Each clone, due to genetic
mutations, has two resistance levels specific to the two drugs, which are represented as a discrete pair:
i, j ∈ R = {0, 1, 2}.

The clones compete for space and resources to support their logistic growth, interconvert by mutation
during cell division, and die due to chemotherapy. As illustrated by the arrows in Fig.1, each clone can
only mutate to the clones that differ by one resistance level with respect to one drug.

The quick guide omits the details regarding phenotypic adaptation and the mortality rates’ dependence
on drug concentrations. The purpose of this section is to supplement the quick guide with these details.

Phenotypic adaptation. When cancer cells are under stress imposed by chemotherapeutic agents, they
can develop temporary multidrug resistance, such as the expression of efflux pumps to remove multiple
drugs via an ATP-dependent mechanism [1].

Phenotypic adaptation is a delayed mechanism in our model. Each time point is associated with a ‘mem-
ory period’: the previous Tmax hours. It is also associated with a ‘memory level’: τ ∈ [Tmin,Tmax] =
[0,Tmax]. If τ = Tmin = 0, it means chemotherapy was inactive at least in the previous Tmax hours.
If τ = Tmax, it means chemotherapy was active throughout the entire ‘memory period’ (at least in the
previous Tmax hours). If c1 + c2 > 0.001—cd denotes the concentration of drug d—at a time point
during the ‘memory period’, chemotherapy was active at that point. It simply means that as long as the
constraint that c1(t) + c2(t) > 0.001 is satisfied at a point time t, chemotherapy is considered active at
that point regardless of the precise drug concentrations. This particular threshold, as opposed to zero,
was chosen because neither c1 nor c2 will ever be zero in a simulation unless it is initially zero. However,
the higher the drug dose is, the longer the constraint will be met, leading to more effective phenotypic
responses.

As these pumps cost energy in the form of ATP, any resulting decline in drug-induced death rates must
come at the expense of biomass production and growth [2]. Mathematically, ϕ1 and ϕ2 are continuous
functions that increase linearly with τ from Φ1min

= Φ2min
= 0 (τ = Tmin = 0), corresponding to null

phenotypic adaptation, to Φ1max or Φ2max (τ = Tmax), corresponding to maximum phenotypic adapta-
tion. Collectively, they model phenotypic adaptation.

Mortality rates. As a cell can only absorb a finite amount of drug in a finite time period, saturation
will lead to diminishing returns on increases in the drug’s concentration. Therefore, each mortality rate
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is expressed as a non-linear function: mi,j
d (cd) =

mi,j
d,0cd

1+αdc
βd
d

. The shape parameters, αd and βd, are dimen-

sionless. Although cd represents the drug concentration, we hereby declare that αdc
βd

d be dimensionless
for the sake of simplicity. Simplistically, it means that cd is divided by 1 unit of drug concentration
before being exponentiated by βd. The parameter mi,j

d,0 (per unit of drug concentration per hour) is the
maximum mortality rate when the drug concentration is far below its saturation level. Depending on the
dose units we found in the literature, we adjusted the units of cd and mi,j

d,0 to ensure meaningful quantities
were used during calibration, the optimisation studies, and the dynamic simulations.

S2 Drugs Approved for Neuroblastoma Treatment

The mathematical model proposed can be used to study any pair of drugs. Before choosing a pair for
this study, we performed a literature review on the drugs approved for neuroblastoma treatment, as
summarised below.

S2.1 Alkylating and DNA-crosslinking agents

Medical professionals have used alkylating agents, which act effectively on DNA throughout the cell cycle,
to treat cancers for around eight decades [3].

Cisplatin is a platinum-containing drug which becomes active intracellularly and binds to the purine
residues of DNA, thereby causing DNA damage and inhibiting DNA replication, ultimately triggering
apoptotic cell death [4]. When it is used for neuroblastoma treatment, it is administered intravenously
as an infusion over one to five days and is usually administered every 21 days [5, 6]. Remission has been
observed after four to six cycles [6]. According to one study [7], a dosage comprising five doses of 40 mg
m-2 is considered high. Neuroblastoma cells develop resistance to cisplatin by altering their expression
of proteins involved in epithelial-to-mesenchymal transition (EMT), which also confers cross-resistance
to temozolomide, etoposide, and irinotecan [8]. A study identified 139 genes upregulated by cisplatin-
resistant neuroblastoma cells; they are involved in responses to stress and abiotic stimuli, metabolic
regulation, apoptosis, proliferation, DNA repair, and catalysis [9].

Carboplatin is similar to cisplatin, but it is chemically less reactive and less toxic [10]. It is believed to
interact with genomic DNA, tubulin, and other proteins [10]. Depending on the regimen, carboplatin
has been combined with etoposide, cyclophosphamide, doxorubicin, and vincristine to treat neuroblas-
toma [11, 12]. According to a review [13], carboplatin resistance is not as understood as cisplatin resis-
tance, but has similar mechanisms. The review lists the following as platinum resistance mechanisms:
decreased blood flow to the tumour, extracellular conditions, reduced platinum uptake, increased efflux,
intracellular detoxification by glutathione and others, decreased drug binding, DNA repair, decreased
mismatch repair, defective apoptosis, anti-apoptotic factors, and quiescence [13].

Iproplatin, a recent addition to the family of platinum drugs, is also an analogue of cisplatin and behaves
similarly, but it did not exhibit superior effectiveness to cisplatin or carboplatin in clinical trials [14]. It
binds to DNA to form DNA crosslinks and platinum DNA adducts, thus inhibiting DNA replication and
triggering apoptosis [15]. Although it is less prone to glutathione inactivation than cisplatin, tumour cells
can resist it by repairing platination damage [15].

Cyclophosphamide is a nitrogen mustard which exerts its medicinal effects by alkylating DNA [16]. When
it metabolises to an active form, it can inhibit protein synthesis and trigger programmed cell death by
crosslinking with DNA and RNA [16]. As cyclophosphamide is immunosuppressive and selects for T
cells, it can be used to eradicate malignant hematopoietic cells and immunomodulate regulatory T cells
selectively [16]. This drug must undergo a cascade of metabolic events before it can exert its medicinal
effects, so it is not surprising that the known resistance mechanisms centre around the disruption of this
cascade by aldehyde dehydrogenase, gluthione, and glutathione S-transferase [17].

Busulfan kills cancer cells by disrupting DNA replication and its transcription to RNA, and by damag-
ing DNA irreparably through guanine-adenine crosslinking, thus triggering apoptosis via the p53 path-
way [18, 19]. A high-dose combination of busulfan and melphalan (BuMel regimen) is routinely used to
treat high-risk neuroblastoma in Europe [20]. A gene expression analysis identified the cellular factors
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underlying busulfan resistance, including their ability to evade cell cycle arrest in the G2 phase and
apoptosis [21].

Thiotepa is a polyfunctional alkylating agent which can damage DNA via two pathways [22]. It has
been used in tandem with BuMel before autologous stem cell transplantation in the treatment of very
high–risk neuroblastoma [23]. CYP2B6 and 3A4 are human cytochrome P450s—key phase I enzymes
that activate thiotepa–so mutations in their encoding genes may confer resistance to thiotepa on neurob-
lastoma cells [24].

Ifosfamide, an analogue of cyclophosphamide, belongs to the nitrogen mustard family [25]. Its metabolism,
catalysed by CYP450 enzymes in the liver, produces metabolites that trigger apoptosis in a cancer cell
by crosslinking with its DNA. The metabolites can also upregulate the reactive oxygen species (ROS),
damaging the cell’s DNA irreparably and inhibiting protein formation therein. Its toxicities include
hemorrhagic cystitis, neurotoxicity, hematologic toxicity, nephrotoxicity, and more. As ifosfamide is an
analogue of cyclophosphamide, it is unsurprising that their resistance mechanisms are similar [26].

Melphalan is another nitrogen mustard alkylating agent which works by alkylating guanine in DNA,
thereby creating inter- and intrastrand crosslinks to inhibit DNA/RNA synthesis, triggering apopto-
sis [27]. In the treatment of high-risk neuroblastoma, two common regimens involving melphalan are
BuMeL and CEM. The former combines melphalan with busulfan and the latter combines melphalan
with carboplatin and etoposide [28]. According to an experiment on melphalan-resistant myeloma cells,
enhanced interstrand crosslink repair via the FA/BRCA pathway is a key resistance mechanism [29].

Temozolomide, after intracellular hydrolysis, is a methylating agent which acts on DNA guanine bases
and other nucleobases to trigger apoptosis [30]. Resistance to temozolomide in glioblastoma is largely
due to MGMT, a protein which repairs temozolomide-induced DNA lesions, and DHC2, which transports
DNA repair proteins to a cell’s nucleus [31].

S2.2 Plant alkaloids with alternative mechanisms of action

These chemotherapeutic agents are derived from plants and unlike the DNA-crosslinking agents, their
mechanisms of action arrest the cell cycle at the G0/G1 and G2/M checkpoints, resulting in DNA repair
or apoptosis [32].

Vincristine is an extract from Catharanthus roseus [33]. It is commonly used in combination with
other chemotherapeutic agents, such as topotecan, carboplatin, cisplatin, and most relevantly, cyclophos-
phamide [34–36]. It works by interfering with microtubules to disrupt the formation of mitotic spindles
during the M phase of the cell cycle. Vincristine further promotes cell cycle arrest during the M phase by
upregulating cyclin B and downregulating cyclin D. Separately, it activates apoptotic factors, including
caspases 3 and 9. Overall, it inhibits proliferation and triggers apoptosis. Resistance to it is achieved
by upregulating BRCA1 [37]; survivin via the ERK1/2, Akt, and NF-B signalling pathways [38]; and
P-glycoprotein [39].

Tenisopide is a derivative of podophyllotoxin, a component of the ethanolic extracts from dried roots
and rhizomes of the genus Podophyllum [40]. Since topoisomerases are essential for DNA replication,
chromosome condensation, and chromosome segregation [41], this topoisomerase II inhibitor can damage
DNA and prevent cancer cells from entering mitosis by arresting them in the late S or G2 phase [40].
Generally, resistance to topoisomerase II inhibitors involves both the use of multidrug transporters and
enzymatic alterations that may nullify the inhibitors [42]. For example, activating NF-κB upregulates
genes that confer protection against apoptosis [43].

Etoposide is like tenisopide, a derivative of podophyllotoxin [40] and a topoisomerase II inhibitor [41].
Etoposide and teniposide exhibit qualitatively identical activities, but teniposide is only administered
intravenously and at lower doses [40]. The two analogues are resisted by the same mechanisms [42].

Topotecan is derived from camptothecin, an extract from the bark of Camptotheca acuminata, and it is
a topoisomerase I inhibitor [44]. Although both topoisomerase I and topoisomerase II relax and untangle
large strands of DNA to change its topological state, the former targets single strands, while the latter
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targets double strands [45]. Topotecan disrupts this process in order to damage DNA and hinder DNA
repair, ultimately triggering apoptosis in cancer cells [44]. Based on preclinical studies, the resistance
mechanisms against topotecan are likely to involve drug efflux pumps, mutations in the gene encoding
topoisomerase I, and alterations in the way cancer cells respond to the interactions between topotecan
and topoisomerase I [46].

Irinotecan, another derivative of camptothecin and also a topoisomerase I inhibitor, acts similarly to
topotecan [44]. The resistance mechanisms deployed by cancer cells against the two drugs are similar
too [46].

S2.3 Antibiotics

Anticancer antibiotics are secondary metabolites produced by microorganisms like bacteria, fungi, and
actinomycetes or higher animals and plants [47]. They are mainly peptides and anthraquinones which
can be classified into anthracyclines, mitomycin, bleomycin, actinomycin, guanorycin and endiyne. Their
anticancer effects arise from anti-proliferative, pro-apoptotic, and anti-EMT mechanisms. They can kill
cancer cells throughout the cell cycle, including the G0 phase. On the other hand, they may also ad-
vantage cancer cells by disrupting intestinal microbiota, thus promoting chronic inflammation, altering
metabolism, causing genotoxicity, and weakening immunity.

Doxorubicin is an anthracycline which can damage DNA throughout the cell cycle [48]. It does so by
binding to DNA-associated enzymes (such as topoisomerases) and intercalating with the base pairs on
the DNA double helix. As a result, cell cycle progression is arrested during the G1 and G2 phases, and
apoptosis is triggered. It can also intercalate itself into DNA and generate free radicals to damage it. A
major side effect of doxorubicin is cardiotoxicity, which leads to cardiomyopathy [49]. Resistance to it
is achieved through the MAPK/ERK pathway, which can protect cancer cells from oxidative stress [50];
ABC transport proteins, which can pump drugs out of cancer cells [51]; and amplification of the TOP2A
and ERBB2 genes [51].

Epirubicin is also an anthracycline and actually a semi-synthetic derivative of doxorubicin [52]. Like other
anthracyclines, its anticancer effects are thought to result from intercalation between DNA base pairs and
stabilisation of the topoisomerase II-DNA complex, leading to irreversible DNA strand breakage. DNA
lesions may lead to cell death throughout the cell cycle, although anthracyclines are most active during
the S and G2 phases. Cellular resistance to epirubicin and other anthracyclines involves P-glycoprotein,
changes in topoisomerase II activity, upregulation of glutathione and glutathione-S-transferase, induction
of heat shock proteins, and blockade of apoptopic pathways.

S2.4 Others

Isotretinoin (retinoic acid) is used in the maintenance phase of the multi-modal therapy for high-risk
neuroblastoma [53]. It works against neuroblastoma cells by inhibiting proliferation and inducing differ-
entiation [54]. Although it improves the event-free survival rate significantly, it selects for neuroblastoma
cells with MYCN upregulation, leading to resistance to the agent [55].

Dinutuximab is a monoclonal antibody produced using mouse cells, while dinutuximab beta is produced
using hamster cells [56]. They are commonly used in combination with granulocyte-macrophage colony
stimulating factor (GM-CSF), interleukin-2 (IL2), and isotretinon in the maintenance phase. They work
by binding to the glycolipid GD2, which is expressed by neuroblastoma cells, to mobilise the immune
system against the cancer cells [57]. These agents are actually not considered chemotherapeutic agents
because they are antibodies acting against a specific molecular target (GD2); they fall under the broad
category of targeted therapy, specifically immunotherapy. To the best of our knowledge, they are the only
immunotherapeutic agents approved for neuroblastoma. Little is known about the resistance mechanisms
acting against dinutuximab and dinutuximab beta, but neuroblastoma cells are known to create an
immunosuppressive environment in the tumour [58].
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S3 Model Calibration

After we reviewed all the approved drugs for neuroblastoma, the decision to evaluate vincristine (VCR, d
= 1) and cyclophosphamide (CPM, d = 2) was made. We made this choice for three reasons. First, vin-
cristine and cyclophosphamide are commonly used together in chemotherapy for neuroblastoma [34–36].
Second, they belong to two different categories of drugs: alkylating agents and plant alkaloids. As one
crosslinks with DNA throughout the cell cycle and the other targets mitotic spindles during the M phase,
they can conceivably complement each other. They are consistent with our mortality terms’ mathemat-
ical form too. They do not only affect mitotic (dividing) cells, but also cells elsewhere in the cell cycle.
Therefore, the chosen drugs are not necessarily compatible with the Norton-Simon hypothesis of treat-
ment response [59], which argues that the rate of drug-induced mortality is proportional to the rate of
cancer growth. Third, sufficient data were available for model calibration. Although we were not aware
when we made the choice, we went on to find that VCR is less cytotoxic than CPM after model calibra-
tion. Our choice allowed us to discover therapeutic strategies involving a pair of differentially effective
drugs.

After making this crucial choice, we parameterised different parts of the main equation separately with
different experimental datasets. After parameterising one part of the equation, the relevant parametric
values were retained for the remaining calibration steps. In most steps, a MatLab toolbox called lsqcurve-
fit, a non-linear least-squares solver, was used to fit parts of the equation to a relevant dataset.

The two clearance rates in the pharmacokinetic equations governing drug delivery were obtained directly
from the literature. For a three-year-old child, 80 cm in height and 15 kg in weight, we found the raw
clearance rates, 13.68 L h-1 m-2 [60] and 1.77 L h-1 m-2 [61], for VCR and CPM respectively. We used
a formula to convert the patient’s height and weight into the body surface area [62]. We found that the
hypothetical patient’s total body water is 58 % of the total body weight [63]. We multiplied each raw
clearance rate by the ratio of the body surface area to the total body water, obtaining the clearance rates
in the model: z1 is 0.91 h-1 (VCR) and z2 is 0.12 h-1 (CPM).

Tab.1 summarises the model parameters, including their symbols, numerical values, units, and physical
meanings.

S3.1 Clonal growth rates in the absence of drugs

In the first instance, we simplified the model to consider the growth rate of one clone in the absence of
drugs and other clones. We set c1 = 0 and c2 = 0 to reflect the drug-free environment, thus eliminating
the death term D in the main equation governing clonal evolution, including ϕ2(τ). As the experiments
providing the data lasted hours or days [64–66], we made the simplifying assumption that mutation
had been negligible in the experiments, thus eliminating the mutation term M (µ = 0). As phenotypic
adaptation is irrelevant in a drug-free environment, we set τ = 0 (no memory of chemotherapy), leading
to the condition that ϕ1(0) = 0 (no phenotypic adaptation). The resulting minimal model is given by
this equation,

dni,j

dt
=

(
1− ni,j

K

)(
ri,jni,j

)
. (S1)

We considered the minimal model, equation S1, for each clone separately. In each case, we used the same
carrying capacity K. We chose a cell count consistent with the assumed maximum volume of a tumour
in a three-year-old child: 10 cm3.

First, for the sensitive clone, we used the average population doubling time of a continuous hyperdiploid
human cell line, IMR-32, measured in vitro (chart 1 [64]). We found that r0,0 = 8.5 · 10−3 h-1.

Second, we considered the mildly VCR-resistant clones. An experimental study generated VCR-resistant
neuroblastoma cell lines by culturing neuroblastoma Be2c cells with VCR at gradually increasing con-
centrations [65]. The mildly VCR-resistant clone will be called VCR-10 henceforth because this cell line
was resistant to a VCR concentration of 10 ng mL-1 in the experiment. A growth curve resulting from
the experiment (Fig.1E [65]) allowed us to derive r1,0 = 7.7 · 10−3 h-1, a fraction of r0,0: reduced growth
rate as a cost of genetically conferred resistance to VCR.
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Third, we considered the strongly VCR-resistant clone. Its growth rate was derived from the observed
doubling time of 25 hours [66]. The strongly VCR-resistant clone will be called VCR-20 henceforth be-
cause this cell line was resistant to a VCR concentration of 20 ng mL-1 in the experiment [66]. Equation
(S1) was fitted to the in vitro data to calibrate r2,0, leading to r2,0 = 7.5 · 10−3 h-1.

In the absence of any published data, we could not calibrate the CPM-resistant clones’ growth rates.
The mildly and strongly CPM-resistant cells are called CPM-20 and CPM-32 cells respectively because
they are resistant to doses of 20 and 32 mg kg-1 respectively. The clones with cross resistance presented
the same challenge. We simply used the growth kinetics of the VCR-resistant clones to calibrate the
corresponding growth rates for the remaining clones. In other words, the model assumes that phenotypic
resistance to CPM has the same relationship with biomass production as VCR resistance. Moreover, CPM
resistance is not affected by VCR resistance and vice versa. For example, this means that r0,1 = r1,0 and
r1,1
r1,0

=
r1,0
r0,0

.

S3.2 Mutation probability

We made the simplifying assumption that the mutation probability µ takes the same value for all nine
clones. As a range between 10−3 and 10−6 is reported [67] and we were designing a study of high-risk
neuroblastoma (aggressive by definition), we decided that µ = 10−4 and forwent model fitting. Despite
this simplistic choice, after calibrating the model, we managed to simulate a cancer cell population’s
recovery from rapid COJEC due to the emergence of resistant clones.

S3.3 Mortality rates

On the basis of the relevant experiments’ time scales (hours or days) [65,68–71], we made the simplifying
assumption that the drug concentrations in the cultures had stayed constant throughout the experiments.
On the same basis, we assumed that the cultured cells had neither adapted to the drugs phenotypically
nor mutated. As genetically conferred resistance is drug-specific in this model, we only calibrated one
mortality rate with respect to vincristine for each row in Fig.1 and one mortality rate with respect to
cyclophosphamide for each column. For example, all three clones in the first row have the same mortality
rate with respect to vincristine, while all three clones in the first column have the same mortality rate
with respect to cyclophosphamide.

As explained in section S1, each mortality rate is represented by a non-linear function, mi,j
d (cd) =

mi,j
d,0cd

1+αdc
βd
d

,

so we needed to optimise the three parameters together for each pair of drug and clone. To achieve this
task, we fitted equation (S2) to a relevant experimental dataset for each pair of drug and clone:

dni,j

dt
=

(
1− ni,j

K

)(
ri,jni,j

)
−

(
mi,j

d,0cd

1 + αdc
βd

d

)
ni,j . (S2)

S3.3.1 Cytotoxic function of vincristine

We began our task by considering the mortality rates associated with VCR’s cytotoxic function. In an
experiment, sensitive neuroblasts were added to cultures with different concentrations of VCR and in
each case, the extent of cell death was measured after four hours [68]. The measurements were used
to produce a dose-response curve (Fig.4b [68]). To be consistent with this in vitro experiment, in this
calibration step, we used a carrying capacity that reflects a well plate’s capacity (not the one describing
a child, reported in the main text): K = 107 cells. After fitting equation (S2) to the data, we found
that m0,0

1,0 = 41.8 mg-1 m2 h-1, α = 1.122 · 104, and β = 0.6704. Armed with these parametric values, we
reproduced the dose-response curve computationally, resulting in Fig.S1.

Calibration of VCR-10’s and VCR-20’s mortality rates posed a greater challenge due to data availability.
For each of the two cell lines, as well as for sensitive cells, we only managed to find the drug concentration
needed to inhibit half of the cells in a culture (IC50) [65, 69]. At each level of resistance, multiple cell
lines were used in the experimental study, so we took the average IC50 value for each level of resistance.
As each average value of IC50 gave us one single datum only, we decided to keep the shape parameters
(α1 = 1.122 · 104 and β1 = 0.6704) and calibrate m1,0

1,0 and m2,0
1,0 accordingly. For the sake of consistency,

we recalibrated m0,0
1,0 by keeping the shape parameters and reproducing the relevant IC50. We found that
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Figure S1: Saturation kinetics of sensitive neuroblasts responding to vincristine (VCR). In an experiment,
sensitive neuroblasts were added to cultures with different concentrations of VCR and in each case, the
extent of cell death was measured after four hours [68]. We used our calibrated model to reproduce the
experiment. This figure reports, for each VCR concentration, the extent of cell death at equilibrium.
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Figure S2: Saturation kinetics of sensitive neuroblasts responding to cyclophosphamide (CPM). In an
experiment, CPM was used to treat neuroblastoma in a transgenic murine model for 24 hours [70].
Different CPM concentrations were used. We used our calibrated model to reproduce the experiment.
This figure reports, for each CPM concentration, the extent of cell death at equilibrium.

m0,0
1,0 = 40.4 mg-1 m2 h-1, m1,0

1,0 = 6.8 mg-1 m2 h-1, and m2,0
1,0 = 6 mg-1 m2 h-1. It is noteworthy that the

two estimates of m0,0
1,0 (41.8 mg-1 m2 h-1 and 40.4 mg-1 m2 h-1) are similar. We used the latter (40.4 mg-1

m2 h-1) for our dynamic simulations and optimisation studies.

S3.3.2 Cytotoxic function of cyclophosphamide

Then, we calibrated the mortality rates associated with CPM. In an experiment, CPM was used to
treat neuroblastoma in a transgenic murine model for 24 hours [70], leading to a dose-response curve
(Fig.5C [70]). We fitted equation (S2) to the data to find the parameters for the sensitive clone. For the
carrying capacity (K), we chose a cell count consistent with the assumed maximum volume of a tumour
in a three-year-old child: 10 cm3. We found that α2 = 2.9507 · 10−5, β2 = 1, and m0,0

2,0 = 3.1474 · 10−6

g-1 m2 h-1. We imposed that β2 = 1 before fitting equation (S2) to the experimental data. This con-
straint led to a good match between the two, thus facilitating the calibration of α2 and m0,0

2,0. Armed
with these parametric values, we reproduced the dose-response curve computationally, resulting in Fig.S2.

In the absence of suitable data, calibration of the CPM-resistant cells’ mortality rates was more challeng-
ing. We first calibrated them with respect to experimental data about mice [71]. Then, we converted the
calibrated values to human values.

In the experiment [71], Th-MYCN genetically engineered mice were exposed to multiple cycles of treat-
ment with CPM. Changes in tumour size were tracked in 13 mice (Fig.1B, Fig.1C, and Fig.1G [71]). We
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Figure S3: Clonal evolution driven by multiple cycles of treatment with cyclophosphamide (CPM). In an
experiment [71], Th-MYCN genetically engineered mice were exposed to multiple CPM doses and changes
in tumour size were tracked in 13 mice. We averaged the 13 drug schedules to obtain one representative
schedule. In each of its first four cycles, 16 mg kg-1 of CPM was given. In the next three cycles, a higher
dose (24 mg kg-1) was used. In the last four cycles, the dose was increased further to 32 mg kg-1. Each
cycle lasted 164 hours. We used our calibrated model to simulate how CPM-resistant clones had emerged
in the experiment. CPM was administered in the first hour of each cycle.

averaged the 13 drug schedules to design our own: 11 cycles (164 hours per cycle) of CPM treatment. In
each of the first four cycles, 16 mg kg-1 of CPM was given. In the next three cycles, a higher dose (24
mg kg-1) was used. In the last four cycles, the dose was increased further to 32 mg kg-1.

Keeping the shape parameters for the sensitive clone (α2 = 2.9507 · 10−5 and β2 = 1), we fitted equation
(S2) and the pharmacokinetic equation for CPM (dc2dt = ω2 − z2c2) to the data. For this calibration step
and this calibration step only, we used a different value of z2 (0.28 h-1 [72, 73]) because the experiment
was performed on mice, not the three-year-old child our model describes. In the dynamic simulations
associated with this calibration step, ω2 was set to the experimental value in the first hour of each cycle
and zero for the rest of the cycle, while ω1 was set to zero throughout the simulations. To be consistent
with the experiment [71], we imposed a hard constraint: the population became resistant to CPM after
the 10th dose and before the 11th and last dose. Using the calibrated mortality rates, we reproduced the
mice’s average responses to the 11 doses of CPM: Fig.S3. Unlike the value of m0,0

2,0 that we found in the

last step (3.1474 · 10−6 g-1 m2 h-1), we found that m0,0
2,0 = 33.9 ∗ 3.1474 · 10−6 g-1 m2 h-1. Furthermore,

we found two relations: m0,1
2,0 = 0.5m0,0

2,0 and m0,2
2,0 = 0.3m0,0

2,0.

Finally, since the aim was to calibrate the model for a human child, not a mouse, we applied the two
relations to the first value of m0,0

2,0 (3.1474 · 10−6 g-1 m2 h-1). As a result, m0,1
2,0 = 1.5737 · 10−6 g-1 m2 h-1

and m0,2
2,0 = 9.4422 · 10−7 g-1 m2 h-1.
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S3.4 Phenotypic adaptation

As briefly mentioned in the section on our model’s structure, cancer cells can phenotypically adapt to
drugs in many ways, including epigenetic alterations. It is also known that these adaptive mechanisms,
such as upregulating multidrug efflux pumps and EMT, are triggered by the cells’ recent memory of their
microenvironmental conditions, such as hypoxia and drugs [2, 74]. This lagging mechanism is parame-
terised by Tmax, Φ1max

, and Φ2max
. Mathematically, ϕ1(τ) and ϕ2(τ) are linear functions that increase

from Φ1min
= Φ2min

= 0 to Φ1max
and Φ2max

respectively as τ increases from 0 = Tmin to Tmax. In
other words, ϕ1(Tmin) = ϕ1(0) = 0, ϕ2(Tmin) = ϕ2(0) = 0, ϕ1(Tmax) = Φ1max

, and ϕ2(Tmax) = Φ2max
.

τ increases up to Tmax when the tumour is under drug stress (the constraint c1+c2 > 0.01 is met); other-
wise, τ decreases up to 0 (Tmin) when the tumour is not under drug stress (the constraint c1 + c2 > 0.01
is violated).

In this part of the calibration process, we turned to one of the experimental studies used to calibrate
the clonal growth rates in the absence of drugs. The experimental study generated VCR-resistant neu-
roblastoma cell lines by culturing neuroblastoma Be2c cells with VCR at gradually increasing concentra-
tions [65]. The abundances of sensitive and VCR-20 cells cultured with and without VCR were measured
(Fig.2B [65]). First, the green bar pertains to untreated sensitive cells, while the dark green bar pertains
to sensitive cells treated with 20 ng mL-1 of VCR for 48 hours. Second, the grey bar corresponds to
VCR-20 cells kept in a medium with VCR. Third, although both the blue and dark blue bars describe
VCR-20 cells cultured for three weeks in a VCR-free medium, the cells described by the latter were
treated with 20 ng mL-1 of VCR for another 48 hours. To be consistent with this in vitro experiment,
in this calibration step, we used a carrying capacity that reflects a well plate’s capacity (not the one
describing a child, reported in the main text): K = 107 cells.

The first parameters, Φ1min
, Φ2min

, Tmin, Tmax, and the function type, were calibrated in a straight-
forward manner. We fixed Φ1min = Φ2min = 0, corresponding to no phenotypic effects. Tmin = 0 and
Tmax = 10 days since the cancer cells were cultured for three weeks in drug-free media [65]: an indication
that the plastic response can fully activate or deactivate and reach the regimen in 21 days. Finally, we
decided to use the most common function type for ϕ1 and ϕ2, i.e., linear functions.

On the basis of the time scale (hours to days) [65], we made the assumption that the cultured cells had
not mutated. Mathematically, this assumption allowed us to reduce the main equation to the following,

dni,j

dt
=

(
1− ni,j

K

)(
ri,jni,j

1 + ϕ1(τ)

)
−

(
mi,j

d,0cd

1 + αdc
βd

d

)(
ni,j

1 + ϕ2(τ)

)
. (S3)

Drug resistance achieved via phenotypic adaptation (such as ATP-consuming efflux pumps) comes at
the expense of other biological processes (such as growth) and informed by the literature, we made
the assumption that maximum adaptation or maximum ATP consumption comes at the expense of a

50 % reduction in growth [75, 76]. Since the assumption means that

(
1 − ni,j

K

)(
ri,jni,j

1+Φ1max

)
is half of(

1− ni,j

K

)(
ri,jni,j

)
, it follows from the assumption that Φ1max

= 1.

With Φ1max
= ϕ1(Tmax) = 1, we fitted equation (S3) to the data relating to untreated sensitive cells and

sensitive cells treated with 20 ng mL-1 of VCR for 48 hours (green and dark green bars in Fig.2B [65]).
We arrived at the conclusion that Φ2max = ϕ2(Tmax) = 2, rounded off from 1.868. Using the calibrated
parameters, we reproduced this part of the experiment computationally: left panel of Fig.S4. In fact,
Fig.S4 suggests that we successfully reproduced all three parts of the experiment: the effect of VCR on
sensitive neuroblastoma (the green and dark green bars), the phenotypic adaptation to VCR of VCR-20
cells (the grey bar), and the effects of VCR on VCR-20 cells without phenotypic adaptation (the blue
and dark blue bars).

S4 Model Validation

After calibration, we performed three tests to validate our calibrated model.
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Figure S4: Simulated population sizes in cultures with different neuroblastoma cell lines with and without
vincristine (VCR). The experimental study generated VCR-resistant neuroblastoma cell lines by culturing
neuroblastoma Be2c cells with VCR at gradually increasing concentrations [65]. The growth rates of
sensitive and VCR-20 (strongly VCR-resistant) cells cultured with and without VCR were measured.
First, the green bar pertains to untreated sensitive cells, while the dark green bar pertains to sensitive
cells treated with 20 ng mL-1 of VCR for 48 hours. Second, the grey bar is about VCR-20 cells kept in
a medium with VCR. Third, although both the blue and dark blue bars describe VCR-20 cells cultured
for three weeks in a VCR-free medium, the cells described by the latter were treated with 20 ng mL-1 of
VCR for another 48 hours. In each panel, the black line represents the number of cells.

S4.1 Dynamics of VCR-20 cells in different scenarios

As already explained alongside the calibration of phenotypic adaptation (Tmax, Φ1max
, and Φ1max

), we
successfully simulated the experimentally observed dynamics of VCR-20 cells in different scenarios [65].
The right panel of Fig.S4 shows that the simulated VCR-20 population declined in size by around 15 %
because this population’s phenotypic adaptation was inactive during the simulation, in agreement with
the in vitro experiment [65].

S4.2 Consistent emergence of drug-resistant clones

We assessed its ability to demonstrate basic, intuitive biological phenomena. As discussed in [77], cancer
cells usually develop resistance to a drug due to the many mechanisms available to them in the human
genome. Starting with different initial clonal compositions, we used the calibrated model to simulate
the population dynamics in the presence of VCR alone, CPM alone, and both drugs. In each case, as
the simulation continued, the clones resistant to the administered drug or drugs expanded logistically,
outcompeted the other clones, and dominated the tumour population.

S4.3 Demonstration of multidrug resistance

We tested our calibrated model’s ability to demonstrate multidrug resistance. We did so by reproducing
experimental observations of various CPM-resistant cell lines responding to VCR at different concen-
trations (Supplementary Fig.6G [71]). The simulation results, summarised in Fig.S5, indicate that on
average, our model adheres to the experimental observations.

S5 Optimising Chemotherapy Schedules

Rapid COJEC is a chemotherapy regimen used in the induction phase of the multi-modal therapy for
high-risk neuroblastoma [78,79]. It uses fixed doses of chemotherapeutic agents in eight two-week cycles.
It is a one-size-fits-all regimen in the sense that the maximum tolerated dose (MTD) is used for all patients.

Using the final population size (i.e., the sum of the nine clones two weeks after the beginning of the last
cycle) as the objective function to be minimised, we solved a series of optimisation problems to identify
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Figure S5: Demonstration of multidrug resistance in simulations. In an experiment, various cyclophos-
phamide (CPM)-resistant cell lines were treated with vincristine (VCR) at different concentrations [71].
We used the calibrated model to reproduce the study. This figure reports the equilibria reached by sen-
sitive (green line) and CPM-resistant (red line) cells in simulations at different VCR concentrations.
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ways of improving rapid COJEC. While maintaining the fundamental unit (a two-week cycle), we ex-
perimented with the dosage: the number of cycles and the doses in each cycle. We limited our solution
space to 12 or fewer cycles due to concerns about toxicity, but the exact choice of considering up to 50%
more cycles than the standard protocol was made ad hoc. In each cycle, we limited the dose of VCR
to its MTD (2 mg m-2) [80] and did the same for CPM (2 g m-2) [81]. In each cycle, the VCR dose
was equally administered in the first 48 hours [80], while the CPM dose was administered in the first 56
hours [81]. According to the sources [80,81], VCR is administered intravenously as a solution, while CPM
is administered as powder, hence the different periods of administration in our studies. Depending on the
dose units we found in the literature, we adjusted the units of cd and mi,j

d,0 to ensure meaningful quantities
were used during calibration, the optimisation studies, and the dynamic simulations. Therefore, in each
optimisation problem, we varied the number of cycles from one to 12 and in each case, we optimised up
to 24 control variables: two doses in each cycle.

We solved each optimisation problem by combining a global search method with a local approach. As we
had decided to limit our study to 12 or fewer cycles, we searched 12 solution spaces (two to 24 dimensions)
globally with a genetic algorithm (GA) [82] before passing the proposed solutions to our local method.
The local method, MatLab’s fmincon function, was used to look for an even better solution in the local
vicinity of each GA proposed solution. GAs belong to the family of algorithms for global optimisation
called evolutionary computation. A GA looks for the optimal solution that maximises a fitness function
by passing potential solutions through the evolutionarily inspired processes of selection, crossover, and
mutation iteratively.

In the global part of each problem, we set the fitness function of our GA to the inverse of our objective
function. Recall that our objective function is the sum of the nine cell counts (ni,j) at the end of the last
treatment cycle. Then, we started with 100 random solutions (100 ordered lists of 24 numbers), or 100
chromosomes with 24 genes apiece within the context of a GA. We passed these chromosomes through
selection, crossover, and mutation 1000 times or generations. In each generation, the following steps were
carried out.

• The 10 fittest chromosomes entered the next generation without modification.

• During crossover, the existing chromosomes were sampled stochastically with replacement according
to their relative fitness levels. Two selected chromosomes were paired up and a crossover point was
randomly selected. The genes before this point were merged in a random convex combination
(sum of the two weights is one) and this combination was passed on to two daughter chromosomes,
while the genes after this point were passed on without change from one parent to one daughter.
Then, each gene on each daughter chromosome was mutated (assigned a random valid value) with
a probability of 5 %. This step created 50 daughter chromosomes.

• 40 more chromosomes were randomly generated to make up the next generation. These ‘immigrants’
allowed us to explore the solution space more widely at the expense of improving the fit chromosomes
of the current generation.

For each optimisation problem, we found the optimal chemotherapy schedule for a different initial tumour
composition. First, we considered a virtual tumour initially comprising fully sensitive cells only. Then,
for each of the following seven scenarios, we considered five initial tumour compositions: 5, 10, 15, 20,
and 25 % of the cells were resistant initially.

• All the resistant cells were set to be VCR-10 cells initially.

• All the resistant cells were set to be VCR-20 cells initially.

• All the resistant cells were set to be CPM-20 cells initially.

• All the resistant cells were set to be CPM-32 cells initially.

• Half of the resistant cells were set to be VCR-10 cells and the other half to CPM-20 cells initially.

• Half of the resistant cells were set to be VCR-20 cells and the other half to CPM-32 cells initially.

• The resistant cells were divided between the four resistant types: a third were VCR-10, another
third were CPM-20, a sixth were VCR-20, and the remaining sixth were CPM-32.

13



Therefore, we solved 36 optimisation problems. When we tackled each problem, we optimised the doses
for a fixed number of cycles before lengthening the schedule, going from one to 12 cycles. In total, we
implemented our GA-fmincon method 432 times on an Intel Xeon(R) Processor E5-2650 (2.00 GHz).
For a particular initial tumour composition, with the number of treatment cycles fixed at eight, the
algorithm took around 32800 seconds (almost nine hours) to finish. Together, Fig.2 presents the optimal
chemotherapy schedules we found by solving the optimisation problems.
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melphalan versus carboplatin, etoposide, and melphalan as high-dose chemotherapy for high-risk
neuroblastoma (hr-nbl1/siopen): an international, randomised, multi-arm, open-label, phase 3 trial.
The lancet oncology, 18(4):500–514, 2017.

[29] Qing Chen, Pieter C Van der Sluis, David Boulware, Lori A Hazlehurst, and William S Dalton. The
fa/brca pathway is involved in melphalan-induced dna interstrand cross-link repair and accounts for
melphalan resistance in multiple myeloma cells. Blood, 106(2):698–705, 2005.

[30] JR Wesolowski, P Rajdev, and SK Mukherji. Temozolomide (temodar). American journal of neu-
roradiology, 31(8):1383–1384, 2010.

[31] Guo-zhong Yi, Guanglong Huang, Manlan Guo, Xi’an Zhang, Hai Wang, Shengze Deng, Yaomin
Li, Wei Xiang, Ziyang Chen, Jun Pan, et al. Acquired temozolomide resistance in mgmt-deficient
glioblastoma cells is associated with regulation of dna repair by dhc2. Brain, 142(8):2352–2366, 2019.

[32] Thomas Efferth and Franz Oesch. Repurposing of plant alkaloids for cancer therapy: Pharmacology
and toxicology. In Seminars in Cancer Biology, volume 68, pages 143–163. Elsevier, 2021.

15



[33] Yue Tu, Shixiang Cheng, Sai Zhang, Hongtao Sun, and Zhongwei Xu. Vincristine induces cell
cycle arrest and apoptosis in sh-sy5y human neuroblastoma cells. International journal of molecular
medicine, 31(1):113–119, 2013.

[34] Steven G DuBois, Margaret E Macy, and Tara O Henderson. High-risk and relapsed neuroblastoma:
Toward more cures and better outcomes. American Society of Clinical Oncology Educational Book,
42:1–13, 2022.

[35] Brian H Kushner, Kim Kramer, Shakeel Modak, Li-Xuan Qin, and Nai-Kong V Cheung. Differential
impact of high-dose cyclophosphamide, topotecan, and vincristine in clinical subsets of patients with
chemoresistant neuroblastoma. Cancer, 116(12):3054–3060, 2010.

[36] Audrey E Evans, Ruth M Heyn, William A Newton, and Sanford L Leikin. Vincristine sulfate and
cyclophosphamide for children with metastatic neuroblastoma. JAMA, 207(7):1325–1327, 1969.

[37] Zhongjie Xu and Lirong Zhang. Brca1 expression serves a role in vincristine resistance in colon
cancer cells. Oncology Letters, 14(1):345–348, 2017.

[38] Masanobu Tsubaki, Tomoya Takeda, Naoki Ogawa, Kotaro Sakamoto, Hirotaka Shimaoka, Arisa
Fujita, Tatsuki Itoh, Motohiro Imano, Toshihiko Ishizaka, Takao Satou, et al. Overexpression of
survivin via activation of erk1/2, akt, and nf-κb plays a central role in vincristine resistance in
multiple myeloma cells. Leukemia research, 39(4):445–452, 2015.

[39] Yuzhen Xu and Liyan Qiu. Nonspecifically enhanced therapeutic effects of vincristine on
multidrug-resistant cancers when coencapsulated with quinine in liposomes. International journal
of nanomedicine, 10:4225, 2015.

[40] JJM Holthuis. Etoposide and teniposide. Pharmaceutisch Weekblad, 10(3):101–116, 1988.

[41] Kenneth R Hande. Topoisomerase ii inhibitors. Update on cancer therapeutics, 3(1):13–26, 2008.

[42] Ram N Ganapathi and Mahrukh K Ganapathi. Mechanisms regulating resistance to inhibitors of
topoisomerase ii. Frontiers in pharmacology, 4:89, 2013.

[43] Z Ping Lin, Yoonkyung C Boller, Suad M Amer, Rosalind L Russell, Karen A Pacelli, Steven R
Patierno, and Katherine A Kennedy. Prevention of brefeldin a-induced resistance to teniposide
by the proteasome inhibitor mg-132: involvement of nf-κb activation in drug resistance. Cancer
Research, 58(14):3059–3065, 1998.

[44] Yves Pommier. Topoisomerase i inhibitors: camptothecins and beyond. Nature Reviews Cancer,
6(10):789–802, 2006.

[45] Shantanu Banerji and Marek Los. Important differences between topoisomerase-i and-ii targeting
agents. Cancer biology & therapy, 5(8):965–966, 2006.

[46] Zeshaan A Rasheed and Eric H Rubin. Mechanisms of resistance to topoisomerase i-targeting drugs.
Oncogene, 22(47):7296–7304, 2003.

[47] Yuan Gao, Qingyao Shang, Wenyu Li, Wenxuan Guo, Alexander Stojadinovic, Ciaran Mannion,
Yan-gao Man, and Tingtao Chen. Antibiotics for cancer treatment: A double-edged sword. Journal
of Cancer, 11(17):5135, 2020.

[48] Oktay Tacar, Pornsak Sriamornsak, and Crispin R Dass. Doxorubicin: an update on anticancer
molecular action, toxicity and novel drug delivery systems. Journal of pharmacy and pharmacology,
65(2):157–170, 2013.

[49] Kanu Chatterjee, Jianqing Zhang, Norman Honbo, and Joel S Karliner. Doxorubicin cardiomyopa-
thy. Cardiology, 115(2):155–162, 2010.

[50] Claudia Christowitz, Tanja Davis, Ashwin Isaacs, Gustav Van Niekerk, Suzel Hattingh, and Anna-
Mart Engelbrecht. Mechanisms of doxorubicin-induced drug resistance and drug resistant tumour
growth in a murine breast tumour model. BMC cancer, 19(1):1–10, 2019.

[51] Caroline F Thorn, Connie Oshiro, Sharon Marsh, Tina Hernandez-Boussard, Howard McLeod, Teri E
Klein, and Russ B Altman. Doxorubicin pathways: pharmacodynamics and adverse effects. Phar-
macogenetics and genomics, 21(7):440, 2011.

16



[52] Douglas Ormrod, Kristin Holm, Karen Goa, and Caroline Spencer. Epirubicin. Drugs & aging,
15(5):389–416, 1999.

[53] KK Matthay, JM Maris, G Schleiermacher, A Nakagawara, CL Mackall, L Diller, and WA Weiss.
Neuroblastoma. nature reviews. disease primers 2, 16078, 2016.

[54] Katherine K Matthay, Judith G Villablanca, Robert C Seeger, Daniel O Stram, Richard E Harris,
Norma K Ramsay, Patrick Swift, Hiroyuki Shimada, C Thomas Black, Garrett M Brodeur, et al.
Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone
marrow transplantation, and 13-cis-retinoic acid. New England Journal of Medicine, 341(16):1165–
1173, 1999.

[55] C Patrick Reynolds, Katherine K Matthay, Judith G Villablanca, and Barry J Maurer. Retinoid
therapy of high-risk neuroblastoma. Cancer letters, 197(1-2):185–192, 2003.

[56] Michelle E Keyel and C Patrick Reynolds. Spotlight on dinutuximab in the treatment of high-risk
neuroblastoma: development and place in therapy. Biologics: targets & therapy, 13:1, 2019.

[57] Julie Voeller and Paul M Sondel. Advances in anti-gd2 immunotherapy for treatment of high-risk
neuroblastoma. Journal of pediatric hematology/oncology, 41(3):163, 2019.

[58] Salvatore Raieli, Daniele Di Renzo, Silvia Lampis, Camilla Amadesi, Luca Montemurro, Andrea
Pession, Patrizia Hrelia, Matthias Fischer, and Roberto Tonelli. Mycn drives a tumor immunosup-
pressive environment which impacts survival in neuroblastoma. Frontiers in oncology, 11:625207,
2021.

[59] Tiffany A. Traina and Larry Norton. Norton-Simon Hypothesis, pages 2557–2559. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011.

[60] Ellis Groninger, Tiny Meeuwsen de Boar, Pauline Koopmans, Donald Uges, Wim Sluiter, Anjo
Veerman, Willem Kamps, and Siebold de Graaf. Pharmacokinetics of vincristine monotherapy in
childhood acute lymphoblastic leukemia. Pediatric Research, 2002.

[61] Jeannine S. McCune, David H. Salinger, Paolo Vicini, Celeste Oglesby, David K. Blough, and Julie R.
Park. Population pharmacokinetics of cyclophosphamide and metabolites in children with neurob-
lastoma: a report from the children’s oncology group. Journal of Clinical Pharmacology, 2009.
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