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Simple Summary: Accurate and early selection of patients with advanced non-small-cell lung cancer
(NSCLC) who would benefit from immunotherapy is of the utmost clinical importance. The aim
of our retrospective multi-centric study was to determine the potential role of CT-based radiomics
machine learning models in predicting treatment response and survival in patients with advanced
NSCLC treated with immune checkpoint inhibitors. Our delta-radiomics signature was able to
identify patients who presented a clinical benefit at 6 months early, with an AUC obtained on an
external test dataset of 0.8 (95% CI: 0.65−0.95).

Abstract: The aim of our study was to determine the potential role of CT-based radiomics in pre-
dicting treatment response and survival in patients with advanced NSCLC treated with immune
checkpoint inhibitors. We retrospectively included 188 patients with NSCLC treated with PD-1/PD-
L1 inhibitors from two independent centers. Radiomics analysis was performed on pre-treatment
contrast-enhanced CT. A delta-radiomics analysis was also conducted on a subset of 160 patients
who underwent a follow-up contrast-enhanced CT after 2 to 4 treatment cycles. Linear and random
forest (RF) models were tested to predict response at 6 months and overall survival. Models based
on clinical parameters only and combined clinical and radiomics models were also tested and com-
pared to the radiomics and delta-radiomics models. The RF delta-radiomics model showed the best
performance for response prediction with an AUC of 0.8 (95% CI: 0.65−0.95) on the external test
dataset. The Cox regression delta-radiomics model was the most accurate at predicting survival with
a concordance index of 0.68 (95% CI: 0.56−0.80) (p = 0.02). The baseline CT radiomics signatures did
not show any significant results for treatment response prediction or survival. In conclusion, our
results demonstrated the ability of a CT-based delta-radiomics signature to identify early on patients
with NSCLC who were more likely to benefit from immunotherapy.
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1. Introduction

In the last decade, immune checkpoint inhibitors (ICIs) targeting programmed death-1
(PD-1) or programmed death ligand-1 (PD-L1) have demonstrated unprecedented efficacy
in increasing clinical response and survival of patients with treatment-naïve or previously
treated advanced non-small cell lung cancer (NSCLC) [1–4]. The clinical benefit from
immunotherapy has been correlated with PD-L1 expression on tumor cells as measured
by immunohistochemistry, showing better outcomes in tumors with PD-L1 expression
greater than 50% [2,5]. Tumor cell PD-L1 expression remains the cornerstone of the NSCLC
treatment algorithm and the only immune-related predictive biomarker recommended by
the European Society for Medical Oncology in the selection of patients who would benefit
from PD-1/PD-L1 inhibitors [6]. However, PD-L1 expression is far from being a perfect
biomarker; many challenges persist concerning its use as a reliable predictive biomarker,
such as spatial and temporal expression heterogeneities [7,8]. Furthermore, only a subset
of high PD-L1 patients will respond to treatment, and, on the other hand, clinical benefit
has also been observed in patients with PD-L1-negative tumors [9,10]. Other biomarkers
have proven effectiveness in predicting ICIs’ efficacy, such as the tumor mutational burden,
but are not yet ready to be routinely implemented in NSCLC workup [6,11].

Therefore, there is a real need to look beyond PD-L1 expression and to develop new
biomarkers, not to replace PD-L1, but to be associated with it in an integrated immune-
related signature including different parameters which could eventually improve patient
selection and enhance treatment effect. Towards this goal, radiomics could have a strong
card to play.

Radiomics is a quantitative imaging process which aims to extract high quantities of
digital information from standard-of-care imaging and thereby build artificial-intelligence-
based models assessing clinical outcomes such as prognostic or prediction of response
to treatment [12,13]. Radiomics has numerous advantages over tissue-based biomarkers,
including being non-invasive, being repeatable over time, and being able to explore the
entirety of the primary tumor as well as all secondary lesions included in the imaging
scan. Radiomics has shown its ability to assess the biological features of tumoral and
peritumoral tissues, including local immune characteristics, such as evaluating the presence
of tumor-infiltrating immune cells (CD8+, Th1 or Th2 cells) or PD-L1 expression, suggesting
its capacity to play a role in the selection of patients who are more likely to respond to
immunotherapy [14–16]. Several studies have started to explore the potential of radiomics
to predict response in advanced NSCLC treated with ICIs showing variable results [17–21].

More recently, a subspecialty of radiomics called delta-radiomics has gained increasing
interest [22]. Delta-radiomics consists of extracting radiomics features from the same region
of interest of the same patient but at different time intervals in order to study the variations
of the radiomics features over time. Compared to standard radiomics, which reflect a static
situation, delta-radiomics biomarkers study the phenotypical modifications of a tissue or
a lesion that may occur after the introduction of a treatment, for example. This approach
may allow the detection of early signs of tumor response before any size modification, [23].
Moreover, delta-radiomics parameters seem to be more robust compared to standard
radiomics features [24,25]. This approach seems particularly adapted to immunotherapy, in
which the kinetics of tumor size changes are not always related to treatment response [26].
To date, only a few studies with various methodologies have investigated delta-radiomics
in the setting of immunotherapy, obtaining moderate-to-good results [19–22]. However,
more data are needed to move towards a potential implementation of those image-based
models in routine clinical care, exploring the interest of multiple-lesion analysis and trying
to embed clinical factors to delta-radiomics features to build integrated models.

Therefore, in this study, we conducted a retrospective multi-centric analysis to help
determine the potential role of CT-based radiomics and delta-radiomics in predicting tu-
moral response and survival in patients with advanced NSCLC treated with PD-1/PD-L1
inhibitors, exploring the added value of multi-lesion analysis and clinical combined analyses.
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2. Materials and Methods
2.1. Patients

We retrospectively reviewed the medical and radiological records of all patients
with advanced or recurrent NSCLC treated with PD-1/PD-L1 inhibitors as monotherapy
between 2015 and 2020 at the University Hospital of Liège, Belgium. The inclusion criteria
were: (a) available baseline contrast-enhanced CT acquired up to two months before anti-
PD-1/PD-L1 initiation; (b) presence of at least one measurable tumoral lesion according
to the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 on the baseline
CT; (c) presence of at least one follow-up CT after 2 to 4 cycles of immunotherapy to assess
response. The exclusion criteria were: (a) baseline CT with slice thickness greater than
3mm; (b) patients presenting with ill-defined lesions only or poor CT quality; (c) patients
who received intercurrent radiotherapy or surgery on target lesions; (d) non-progressive
patients with follow-up time less than 6 months. This cohort of patients constituted the
training dataset.

A second dataset (external test set) of patients with advanced or recurrent NSCLC
treated with anti-PD-1/PD-L1 monotherapy between 2015 and 2018 at the University
Hospital of Saint-Luc, Brussels, Belgium was selected according to identical criteria. A
subset of patients who had a contrast-enhanced CT at first follow-up after 2 to 4 cycles of
therapy were selected for delta-radiomics analysis in each dataset. Each patient received
either anti PD-1 (nivolumab 3 mg/kg every 2 weeks or pembrolizumab 200 mg every
3 weeks) or anti PD-L1 (atezolizumab 1200 mg every 3 weeks) as first-line treatment
when PD-L1 expression was ≥50% (from March 2017) or as further lines regardless of
PD-L1 expression.

The following demographic and clinical data were collected: age, sex, smoking history,
Eastern Cooperative Oncology Group performance status (ECOG PS), histologic subtype
of NSCLC, clinical stage, ICI molecule and line, tumoral PD-L1 expression assessed via
immunohistochemistry, and the presence of an oncogenic driver mutation in epidermal
growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), and ROS1 when
available. Pre-treatment peripheral blood biomarkers, such as absolute neutrophil count
(ANC), absolute lymphocyte count (ALC), absolute eosinophil count (AEC), and neutrophil
to lymphocyte ratio (NLR), were also studied.

The clinical endpoints to be predicted by the models were the treatment response
status at 6 months and the overall survival (OS). Treatment response was assessed via
CT or MRI every 2 to 6 cycles, according to RECIST version 1.1. Patients who presented
a complete response, partial response, or stable disease at 6 months were considered
responders. Patients who presented with progressive disease within 6 months after PD-
1/PD-L1 inhibitor initiation were considered non-responders. OS was measured from the
time of ICI initiation to death from any cause. Patients without documented clinical or
radiological disease progression and who were still alive were censored at the date of last
follow-up. The end of the follow-up period was 1 October 2021.

This study received approval from both institutional review boards, and the need for
informed consent was waived based on its retrospective design.

2.2. CT Images Acquisition and Segmentation

The pre-treatment and follow-up CT images were acquired with scanners manu-
factured by Siemens Healthineers (Erlangen, Germany; Somatom Emotion, Sensation,
Definition, Definition AS or Edge plus), Phillips Healthcare (Amsterdam, The Netherlands;
Brilliance), or GE Healthcare (Chicago, IL, USA; Brightspeed or Revolution CT) using
tube voltage ranging from 80 kVp to 130 kVp, automatic adjustment of tube current, and
a 512 × 512 matrix. The CT images were performed by covering either the chest or the
chest and the abdomen after intravenous injection of 70 to 90 mL of iodine-based contrast.
Images of the chest were obtained at the arterial phase and images of the abdomen at the
portal venous phase. All images were reconstructed using a standard convolution kernel
with slice thickness comprised between 0.6 and 3 mm. All CT images were independently
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reviewed by two radiologists (10 and 4 years of experience) to identify target lesions in
the thorax and the abdomen and assess response at each time point according to RECIST
1.1. For each patient, the most substantial target lesion, called the index lesion, was also
identified. All discrepancies between the two readers were reviewed until a consensus was
reached. All target lesions according to RECIST 1.1 were secondarily segmented by one ra-
diologist with 10 years of experience using semi-automatic tools with the ITK-SNAP v.3.8.0
software (www.itksnap.org accessed on 12 June 2019) on baseline and on first follow-up
CT. Chest lesions were segmented on the arterial phase images and abdominal lesions on
the portal venous phase.

2.3. Feature Extraction and Selection
Feature Selection

A total of 187 handcrafted radiomic features were extracted from all the segmented
lesions both at baseline and at follow-up CT using the software developed by the company
Radiomics (Oncoradiomics SA, Belgium), including shape, first-order, and texture features.
The feature values were submitted to a logarithmic filter. The correlation between each
radiomic and clinical features was assessed by evaluating the Pearson coefficient. If two
features exhibited a coefficient higher than 0.9, the one with the lowest predictive power
was discarded. A maximum relevance minimum redundancy (MRMR) feature-ranking
algorithm was used to select a subset of promising predictors. The feature selection
procedure was adapted to the machine learning method considered. The MRMR FCQ (F-
test correlation quotient), WCQ (Wald test correlation quotient), and RFCQ (random forest
correlation quotient based on GINI importance) variants were chosen for the classification
of generalized linear models (GLMs), for Cox proportional-hazard regression models and
for classification/survival random forest (RF) models, respectively. F-score calculated using
ANOVA was used to assess features relevance for GLM. Wald test score was used to assess
features relevance for the Cox proportional-hazard regression models. GINI importance
index was used to assess features relevance for RF models. Delta-radiomic features were
calculated by subtracting baseline radiomic features from follow-up radiomic features, to
represent the variations between pre- and post-treatment CT radiomic features.

2.4. Model Building

Regarding both outcomes, we first developed a clinical model based on clinical pre-
dictors only. The model was built following a forward selection approach using the AIC
as the selection metric. Next, three different types of radiomics models were built: (a) a
single-lesion radiomics model, incorporating the radiomic features of one lesion (the index
lesion) per patient; (b) a multiple-lesion radiomics model, incorporating the radiomic fea-
tures of all RECIST 1.1 target lesions per patient; and (c) a delta-radiomics model, studying
the variations in radiomic features of the index lesion between baseline and first follow-up
CT. Additionally, we developed an early RECIST model based on RECIST 1.1 assessment at
first follow-up CT to be compared to our delta-radiomics model. Finally, we realized two
combined analyses: (a) a combined single-lesion model, associating clinical parameters
with baseline single-lesion radiomic features, and (b) a combined delta-radiomics model,
combining clinical parameters with delta-radiomics features. These combinations were
conducted by concatenating the radiomics signatures with the clinical one and retraining
the combined models on the training set. The workflow of the study is shown in Figure 1.

Two different types of machine learning analysis were carried out for each model.
Concerning response prediction, GLM and RF signatures were built with the combinations
of promising predictors. Regarding survival prediction, Cox proportional hazard regression
and RF signatures were built. For each model, the most performant signatures were selected
by using a 5-repetition 10-fold cross-validation approach on the whole training dataset
based on the highest mean performance and trained again on the set. Concerning the
RECIST model, GLM and Cox proportional hazard regression were used to build response

www.itksnap.org
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and survival prediction signatures, respectively. All the models were then applied to the
external test set to assess their true performances on independent data.
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The radiomics quality score, as proposed by Lambin et al., has been estimated for our
study at 17 points out of 36 (47%) [27].

2.5. Statistical Analysis

The Wald test was used for the univariate analysis of the clinical predictors. Perfor-
mances of the response prediction models were evaluated using the area under receiver
operating characteristic (ROC) curve (AUC) and their corresponding 95% confidence in-
terval (CI). Performance of the survival models were evaluated using the Kaplan–Meier
algorithm and a log rank test between low-score and high-score subsets obtained with a
50–50 split. All the statistical analyses were carried out with R software (version 4.1.1),
using the following functions: the glm function, the ranger package for RF survival analysis,
the caret package for RF classification, and the coxph function.

3. Results
3.1. Clinical Characteristics

In the training dataset, 146 patients met the inclusion criteria, and a total of 345 target
lesions were segmented on baseline CT and analyzed. A subset of 121 patients met the
delta-radiomics inclusion criteria, in whom 284 lesions were additionally segmented on the
1st follow-up CT and included in the delta-radiomics model. In the test dataset, 42 patients
met the inclusion criteria for baseline radiomics analyses, and 39 patients met the criteria
for delta-radiomics analysis, in whom 91 and 84 lesions were segmented on baseline and
1st follow-up CTs, respectively. The anatomical location of each target and index lesions
can be found in Table S1. The patient flow diagram is shown in Figure 2.

The median time interval between ICI initiation and baseline CT acquisition was
21 days (range, 0−57 days) in the whole training dataset and 15 days (range, 1–53 days) in
the whole test dataset. The median time interval between baseline and first follow-up CT
acquisition was 70 days (range, 28−125 days) in the delta-radiomics training dataset and
69 days (range, 35−87 days) in the delta-radiomics test dataset. The median follow-up time
was 15.1 months (range, 0.8−71.1) in the training dataset and 12 months (range, 1.2−73.7)
in the test dataset.
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Patients who presented with SD, PR, or CR at 6 months (responders) were 69/146
(47%) in the training dataset and 20/42 (48%) in the test dataset. Among the 146 patients
of the training dataset, peripheral blood biomarkers were available in 136 patients (93%).
The median ANC was 6.14 × 103 cells/mm3 (range, 0.12−79.4), the median NLR was
1.5 × 103 cells/mm3 (range, 0.31−11.26), the median NEC was 0.14 × 103 cells/mm3 (range,
0−1.07), and the NLR was 4.1 (range, 0.09−94.52). In the test dataset, the median ANC was
5.56 × 103 cells/mm3 (range, 0.6−70.29), the median NLR was 1.45 × 103 cells/mm3 (range,
0.41−3.76), the median NEC was 0.11 × 103 cells/mm3 (range, 0−0.84), and the NLR was
4.33 (range, 0.76−20.61). Tumoral PD-L1 expression was unknown in 35% of the patients
in the whole dataset and in 37% of the patients in the delta-radiomics dataset, therefore
this parameter was not included in our models. Demographic and clinical characteristics of
the patients are reported in Table 1. Performances of the clinical characteristics regarding
response at 6 months and OS are show in Table 2. The results were used to build the
clinical models.

Table 1. Demographic and clinical characteristics of patients.

Characteristics

Baseline Radiomics Analysis Delta-Radiomics Analysis

All Patients
(N = 188)

Training Set
(N = 146)

Test Set
(N = 42)

All Patients
(N = 160)

Training Set
(N = 121)

Test Set
(N = 39)

Age, median (range) 66 (42−95) 66 (42−85) 64 (44−95) 65 (42−95) 65 (42−85) 64 (44−95)
Sex

Male 113 (60%) 90 (62%) 23 (55%) 96 (60%) 76 (63%) 20 (51%)
Female 75 (40%) 56 (38%) 19 (45%) 64 (40%) 45 (37%) 19 (49%)

Smoking history
Never 10 (5%) 3 (2%) 7 (17%) 9 (6%) 2 (2%) 7 (18%)

Current or former 178 (95%) 143 (98%) 35 (83%) 151 (94%) 119 (98%) 32 (82%)
Pathological type
Adenocarcinoma 117 (62%) 86 (59%) 31 (74%) 100 (62%) 71 (59%) 29 (74%)

Squamous cell 58 (31%) 50 (34%) 8 (19%) 48 (30%) 41 (34%) 7 (18%)
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Table 1. Cont.

Characteristics

Baseline Radiomics Analysis Delta-Radiomics Analysis

All Patients
(N = 188)

Training Set
(N = 146)

Test Set
(N = 42)

All Patients
(N = 160)

Training Set
(N = 121)

Test Set
(N = 39)

Other a

Clinical stage
Stage III
Stage IV

PD-L1 expression
Unknown

<1%
1−49%
≥50%

13 (7%)

27 (14%)
161 (86%)

66 (35%)
30 (16%)
26 (14%)
66 (35%)

10 (7%)

26 (18%)
120 (82%)

47 (32%)
19 (13%)
20 (14%)
60 (41%)

3 (7%)

1 (2%)
41 (98%)

19 (45%)
11 (26%)
6 (14%)
6 (14%)

12 (8%)

22 (14%)
138 (86%)

59 (37%)
27 (17%)
20 (12%)
54 (34%)

9 (7%)

21 (17%)
100 (83%)

42 (35%)
17 (14%)
14 (12%)
48 (39%)

3 (8%)

1 (3%)
38 (97%)

17 (43%)
10 (26%)
6 (15%)
6 (15%)

Known mutation b 6 (3%) 3 (2%) 3 (7%) 6 (4%) 3 (2%) 3 (8%)
Treatment molecule

Pembrolizumab 67 (36%) 61 (42%) 6 (14%) 51 (32%) 46 (38%) 5 (13%)
Nivolumab 100 (53%) 71 (49%) 29 (69%) 90 (56%) 63 (52%) 27 (69%)

Atezolizumab 21 (11%) 14 (9%) 7 (17%) 19 (12%) 12 (10%) 7 (18%)
Treatment line

First line 50 (27%) 47 (32%) 3 (7%) 38 (24%) 35 (29%) 3 (8%)
Further lines 138 (73%) 99 (68%) 39 (93%) 122 (76%) 86 (71%) 36 (92%)

Response at 6 months
Responders 89 (47%) 69 (47%) 20 (48%) 77 (48%) 58 (48%) 19 (49%)

Non-responders 99 (53%) 77 (53%) 22 (52%) 83 (52%) 63 (52%) 20 (51%)
OS c, median (range) 14.9 (0.4−73.7) 15.1 (0.4−71) 12 (1.2−73.7) 15 (1.2−70.8) 15.3 (1.6−60.4) 12.4 (1.2−70.8)

OS, overall survival; a Other includes large cell carcinoma and carcinoma not otherwise specified; b including
epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), or ROS1 mutations; c in months.

Table 2. Univariate analysis of the clinical predictors.

Clinical Predictors
Response at 6 Months OS

AUC (95% CI) p-Value C-Index (95% CI) p-Value

Age 0.51 (0.41−0.51) 0.97 0.52 (0.46−0.58) 0.41
Sex 0.55 (0.47−0.55) 0.24 0.51 (0.46−0.56) 0.42

Clinical stage 0.54 (0.47−0.54) 0.26 0.52 (0.47−0.56) 0.50
Line of treatment 0.54 (0.46−0.54) 0.28 0.55 (0.50−0.60) 0.06
Pathological type 0.50 (0.42−0.50) 0.92 0.50 (0.45−0.56) 0.63

ICI molecule 0.53 (0.48−0.53) 0.21 0.52 (0.49−0.55) 0.18
Absolute neutrophil count 0.59 (0.49−0.59) 0.07 0.59 (0.52−0.66) 0.05

Absolute lymphocyte count 0.50 (0.40−0.50) 0.37 0.47 (0.41−0.53) 0.22
Absolute eosinophil count 0.60 (0.51−0.61) 0.05 0.57 (0.51−0.64) 0.13

Neutrophil to lymphocyte ratio 0.54 (0.45−0.54) 0.41 0.57 (0.51−0.64) 0.43

ICI, immune checkpoint inhibitor; AUC, area under the ROC curve; OS, overall survival.

The best clinical GLM signature for predicting response included five parameters (sex,
clinical stage, ANC, AEC, and NLR) and achieved an AUC of 0.64 (95% CI: 0.46−0.82) on
the external dataset (Figure 3). Concerning OS, the best clinical GLM signature included
five parameters (sex, pathological type, ALC, ANC and NLR) and achieved a concordance
of 0.51 (95% CI: 0.4−0.63) (Figure 4). The median OSs of the two groups obtained by
splitting the dataset based on survival score were 14.1 months in the low-risk group and
11.6 months in the high-risk group.
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for the clinical model (a); the radiomics single-lesion model (b); the delta-radiomics model (c); the
combined radiomics single-lesion model (d); and the combined delta-radiomics model (e).

3.2. Radiomic Features Selection

After correlation assessment between clinicopathological and radiomic features, no
clinicopathological parameter was discarded. The lists of all the radiomic features se-
lected for each radiomics model and their relevance (F-score for linear models and GINI
importance index for RF models) can be found in the additional files (Tables S2−S7).

3.3. Radiomics Single-Lesion Analysis

Regarding the performance of the radiomics models on prediction of treatment re-
sponse, the radiomics GLM signature of the index lesion included four features (stat_P90,
IH_Median, NGLDM_DE, GLCM_ClusterShade) and yielded AUC values of 0.65 (95% CI:
0.56−0.74) and 0.6 (95% CI: 0.42−0.78) on the training and test datasets, respectively. The
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RF model based on 50 promising features yielded an AUC value of 0.66 (95% CI: 0.48−0.83)
on the test dataset (Figure 3).

Regarding the survival outcome, the Cox signature of the index lesion included
three features (IH_Mode, morph_Elongation, stat_Max) and achieved concordances of
0.57 (95% CI: 0.51−0.63) and 0.62 (95% CI: 0.5−0.73) on the training and test datasets,
respectively. The median OS were 18.7 months in the low-risk score group and 9.8 months
in the high-risk score group. The RF model based on 50 promising features showed a
concordance of 0.4 on the test dataset (Figure 4).

3.4. Radiomics Multiple-Lesion Analysis

Regarding the performance of the radiomics models on prediction of treatment re-
sponse, the radiomics GLM signature of the index lesion included four features (IH_MedianD,
NGLDM_DV, GLMC_InfoCorr1, GLMC_InfoCorr2) and yielded AUC values of 0.63 (95% CI:
0.57−0.69) and 0.54 (95% CI: 0.41−0.66) on the training and test datasets, respectively. The RF
model, based on 50 promising features, yielded an AUC value of 0.62 (95% CI: 0.5−0.74) on
the test dataset.

Regarding the survival outcome, the Cox signature included two features (shape_Flatness,
NGLDM_DE) and achieved concordances of 0.56 (95% CI: 0.52−0.6) and 0.5 (95% CI: 0.43−0.57)
on the training and test datasets, respectively. The RF model based on 50 promising features
showed a concordance of 0.52 on the test dataset.

3.5. Delta-Radiomics Analysis

Concerning treatment response prediction, the delta-radiomics GLM signature in-
cluded three baseline features (IH_MedianD, GLMC_Entropy2, GLCM_InfoCorr1) and two
delta-radiomic features (shape_MinorAxisLenght_delta, IH_MinGrad_delta) and yielded
an AUC value of 0.84 (95% CI: 0.78−0.91) on the training dataset and an AUC value of
0.77 (95% CI: 0.61−0.93) on the test dataset. The RF model based on 50 promising features
yielded an AUC value of 0.8 (95% CI: 0.65−0.95) on the test dataset (Figure 3).

Regarding the survival outcome, the Cox signature included two delta-radiomic fea-
tures (Shape_Volume_delta, GLDZM_LILDE_delta) and achieved concordances of 0.70
(95% CI: 0.64−0.77) and 0.68 (95 % CI: 0.56−0.8) on the training and test datasets, respec-
tively. The median OSs were 29.3 months in the low-risk score group and 10.5 months
in the high-risk score group. The RF model based on 50 promising features showed a
concordance of 0.62 on the test dataset (Figure 4).

3.6. Early RECIST Analysis

Regarding response prediction, the GLM signature achieved an AUC of 0.66 (95% CI:
0.54−0.78) on the test dataset. Looking at survival prediction, the Cox signature yielded a
concordance of 0.56 (95% CI: 0.47−0.65).

3.7. Combined Models

The combined models were obtained by associating the clinical signatures with the
radiomics signatures. The combined single-lesion models showed AUCs of 0.69 (95% CI:
0.52−0.86) and 0.66 (95% CI: 0.48−0.84) on the external dataset in response prediction
using GLM and RF models, respectively. The combined delta-radiomics models achieved
AUCs of 0.78 (95% CI: 0.62−0.93) and 0.78 (95% CI: 0.62−0.94) using GLM and RF models,
respectively (Figure 3).

Concerning overall survival, the combined single-lesion Cox model showed a con-
cordance of 0.62 (95% CI: 0.5−0.73) and the combined delta-radiomics Cox model a con-
cordance of 0.65 (95% CI: 0.54−0.77) (Figure 4). The median OS were 22 months in the
low-risk score group and 8.5 months in the high-risk score group for the combined single
model and 21.9 and 6.3 months for the combined delta-radiomics model. A comparison of
the performances of the different models on the external dataset is shown in Table 3.
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Table 3. Performances of the predictive models on the external dataset.

Predictive Models

Response at 6 Months OS

GLM
AUC (95% CI) RF Cox Model

C-Index (95% CI) RF

Clinical model 0.64 (0.46−0.82) / 0.51 (0.4−0.63) /
Single-lesion radiomics model 0.6 (0.42−0.78) 0.66 (0.48−0.63) 0.62 (0.51−0.73) 0.4

Multiple-lesion radiomics model 0.54 (0.41−0.66) 0.62 (0.5−0.74) 0.5 (0.43−0.57) 0.52
Delta-radiomics model 0.77 (0.61−0.93) 0.8 (0.65−0.95) 0.68 (0.56−0.8) 0.62

RECIST model 0.66 (0.54−0.78) / 0.56 (0.47−0.65) /
Combined single-lesion model 0.69 (0.52−0.86) 0.66 (0.48−0.84) 0.62 (0.5−0.73) /

Combined delta-radiomics model 0.78 (0.62−0.93) 0.78 (0.62−0.94) 0.65 (0.54−0.77) /

GLM, generalized linear model; RF, random forest; AUC, area under the ROC curve; OS, overall survival.

4. Discussion

PD-1/PD-L1 inhibitors have reshaped therapeutic strategies in NSCLC, but efficient
response prediction biomarkers are still lacking.

Our single-time-point baseline radiomics signatures have shown moderate perfor-
mances at predicting tumor response and survival, unlike other studies [17,28]. This
could be explained by the heterogeneity of our population in terms of lesions’ locations.
On the other hand, our delta-radiomics signatures, which considered feature variation
at different acquisition times, have shown good performances in predicting response to
immunotherapy and moderate performances in predicting OS. Delta-radiomics predictive
performances were significantly better than clinical and baseline radiomics-only models
both for treatment response and survival predictions. This finding is in line with the recent
literature on immunotherapy response prediction, in which models incorporating feature
variations over time have systematically outperformed models based on pre-treatment CT
alone [19,21,29]. These results are comprehensible if the delta-radiomics models, as in our
case, include volume-related features assessing early tumor shrinkage, which is the hall-
mark of tumor sensitivity to treatment. However, in immuno-oncology, atypical response
patterns make volume-related assessment tools unreliable, justifying the need for alterna-
tive approaches. In this context, delta-radiomics is able to go beyond volumetric variations
in addressing spatial and temporal structural heterogeneity within the tumor. Interestingly,
our delta-radiomics signatures included a combination of size-based and texture-based
features, looking at tumoral volume variation and tumoral heterogeneity, respectively.

The composition of the tumor microenvironment (TME)—especially the quantity and
the quality of tumor-infiltrating lymphocytes (TILs), which reflect the tumor immune
phenotype—has been shown to influence response to PD-1/PD-L1 inhibitors [30]. Ra-
diomics has previously shown its ability to depict the density of TILs in the TME using
pre-treatment CT [15,20]. Beyond pre-treatment TME composition, several early modifica-
tions of the TME induced by ICIs, such as proliferation of CD4+ and CD8+ T-Cells and NK
cells, have been shown in responders with melanoma and NSCLC [30–32].

Our hypothesis is that these early cellular modifications of the TME might be captured
by delta-radiomics, partly explaining the superiority of such models in predicting response,
particularly in the context of immuno-oncology [20]. One characteristic of our study is that
we compared our delta-radiomics models to an early RECIST model, which focused only on
size variation. The delta-radiomics approach showed better performance. Our results are in
agreement with a recent study by Gong et al., in which delta-radiomics and RECIST models
were also compared to predict survival in a cohort of patients with NSCLC treated with ICIs,
even if our methodologies were somewhat different in terms of outcomes, feature selection
processes, and machine learning models [21]. RECIST criteria remain the gold standard for
assessing treatment response, but they fail in fully capturing tumor behavior complexity. It
is the combination of information related to volume and heterogeneity changes that seems
to account for the predictive capabilities of delta-radiomics in the context of NSCLC treated
with immunotherapy [23].
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Khorrami et al. were the first to report a CT-based delta-radiomics signature able
to predict response and overall survival of patients with NSCLC treated with ICI. They
focused only on single-lesion delta-radiomics, and their model yielded good performance,
laying the foundations of the technique [20]. The present study aims at expanding the
field by using a multiple approach, i.e., multiple types of models, using both single-time-
point and delta-radiomics extracted from multiple lesions and integrating multiple clinical
parameters. First, we compared delta-radiomics models to clinical and combined mod-
els, associating both clinical and radiomics features. Our radiomics and delta-radiomics
models showed better performance than the clinical models alone. However, the inclusion
of clinical parameters in the radiomics models did not improve prediction performance.
Concerning single-time-point radiomics, these findings are inconsistent with previously
published studies [28,33,34]. This could be explained by the heterogeneity of our popu-
lation, gathering patients presenting different tumor stages and receiving PD-1/PD-L1
inhibitors as first-line or further lines of treatment. Regarding delta-radiomics, to date,
only one study from—Xie et al.—has tried to incorporate clinical parameters into the delta-
radiomics model in the setting of NSCLC treated with ICI [29]. Their combined signature
showed good performances in predicting PFS and the combined models provided better
clinical utility than delta-radiomics models within a reasonable threshold probability range.
However, in addition to the fact that their population was different, including patients
with combination therapies, it was also somewhat limited (n = 97), and the absence of an
external dataset could have resulted in an overestimation of the performances of the model.

In our study, apart from PD-L1 expression, no clinical parameter showed good cor-
relation with response and survival outcomes. These findings are in line with a recent
meta-analysis from Yang et al. including 15829 NSCLC patients treated with ICI [35]. They
found that survival benefit from ICI was not related to clinicopathological factors such as
patients’ gender, age, PS, pathology, or smoking history. That the combined models did not
yield better performances than radiomics and delta-radiomics models may thus not come
as a complete surprise.

Another insight of our study is that we performed a baseline multiple-lesion radiomics
analysis, which is in compliance with the RECIST assessment recommendations, to be
compared to a more straightforward analysis using only one representative lesion per
patient. Interestingly, despite the fact that a multiple-lesion assessment should better
characterize the disease, the multiple lesions’ signatures did not show superior predictive
performances compared to the single-lesion approach, in line with a recent paper from Liu
et al. in which, of note, they only used unenhanced CT [19]. However, considerably more
data are needed to fully comprehend the processes and consolidate the knowledge in order
to implement radiomics-based biomarkers in daily practice.

Our study has also some limitations. First, though multi-centric, our study is retrospec-
tive and the sample size remains small. Our patient population is heterogeneous, including
different tumor histologies, treatment lines, and patient profiles; a more accurate selection
of a sub-population of patients might have resulted in better performances, especially in
predictive models from baseline scans. Differences in acquisition and contrast injection
protocols inside institutions may have affected radiomic feature extraction and analysis
as well. There were also differences in terms of PD-L1 expression and treatment lines
between the training set and the test set, and that could have impacted the performances
of our models, particularly the delta-radiomics. On the positive side, these results are
noteworthy because they support the applicability of delta-radiomics prediction models to
large and diverse patient populations, highlighting the robustness and the generalizability
of the methodological approach even across CT scans acquired in different centers using
different scanners and protocols. PD-L1 expression, which is currently the only approved
predictive biomarker for immunotherapy in NSCLC, was unknown in about a third of our
population and was therefore not included in our models. Integration of PD-L1 expression
as a parameter in our radiomics and delta-radiomics models might have improved their
performances. However, in the recently published Checkmate 227 update reporting the
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5-year clinical outcomes of the trial, comparing first-line immunotherapy combination
to chemotherapy in metastatic NSCLC, immunotherapy achieved substantial long-term
clinical benefit regardless of PD-L1 expression. The 5-year OS rates in PD-L1 negative
(<1%) patients were 19% (nivolumab plus ipilimumab) versus 7% (chemotherapy), which
might lead to revisiting the actual clinical impact of this parameter [36]. Additionally, we
have considered responders as any patient who had not progressed at 6 months, but we
did not differentiate the different types of response in our models. Finally, the time interval
between baseline CT and the initiation of PD-1/PD-L1 inhibitors was wide; changes in
tumoral tissues could have occurred in that time interval that could have modified the
radiomics signature.

5. Conclusions

In conclusion, delta-radiomics is a non-invasive tool combining information related
to changes in tumor volume and heterogeneity over time. Our results demonstrated the
ability of a CT-based delta-radiomics signature to make an early identification of patients
who are more likely to benefit from PD-1/PD-L1 inhibitors in the setting of advanced or
recurrent NSCLC.
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//www.mdpi.com/article/10.3390/cancers15071968/s1, Table S1: Anatomical location of the seg-
mented lesions in both the training and the test datasets; Table S2: Radiomic features selected for the
response prediction in the single-lesion analysis. (a): Promising features and their relevance used for
generalized linear model (GLM). (b): Features of the best radiomics signature obtained with GLM and
their relative importance and coefficients. (c): Promising features and their relevance used for the ran-
dom forest (RF) model; Table S3: Radiomic features selected for treatment response prediction in the
multiple-lesion analysis. (a): Promising features and their relevance used for generalized linear model
(GLM). (b): Features of the best radiomics signature obtained with GLM and their relative importance
and coefficients. (c): Promising features and their relevance used for the random forest (RF) model;
Table S4: Radiomic features selected for treatment response prediction in the delta-radiomic analysis.
(a): Promising features and their relevance used for generalized linear model (GLM). (b): Features
of the best radiomics signature obtained with GLM and their relative importance and coefficients.
(c): Promising features and their relevance used for the random forest (RF) model; Table S5: Radiomic
features selected for survival prediction in the single-lesion analysis. (a): Promising features and their
relevance used for Cox proportional hazard regression model. (b): Features of the best radiomics
signature obtained with the Cox model and their relative importance and coefficients. (c): Promising
features and their relevance used for the random forest (RF) model; Table S6: Radiomic features
selected for survival prediction in the multiple-lesion analysis. (a): Promising features and their
relevance used for Cox proportional hazard regression model. (b): Features of the best radiomics
signature obtained with Cox model and their relative importance and coefficients. (c): Promising
features and their relevance used for the random forest (RF) model; Table S7: Radiomic features
selected for survival prediction in the delta-radiomics analysis. (a): Promising features and their
relevance used for Cox proportional hazard regression model. (b): Features of the best radiomics
signature obtained with Cox model and their relative importance and coefficients. (c): Promising
features and their relevance used for the random forest (RF) model.
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