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Simple Summary: Cancer is a complex disease that develops over time through accumulated
mutations in DNA that transform normal cells into a cancerous state. To fully capture the complexity
of the cancer genome, computational methods have been developed to summarize the mutational
patterns of cancer, distinguish causal oncogenic mutations, and determine clinically useful mutational
patterns. In this review, we survey different computational approaches with an emphasis on important
clinical roles and provide insights into better integration of computational methods for clinical use.

Abstract: Since the rise of next-generation sequencing technologies, the catalogue of mutations in
cancer has been continuously expanding. To address the complexity of the cancer-genomic landscape
and extract meaningful insights, numerous computational approaches have been developed over
the last two decades. In this review, we survey the current leading computational methods to
derive intricate mutational patterns in the context of clinical relevance. We begin with mutation
signatures, explaining first how mutation signatures were developed and then examining the utility
of studies using mutation signatures to correlate environmental effects on the cancer genome. Next,
we examine current clinical research that employs mutation signatures and discuss the potential
use cases and challenges of mutation signatures in clinical decision-making. We then examine
computational studies developing tools to investigate complex patterns of mutations beyond the
context of mutational signatures. We survey methods to identify cancer-driver genes, from single-
driver studies to pathway and network analyses. In addition, we review methods inferring complex
combinations of mutations for clinical tasks and using mutations integrated with multi-omics data to
better predict cancer phenotypes. We examine the use of these tools for either discovery or prediction,
including prediction of tumor origin, treatment outcomes, prognosis, and cancer typing. We further
discuss the main limitations preventing widespread clinical integration of computational tools for
the diagnosis and treatment of cancer. We end by proposing solutions to address these challenges
using recent advances in machine learning.

Keywords: cancer genomics; mutation signatures; machine learning; bioinformatics; clinical predictors;
cancer drivers

1. Introduction

Cancer has historically been studied using genetic techniques, with the goal to identify
gene-driver mutations that confer selective advantage and drive cells into a cancerous
state. Driver mutations are distinguished from passenger mutations, which accumulate in
the genome due to the changes undergone in the cancer cell as it becomes cancerous [1,2].
These approaches have led to several landmark discoveries and treatment successes, in
particular, targeted therapies (Box 1) [3]. A prominent example is BRCA1/2 mutations in
breast and ovarian cancers [4,5], which allowed for revolutionary treatment success for
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patients harboring the mutations by exploiting synthetic lethality (Box 1) through PARP
inhibitors [6]. Identification of genes in the MAPK pathway, including BRAF and KRAS,
has allowed for potent anticancer treatments in melanoma [7,8] and non-small-cell lung
cancers [9,10]. IDH1 and IDH2 genes are inhibited in the treatment of AML [11] and
gliomas [12], and ALK genes are targeted in lung cancers [13–15]. Furthermore, drugs
targeting HER2 are a major treatment strategy for HER2-positive breast cancers [16–21].
However, most cancers are not driven purely by single-gene mutations; different genes
or combinations of genes may confer a similar cancer phenotype. An understanding of
how changes in multiple mutations or in the entire genome affect different cancers, and
unraveling the biological sources of cancer mutations, has been a burgeoning field over the
last decade [1,22].

Box 1. Definition of select terms.

Targeted therapies Therapies targeting a specific protein associated with a disease

Synthetic lethality A type of interaction wherein a single event is tolerable but co-occurrence of
two or more events is lethal

Driver mutation A mutation that provides a selective advantage to a cell and transforms a
cell into a cancerous state

Passenger mutation A mutation that is a result, but not a direct cause, of a cell
becoming cancerous

Mutagenic process Anything that causes damage to DNA or induces mutations in DNA, such
as UV light, radiation, or alkylating agents

Non-negative matrix
factorization
(in progress)

Unsupervised mathematical method wherein a single large nonnegative
matrix is decomposed into two or more smaller matrices

COSMIC Catalogue of Somatic Mutations in Cancer:
https://cancer.sanger.ac.uk/cosmic, accessed on 12 March 2023

Signature 1 Mutation signature associated with age
Signature 2 Mutation signature associated with the mutagenic effects of

APOBEC activity
Signature 4 Mutation signature associated with tobacco smoke
Signature 7 Mutation signature associated with UV exposure
Signature 10 Mutation signature associated with POLE proofreading errors
Signature 16 Mutation signature associated with alcohol consumption
Signature 18 Mutation signature associated with the mutagenic effects of the

MUTYH gene
DDR DNA damage repair, a network of processes that repairs damaged DNA

MMR Mismatch repair, a DDR pathway involved in detecting and repairing
DNA mismatches

BER
Base-excision repair, a pathway that repairs typically small-scale mutations

by first removing only the base and leaving an abasic site, which is later
removed and replaced with other nucleotides

NER Nucleotide-excision repair, a pathway that repairs mutations by entirely
removing mutated sections of DNA

HR Homologous recombination, a pathway repairing double-strand DNA
damage that uses another strand of DNA as a template for repair

NHEJ Non-homologous end joining, a pathway repairing double-strand DNA
damage that involves attaching two strands of broken DNA together.

Logistic regression A regression model for supervised classification
LASSO logistic

regression A regression model that uses L1 regularization

Random rorest An ensemble machine-learning model that combines decision trees
produced by bagging

ICI Immune-checkpoint inhibitors, a class of cancer drugs that suppresses
pro-tumor immune-system regulatory effects

Supervised learning Machine-learning strategies wherein the classes of outcomes are known
Unsupervised

learning
Machine-learning strategies wherein the task of the model is to cluster the

data into previously unidentified classes or discover the underlying classes

Neural network
A machine-learning model that connects the input data to a desired output

classification, where nodes connected by edges apply non-linear
transformations to the data passed through the network

Deep learning Machine-learning models that are composed of multiple layers of neural
networks stacked over one another (giving rise to the term “deep”)

Overfitting Fitting a particular data point too well and therefore failing to predict on
other data

Underfitting Not fitting the data well enough and inferring simplified decision rules that
may not be optimized for any dataset

Graph convolutional
networks Neural-network architectures that represent graph data for learning tasks

https://cancer.sanger.ac.uk/cosmic
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2. Mutation-Signatures Background

One of the earliest and most important computational tools to uncover patterns of
mutations arising through different mutagenic processes (Box 1) is mutation signatures,
which triggered this revolution in understanding the holistic cancer genome (Figure 1).
Mutation signatures were first developed by extracting patterns of nucleotide transitions
within the mutations in whole-genome-sequencing data in a small cohort of breast cancers
in 2012 [23]. In 2013, this principle was confirmed and expanded upon into a much larger
dataset across different cancers [24]. These mutation signatures were a paradigm shift
in understanding changes in the human genome in the context of cancer, as they allow
patterns of historical mutations to be associated across the entire genome with biological,
environmental, cancer-specific, and even cancer-treatment-specific effects (Figure 1A).
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Figure 1. Mutation-signatures overview. (A) Mutation signatures have been used for discovery of 
genomic patterns reflecting the effects stressors have on the cancer genome and for phenotype pre-
diction. (B) Simplified illustration of the construction of mutation signatures. Whole-genome-se-
quencing (WGS) data are collected and combined into a matrix. The matrix is decomposed using 
non-negative matrix factorization (NMF) or a similar method, and the resulting mutation-signature 
matrix is then correlated with environmental, patient-specific, or cancer-specific effects. (C) Simpli-
fied example of a potential mutation signature. The x-axis is site-specific nucleotide contexts. The 
colored boxes indicate groupings of the same nucleotide transition. The y-axis is the proportion of 
those context-specific sites that are mutated according to the specified transition. Only 30 of the 96 
total potential sites are shown here for clarity. 

2.1. Deriving Signatures of Mutations 
Mutation signatures mathematically model certain types of mutations that cluster 

together based on co-occurrence in tumors [24–26] (Figure 1B). The original types of mu-
tation considered were based on nucleotide triplets [24]. Mutations were classified accord-
ing to the transition from one base pair to another as defined from the pyrimidine of the 
Watson Crick base pair (6 potential transitions total, corresponding to C > A, C > G, C > T, 
T > A, T > C, T > G), as well as the nucleotide context of the surrounding two base pairs, 
yielding 96 total mutation types [24,26,27] (Figure 1C). The repertoire of mutation types 
considered has been subsequently expanded, including indels and double mutations, in-
creasing the complexity and potential ability of the signatures to capture biological com-
plexity across the genome [25,28]. 

Computationally, the first mutation-signature methods relied on the mathematical 
principle of non-negative matrix factorization (NMF) (Box 1), where a single large non-
negative matrix is decomposed into two or more smaller matrices [29,30]. Multiplying 
these smaller matrices together should approximate the original input matrix. One of the 
decomposed matrices is the signature matrix representing the mutation signatures, which 
are, in a separate step, associated with outside environmental, cancer, or biological causes 

Figure 1. Mutation-signatures overview. (A) Mutation signatures have been used for discovery
of genomic patterns reflecting the effects stressors have on the cancer genome and for phenotype
prediction. (B) Simplified illustration of the construction of mutation signatures. Whole-genome-
sequencing (WGS) data are collected and combined into a matrix. The matrix is decomposed using
non-negative matrix factorization (NMF) or a similar method, and the resulting mutation-signature
matrix is then correlated with environmental, patient-specific, or cancer-specific effects. (C) Simplified
example of a potential mutation signature. The x-axis is site-specific nucleotide contexts. The colored
boxes indicate groupings of the same nucleotide transition. The y-axis is the proportion of those
context-specific sites that are mutated according to the specified transition. Only 30 of the 96 total
potential sites are shown here for clarity.

2.1. Deriving Signatures of Mutations

Mutation signatures mathematically model certain types of mutations that cluster
together based on co-occurrence in tumors [24–26] (Figure 1B). The original types of
mutation considered were based on nucleotide triplets [24]. Mutations were classified
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according to the transition from one base pair to another as defined from the pyrimidine of
the Watson Crick base pair (6 potential transitions total, corresponding to C > A, C > G,
C > T, T > A, T > C, T > G), as well as the nucleotide context of the surrounding two base
pairs, yielding 96 total mutation types [24,26,27] (Figure 1C). The repertoire of mutation
types considered has been subsequently expanded, including indels and double mutations,
increasing the complexity and potential ability of the signatures to capture biological
complexity across the genome [25,28].

Computationally, the first mutation-signature methods relied on the mathematical
principle of non-negative matrix factorization (NMF) (Box 1), where a single large non-
negative matrix is decomposed into two or more smaller matrices [29,30]. Multiplying
these smaller matrices together should approximate the original input matrix. One of the
decomposed matrices is the signature matrix representing the mutation signatures, which
are, in a separate step, associated with outside environmental, cancer, or biological causes
(see [26,27] or the supplemental information of [25] for a comprehensive mathematical
explanation of mutation-signature generation, and in the first two, a comparison between
different derivation methods). Subsequent checks are used to determine the optimal
number of signature matrices. These include biological checks by investigating whether
the cluster of mutations makes sense in the context of potential biological drivers and
algorithmic checks, such as k-means clustering [24–27] (Figure 1B).

Many developments and refinements of the methods to generate mutation signa-
tures have been suggested. Several rely on variations in NMF [24,25,31,32], but others
use different methods to generate these signatures, resulting in potentially different sig-
natures [26,27]. These methods include the NMF-based Sigprofiler [25], which is a newer
version from the original mutation-signature paper, updated with more data [24], as well
as the NMF-based MutSpec [31] and MutSignatures [32]. Additional methods are Bayesian
NMF methods such as BayesNMF [33,34] and signeR [35]; probabilistic modeling, such
as pmsignature [36] and EMu [37]; PCA-based methods, such as SomaticSignatures [38]
and Helmsman [39]; and basic machine learning methods, such as deconstructSigs [40].
A recent comparison that evaluated the strengths and limitations of different methods
for real and simulated data indicated that probabilistic models may perform better based
on simulated data [27]. Others have developed methods to assess the reproducibility of
the decomposition method itself [41], but comprehensive benchmarking is still needed.
These signatures can be found in the Catalogue of Somatic Mutations in Cancer (COSMIC)
(Box 1) [25], and other tools have been developed to allow for data analysis of mutation
signatures [42,43].

2.2. Associating Mutation Signatures with Carcinogenic Processes

Once derived, the mutation signatures are then associated with potential biological,
environmental, or cancer-related phenomena, and mutations that occur in these signatures
may be extracted to investigate potential clinical relevance (Figure 1B). The landmark study
by Alexandrov et al. (2013) established canonical mutation signatures that were used in
numerous studies across the field and have been continuously expanded on by multiple
laboratories. In the original study, age was associated with mutation-signature 1, later
discovered by additional data to be two similar signatures labeled signatures 1A and 1B 1
(Box 1) and correlated with a C > T transition [24]. Age was associated with these signa-
tures because the rate of mutation did not change across different ages and was consistent
across cancers, indicating a steady baseline rate of mutation [24,25,28]. Subsequent work
expanded upon using mutation signatures to track rates of mutations, which found that
several signatures had clock-like processes associated with the passage of time but poten-
tially varied across different tissues [28]. Signature 2 (Box 1) was associated with a family
of cytidine-deaminase enzyme (APOBEC) activity, using previous work as a guide for the
expected activity of APOBEC proteins [24,25,44,45]. Further work, seeking to investigate
how mutation processes act in real time on live cells, confirmed signature 2 as being associ-
ated with APOBEC activity, and also found that APOBEC activity was sporadic, a finding
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that may have clinical opportunities and challenges when targeting mutagenic processes
for treatment [46–48]. Another study investigating the cause of esophageal squamous-cell
carcinoma found signatures associated with APOBEC activity, indicating activation of
APOBEC was a driver in the formation of this cancer [49]. Individual genes may also be
associated with certain mutation signatures. For example, germline mutations in the base
excision-repair gene MUTYH left distinct mutation signatures corresponding to COSMIC
signature 18 (Box 1) in colorectal cancers and adrenocortical carcinomas [50]. Mutation
signatures have also been linked to known environmental carcinogens. Signature 4 (Box 1)
mutations, which primarily involve C > A transitions on the transcribed strand, have been
observed in lung, head and neck, and liver cancers and are associated with tobacco-smoke
mutagens [24,25]. Studies confirming this association provided further evidence of smok-
ing driving cancer by inducing genome-wide mutagenesis [51]. Another environmental
association was found in the C > T transitions of signature 7 (Box 1), which was highly
prevalent in melanoma, and indicated association with UV exposure [24,25]. Further in-
corporating indel mutations, multiple mutation signatures have been linked to diverse
mutagenesis processes. These include substitution and indel-mutation signatures that
correlated with mismatch repair and microsatellite instability in a subset of cancers [25,52].
Ionizing-radiation-mutation signatures, corresponding with single-nucleotide variations
and indels, were identified in new cancer events of patients treated with radiation ther-
apy [53]. Ionizing radiation can also interact with germline mutations to induce distinct
mutation signatures, as demonstrated in TP53-deficient mice that were exposed to ionizing
radiation [54]. Other environmental effects associated with mutation signatures include ex-
posure to carcinogenic chemicals, including cobalt, vinylidene, and 1,2,3-trichloropropane.
These associated effects were confirmed in both experimental mouse tumors and, in the
case of 1,2,3-trichlorpropane, human tumors caused by contaminated drinking water [55].
Therefore, the analysis of thousands of cancer genomes allowed the delineation of vari-
ous mutational signatures and some of these signatures to be linked to endogenous and
exogenous mutagenic processes. Yet, the etiology of some of these signatures remains to
be discovered.

3. Clinical Applications of Mutation Signatures: Promises and Challenges

Concurrent with the development of mutation signatures was the recognition that
these signatures may potentially be used in a clinical context for prognoses and treatment
outcomes [23,24]. With their inherent ability to summarize genome-wide mutation patterns,
mutation signatures are particularly useful when genome-wide mutagenesis is clinically
relevant, or when genomic mechanisms modulating treatment outcomes are unknown
(Figure 2).

3.1. DNA-Damage-Repair Footprints and Clinical Applications of Mutation Signatures

DNA damage repair (DDR) is a complex network comprising multiple DNA-repair
pathways, damage-tolerance processes, and cell-cycle checkpoints, with multiple inter-
acting components assessing and maintaining genomic integrity [22,56,57]. Impairment
of DDR components leads to genomic instability, a central characteristic of almost all
human cancers [58,59]. Several forms of genomic instability have been found in tumors
and associated with different DDR pathways [59]. Single-strand DDR pathways include
mismatch repair (MMR) (Box 1), base-excision repair (BER) (Box 1), and nucleotide-excision
repair (NER) (Box 1). Impairments of these mechanisms lead to genome-wide accumula-
tion of base-pair mutations, involving base substitutions, deletions, or insertions of a few
nucleotides, as well as local copy-number amplifications and deletions [56]. Homologous
recombination (HR) (Box 1) and non-homologous end joining (NHEJ) are double-strand
DDR pathways correcting DNA double-strand breaks (DSBs), which can lead to genomic
imbalances and translocations [57,60,61].
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Figure 2. Potential clinical utility of genome-wide DNA-damage signatures: approved cancer drugs
that induce DNA damage and associations with specific damage-repair pathways. DNA-damage-
inducing drugs (lefthand blue boxes) activate DDR pathways (middle black boxes), directly or
indirectly (solid and dashed lines, respectively). DDR pathways repair single- or double-strand
damage, and impairment in those pathways leads to whole-genome signatures with potential clinical
utility for DNA-damage-inducing drugs.

Disruption in DDR pathways induces genome-wide mutagenesis, and some DDR
pathways are linked to responses to specific treatments, including chemoradiation and
targeted therapies. Mutation signatures become useful in such cases, as they can examine
patterns of DDR deficiencies throughout the genome.

This concept has been most clearly shown in applications to HR-deficient cancers. Loss
of HR results in increased sensitivity to inhibition of the BER gene PARP1. The absence of
PARP allows for unrepaired single-strand breaks to accumulate, and these breaks collide
with replication forks and induce cytotoxic double-strand breaks. When HR deficient, cells
are unable to repair those breaks, leading to genomic instability and cell death [62,63].
Therefore, strategies to infer HR deficiency in tumors are particularly useful for treatments
targeting HR-deficient cells. One important tool developed to identify HR deficiencies in
breast cancer is HRDetect, which is based on a LASSO logistic-regression model (Box 1)
that uses mutation signatures associated with substitutions, indels, and rearrangements
as feature inputs to the model [64]. Subsequent analysis showed that this tool was able to
identify HR repair-deficient patients (HRD) irrespective of their HRD germline, genetic, or
epigenetic status [65,66]. HRDetect was also shown to potentially be able to identify patients
that would respond to platinum treatments [67]. The benefit of HRDetect and similar tools
is the identification of patients that are sensitive to PARP inhibitors or platinum treatment
but that could be missed in the traditional HR-deficiency screen [33,64,67–69]. HRDetect
was used in a secondary endpoint of a phase II clinical trial examining PARP inhibitors
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for triple-negative breast-cancer patients, with success in identifying HR-deficient tumors
that could be missed using current clinical practice [69]. Recently, other tools have also
been developed to detect HR deficiencies using mutation signatures, including CHORD
and SigMA, which use a random-forest (Box 1) and likelihood-based approach (Box 1) to
classification, respectively [68,70].

Other treatments targeting HRD cancers are currently in clinical trials, where mutation
signatures may become useful. These treatments target different proteins involved in the
HR pathway, for example, ATR inhibitors [71]. ATR inhibitors (ATRi) may selectively kill
HRD cells [72]. ATR-induced cell death has also been shown in PARP-resistant cancers,
indicating the complementarity of this approach with PARP [73,74]. ATRi for treatment of
HRD cancers is currently in clinical trials [75]. Therefore, models using mutation signatures
could also provide a way to identify patients that would benefit from ATRi therapy.

Mutation signatures can also infer MMR deficiencies (MMRd). Importantly, MMRd is
an approved biomarker for immune-checkpoint inhibitors (ICI) (Box 1) [76], and similar
to HR deficiencies, MMRd leaves distinct mutational footprints on the genome. MM-
RDetect is a tool developed to infer mutation signatures descriptive of MMRd using a
logistic-regression model (Box 1) incorporating mutation signatures associated with MMRd
(Table 1) [77]. Although direct sequencing of potential causal genes (such as MSH2, MSH6,
PMS2, and MLH1) are clinically available for MMR [78,79], research has shown that these
genes may potentially be epigenetically regulated rather than genetically mutated [80,81],
posing a challenge for MMRd detection through genomic screening. Analyzing the effects
of MMR across the genome using mutation signatures could complement identification of
cancers deficient in MMR that may be susceptible to certain treatments. These treatments
primarily involve immune-checkpoint-inhibitor therapy, but recent work demonstrated
that inhibiting Werner helicases in MMRd tumors may induce synthetic lethality and po-
tentially allow for additional treatment options [78,82,83] Further supporting this notion,
studies carried out in pancreatic cancer found associations between MMR signatures and
antitumor immune activation, even when canonical HR or MMR genes were not germline
mutated in the tumors (Table 1) [84].

Table 1. Clinical applications of mutation signatures.

Category Descriptive Mutational Process Clinical Use

Clinically relevant DDR pathways

Homologous recombination (HR)

Biomarker for PARP-inhibitor sensitivity [64–66]

Biomarker for platinum-treatment sensitivity [67]

Biomarker for ATRi-inhibitor sensitivity [71,73–75]

Mismatch repair (MMR)

Immune-checkpoint-inhibitor biomarker [77]

Identification of Werner-helicase-sensitive patients [78,82,83]

Potential biomarker for antitumor immune activation [84]

Nucleotide excision repair (NER)
Biomarker for platinum-treatment sensitivity [34,85]

Biomarker of ERCC2 deficiency [34,85]

Proofreading errors Biomarker of POLE deficiency [86,87]

Characterization of clinically
relevant phenomena

Radiation treatment

Identification of radiation-driver tumors [53]

Identification of genes with potential contra-indications of
radiation therapy [54,88]

Chemotherapy
Tumorigenic effects of 5-FU [88,89]

Tumorigenic effects of platinum and capecitabine treatments

Environmental
Screening for aristolochic-acid damage [90–92]

Alcohol-consumption signatures across cancers [93–96]

Cancer-type specific mutagenesis
Identification of different subtypes of esophageal cancer [97]

Identification of secondary tumors of unknown origin [98]
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Other associations between cancer treatments and distinct DDR pathways include
ERCC2 helicase in the NER pathway (Table 1). Mutated ERCC2 produces a distinct muta-
tional signature that serves as a marker for disruption in the NER pathway [34]. Mutation
signatures corresponding to NER patterns similar to ERCC2 disruption could provide a
biomarker for cisplatin or similar platinum treatment [34,85].

Other than canonical DDR pathways, proofreading errors also induce distinct mutation
signatures, potentially allowing for the development of similar methods to MMR and
HR mutation-signature tools. For example, POLE proofreading errors are associated
with Signature 10 (Box 1), which could be associated with immune-checkpoint-inhibitor
therapy sensitivity (Table 1) [86,87]. Overall, the link between specific DDR pathways and
mechanisms or sensitivity of distinct cancer treatments warrants more work exploring this
association through mutation signatures.

3.2. Mutation Signatures as Clinical-Discovery Tools

Due to their ability to elucidate associations between exogenous or endogenous muta-
genesis and cancer, mutation signatures are useful for studying clinical phenomena when
the underlying mechanisms and genetic markers are unknown. Therefore, these signatures
may be useful for clinical development and discovery (Figure 2).

Radiation therapy has long been recognized as a potential driver of new cancers [99,100],
but markers distinguishing radiation-induced tumors are unknown. Mutation signatures
have been used to differentiate cancers driven by radiation therapy as opposed to cancer
relapse or recurrence (Table 1) [53]. Another study applied mutation signatures to identify
an association between TP53 deficiency and radiation-induced secondary cancers in mice
(Table 1) [54]. Similarly, a potential association with radiation and mutation signatures was
found in mutation-signature ID12, with higher mutation-signature activity in HRD tumors
compared to non-HRD tumors (Table 1) [88]. Therefore, mutation signatures have been
useful for identifying patterns linked with a distinct mutation that in turn may be used as a
marker for patients that should not be treated with radiation therapy.

Mutation signatures are being used to investigate the effects of other cancer treatments
on the genome, allowing both a better understanding of the mechanism of the treatments
and potential indications or contra-indications of the treatment. For example, using muta-
tion signatures, 5-FU was found to induce numerous T > G substitutions throughout the
genome, indicating a potential tumorigenic effect of this chemotherapy drug (Table 1) [89].
Further work has also shown mutation-signature associations with platinum therapies and
capecitabine and confirmed 5-FU associations, with increasing time and doses of drugs
producing higher mutation-signature signal (Table 1) [88].

Mutation signatures have also driven discovery of clinically relevant environmental
carcinogens through patterns of mutations in the genome. Aristolochic acid (AA) is a
chemical found in plants used in herbal remedies. In different cancers, and in bladder
cancers in particular, the presence of AA-associated signatures provided evidence that
AA has a mutagenic effect on the genome, demonstrating the potential of mutation signa-
tures as a screening tool (Table 1) [90–92]. Evidence from several studies on esophageal
squamous-cell carcinoma also found associations between alcohol consumption and several
mutation signatures [93,94]. Specifically, mutation signature 16 (Box 1), associated with
alcohol consumption, was also present in liver cancers [95]. Similarly, a study across many
different cancers found a distinct mutation signature associated with alcohol consumption
in HNSC, ESCA, and LIHC and proposed a mechanism of mutation involving acetaldehyde
(Table 1) [96]. These and similar signatures summarizing cancer-risk factors may inform
patients and possibly be developed into screening practices.

Another promising use of mutation signatures is as a biomarker for different cancer
types or cell types. Mutation signatures were used to distinguish different cell types within
esophageal adenocarcinoma, with the potential to directly target these different subtypes
for different therapy treatments (Table 1) [97]. Recent work has also shown that distinct
patterns of mutation signatures combined with additional tumor information can be used
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with machine learning to identify secondary tumors of unknown primary, which can greatly
facilitate targeted treatment of the cancer (Table 1) [98].

The clinical potential of mutation signatures in other contexts has been mentioned in
multiple studies, for example, for predicting immunotherapy response [1,86,87]. In practice,
however, mutation signatures have so far demonstrated clinical utility as a biomarker only
when whole-genome changes reflect the outcome of interest or as a tool for clinical discovery
when underlying mutagenic processes are unknown. In clinical practice, summarizing
a mutagenic process to a defined set of genes or markers is both more interpretable to
clinicians and requires sequencing fewer genomic regions. Therefore, mutation signatures
are useful in the path to defining mutagenic processes and finding associated markers to be
used in the clinic.

4. Beyond Mutation Signatures: Computational Approaches to Infer Clinically
Relevant Patterns of Mutations

In addition to mutation signatures, other methods have been developed to discover
patterns of cancer mutations that drive cancer development and underlie clinical outcomes
(Figure 3). The majority of these methods derive patterns of mutations using supervised-
or unsupervised-learning strategies (Box 1), which can then be directly correlated with a
clinical outcome of interest (Figure 3A). A fundamental goal of these emerging techniques
is the identification of cancer drivers. Discovering mutated genes that are drivers of tumori-
genesis and distinct from genes that are merely passengers is essential to understanding
cancer development and finding the causal players that may be clinically targeted [101].
Therefore, a comprehensive catalogue of driver mutations can improve diagnosis and
prognosis and provide for new drug targets [102,103]. In recent years, as sequencing
data has become increasingly available, several methods have been developed that use
machine-learning techniques to distinguish potential driver mutations from passenger
mutations (Figure 3B). These methods have steadily advanced to incorporate different
aspects of the genome. Early work in this field involved developing methods analyzing
the frequency of mutations in genes within cancers to separate out potential driver genes
from passengers, such as MutSigCV [104], inVex [105], and MuSiC [106]. Later approaches
incorporated functional impact by predicting the changes to the amino acids linked to a
mutation and predicting the impact of a mutation to the function of a gene. Such tools
include the random-forest-based CHASM [107–109], polyphen2 [110], e-Driver [111], and
SIFT [112,113], which were adapted to cancer mutations. Taking this functional concept
further, other algorithms use the structure of the protein itself to predict relevance to can-
cer. These include MSEA [114], which combines mutation frequency and protein-domain
structure to predict driver genes, and iPAC [115] or GraphPAC [116], which use tertiary
structure to predict driver mutations. More specialized methods such as ActiveDriver [117]
have focused on mutations in phosphorylation or similar post-translational regulation sites
(Table 2).

Methods have also shifted from focusing on features of single genes to accounting for
more complex patterns, such as gene networks and pathways (Box 1) (Figure 3C). These
approaches seek to leverage the knowledge that genes do not operate in isolation but act
as part of a larger whole, where mutations in similar pathways or network locations may
produce similar effects. For example, HotNet2 uses a heat-diffusion model to identify
mutated subnetworks, providing more information about the mutational landscape than
mutation data alone [118]. This work allowed for the identification of rare driver mutations
in the TCGA compared to previous studies focusing on purely mutation-based analysis.
Other network approaches include MUFFIN, which used the mutation data in network
neighbors to discover cancer drivers, even with a subset of the data [119], and Paradigm,
which used curated pathways with a gene-factor graph-modeling approach to discover
cancer drivers (Table 2) [120]. Newer methods have expanded on this network-based
analysis to discover modules of tumor–gene interactions with potential diagnostic and
therapeutic significance [121] and have also incorporated non-coding mutations, path-
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ways, and network analysis [122]. Beyond network or pathway analysis, a recent study
developed a deep-learning model (Box 1) for the background mutation rates to identify
patterns of positive selection and find driver mutations in coding and non-coding re-
gions [123]. Another method, boostDM, combined mutational data across cancers with
gradient-boosting tree algorithms (Box 1) to produce a series of interpretable models for
the identification of cancer drivers, and it has even been reported that this method out-
performs experimental large-scale saturation-mutagenesis experiments (Table 2) [124]. A
recent benchmarking and comparison of these methods found that four methods were most
effective at predicting drivers [125], namely, the random-forest-based CHASM [107–109]
and DEOGEN2 [126], the PCA-based CTAT-cancer [127], and the deep residual neural-
network-based PrimateAI [128] (Table 3).
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Other than discovery of driver mutations, methods have used pathway and network
information to identify patterns of mutations to predict treatment outcomes, allowing for
more biologically interpretable models (Table 2) [129,130]. An early representative study
used network-based stratification to combine mutation data and gene networks to predict
patient responses, tumor types, and histology [131]. A method to de-novo identify signifi-
cantly mutated subnetworks has revealed known and new mutated pathways in cancer.
Mutation data aggregated into biological processes were used as input to different machine-
learning classifiers to predict immunotherapy response in melanoma and to understand
biologically what occurs in immunotherapy response and resistance [132]. Pathway-based
methods have also been developed for scoring responses to different cancer treatments,
showing applications in both drug discovery and clinical selection of drugs [133]. Pathways
and mutation data were also used to identify cancer subtypes and prognostic indications
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of several of those subtypes [134]. In another study, mutated pathways were correlated
with different DNA-damage-response mechanisms to detect tumors mainly associated
with aneuploidy and those with defective DNA repair or microsatellite instability, thus
identifying groups of mutated genes that predict patients’ outcomes [135]. Recent work
using deep learning has used pathway information, mutations, and copy-number variation
to predict patient response to immunotherapy in melanoma [136]. An important benefit of
these pathway-based approaches is an emphasis on biological interpretation of predictions,
which are often considered more important than model performance (Table 2) [137].

Mutations in a single gene or within a specific pathway may not be sufficient for charac-
terizing cancer development or clinical outcomes. More complex patterns and interactions
between mutations confer more information for clinical-prediction tasks. Methods to iden-
tify combinations of mutations were used to distinguish tumors from healthy tissues [138],
to find patterns of mutually exclusive mutations [139,140] and epistasis [140,141], and to
predict patient survival and immunotherapy benefit (Table 2) [142]. Somatic mutations
were analyzed by unsupervised NMF and supervised machine-learning methods to predict
breast-cancer subtypes, with potential therapeutic significance [143]. Combinations of
passenger mutations were recently used in a deep-learning neural network to classify
metastatic tumors of unknown origin [144], and found that passengers conferred more
information for predicting the tissue of origin. Some computational methods identified
mutation patterns to infer the order of mutations in tumor evolution [145–149] or used
timing of mutations [150], clonality [151,152], and machine-learning models [153] to predict
clinical outcomes (Tables 2 and 3).

Some methods have incorporated tumor mutations with other types of data to predict
response to cancer therapies (Tables 2 and 3, Figure 3D) [154]. For instance, in breast cancer,
patient response or resistance to paclitaxel or gemcitabine was predicted using SVM models
applied to gene mutations, copy number, and expression [155]. This study found that the
mutation data alone were not sufficiently informative, likely due to sparsity. Studies have
also incorporated genomic and transcriptomic information to predict ICI response and
extract clinically relevant targets using a logistic-regression model [156]. Mutation data
were incorporated with gene-expression-based diagnostic models to correlate clinically
relevant mutations with gene-expression patterns in HCC, allowing for the identification
of HCC cells compared to normal liver cells [157]. Other work has used multiomics
integration of mutations and other data types with interaction and pathway information to
predict ovarian-cancer outcomes [158]. A multiomics approach incorporated mutations,
transcription information, epigenetics, and drug targets in a deep-learning framework to
predict drug repurposing for cancer treatment [159]. Mutations in specific driver genes
were also included in a multiomics integration through deep learning to predict survival
in liver-cancer cases [160]. Multiomics integration has also been used to predict TMB in
lung-cancer patients, which may potentially be clinically relevant for predicting response to
immunotherapy in many cancers (Table 2) [161]. However, the clinical utility of multiomics
integration has not been fully demonstrated, where limited amount of complex data is a
serious bottleneck for development of computational methods to infer clinically relevant
multiomics patterns [162].
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Table 2. Methods inferring clinically relevant mutation patterns beyond mutation signatures.

Task Category Sub-Category Clinical Relevance Example Methods

Identifying cancer
drivers

Cancer drivers by
mutation frequency

Cancer-driver discovery;
Obtaining cancer drivers for

prognosis, cancer
identification, and treatment

Methods based on mutation frequencies: MutSigCV [104], Invex [105],
Music [106]

Amino-acid and functional-impact changes: Chasm [107–109], polyphen2 [110],
SIFT [112,113]

Protein structure: MSEA [114], iPACT [115], GraphPac [116]

Phosphorylation-site mutation: ActiveDriver [117]

Cancer drivers by
pathway

Heat diffusion: HotNet2 [118]

Mutated neighbors: MUFFIN [119]

Curated pathways and gene-factor modeling: Paradigm [120]

Network-based modules [121]

Network-based coding and non-coding modules [122]

Deep-learning cancer-driver analysis [123]

Computational-saturation mutagenesis [124]

Exploring mutated
pathways

Predicting outcomes
using pathways

Patient-prognosis prediction Identification of genes associated with DNA-damage response and clinical
outcomes [135]

Patient response to
immunotherapy

Machine learning on clinical mutation data to predict patient response to ICI in
melanoma and other cancers [132]

Deep learning on pathway information, mutations, and copy-number variation
to predict melanoma outcomes [136]

Detecting drug targets
through pathways Drug discovery and tailored treatments [133]

Pathways of cancer
subtypes

Cancer-subtype
identification Cancer-subtype identification and prognosis [134]

Prediction of patient
response, tumor type, and

histology
Gene-network-based stratification using mutation data for prediction [131]

Identifying
complex patterns of
multiple mutations

Inferring interactions
between mutations

Interactions conferring
sensitivity

Mutual-exclusivity analysis of genes [139,140]

Epistatic effects of genes [140,141]

Clustering samples
Cancer-type identification

Unsupervised NMF and supervised ML to identify cancer subtypes [143]

Applying deep-learning neural network to passenger mutations to classify
metastatic cancers of unknown origin [144]

Identification of tumors vs.
healthy tissues Gene-combination analysis [138]

Inferring order of
mutations

Inferring timing of
mutations Mutation patterns to infer order of mutation events [145–149]

Determining timing for
predicting clinical outcomes

Mutation timing to predict clinical outcome [150]

Clonality analysis for outcome prediction [151,152]

Machine learning to predict outcome through mutational time series [153]

Multiomics
approach:

integrating
mutations with
other data types

Multiomics outcome
prediction

Chemotherapy response or
resistance

Using SVM on mutations, copy number, and expression for chemotherapy
prediction [155]

ICI response or resistance Genomic and transcriptomic information for response or resistance to ICI [156]

Prediction of patient
outcomes

Mutation, interaction, and pathway information to identify ovarian-cancer
outcomes [158]

Mutation-burden prediction
for ICI therapy Lung-cancer mutation-burden prediction using a multiomics approach [160]

Cancer classification Identification of cancerous
vs. non-cancerous cells

Identification of HCC cells from normal cells through mutation and expression
information [157]

Identification of drug
targets Drug repositioning Mutations, expression, epigenetics, drug targets, and deep learning for drug

repositioning [159]

5. Major Challenges for Clinical Utility of Complex and Data-Driven
Mutational Patterns

Despite substantial efforts to identify clinically relevant cancer mutations and patterns,
complex patterns beyond single-gene mutations have not been integrated into the clinic.
There are several challenges for computational approaches that have prohibited the clinical
success of data-driven mutational patterns, which are outlined below, along with potential
ways forward to overcome these challenges (Figure 4).
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A major and fundamental challenge to overcome is the difficulty of recapitulating
associations between mutational patterns and clinical features across multiple studies
(Figure 4A) [163,164]. This issue of reproducibility is especially pertinent in the context of
clinical significance [165]. Reproducibility issues can result from model underfitting or over-
fitting (Box 1) due to biological or clinical confounders, small sample settings, data sparsity,
or noisy and variable data [166,167]. Both under and overfitting result in failure to general-
ize findings to other studies, and failure to establish clinically useful biomarkers. Other
factors that can lead to unreproducible results are errors and poor documentation of code
and data processing [168] and lack of availability of the software and methods used [169].
With multiple parameters and intricate biological datasets, even in well-documented stud-
ies, it can be very difficult to fully reproduce results [164]. More complex model and
mutation patterns may improve the performance but also risk overfitting. It is therefore
important to follow guidelines and tools for reproducible computational work [170,171].
To ensure reproducibility with an eye to clinical integration, correct training, validation,
and testing practices in machine learning should be followed, along with standardized
methods, automation, transparency, and good coding practices [172–174]. Studies should
also ensure generalization across different, biologically independent datasets [175–177].

Tools are also being developed to assist non-specialists with ML applications (Table 3).
One example for such tools are automated machine-learning (AutoML) pipelines, which
handle the required tasks of applying machine learning to user-provided datasets. In
recent years, several frameworks that handle hyperparameter optimization and model
selection have become available [178–185]. Such frameworks can also be adapted by non-
expert machine-learning users in biomedicine, which can help support reproducibility
for machine-learning applications. Beyond the model itself, failure to reproduce results
can also be caused by poor laboratory or data-handling practices, human error such as
mislabeling, or contaminators, among other sources of variability [186,187].

Another important challenge to overcome in the path to clinical integration is the issue
of biologically interpretable results (Figure 4B) [113,137,188]. An interpretable model allows
for an understanding of the data that go into the model, the processes applied by the model,
and of how the model arrives at the results [189–191]. This is important because clinicians
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and biologists typically favor biological interpretability over black-box models [192,193],
even at the expense of the predictive capability of the model. An interpretable model can
also provide for follow-up biological discoveries and a better understanding of unexpected
results [194]. More complex models or patterns that may demonstrate better performance
are likely to be less interpretable. For example, cancer-driver identification is complex, and
increasingly more sophisticated models have been developed to address this complexity, but
even more complex models have not necessarily expanded on the drivers being discovered.

To address this complexity, many interpretation approaches have been proposed to
provide explanations for the trained models’ predictions and the features driving the
model to make a specific prediction (Table 3). LIME is a popular interpretation tool
that learns a new interpretable model that can better explain a less interpretable model.
Numerous studies have successfully applied LIME to provide interpretation of complex
models, including in biomedicine [195,196]. Another popular interpretation method is
DeepLIFT [197], which calculates the contribution of neurons in a trained neural network by
evaluating the difference in activation from a chosen representative reference. DeepLIFT has
also been useful for interpreting model prediction in genomic datasets [198–203]. Another
interpretive model is SHapley Additive exPlanations (SHAP) [204], which is based on the
Shapley value from game theory. This method generates contribution values called SHAP
values for each feature, which represents the differences between the actual prediction and
the expected prediction of a trained model. SHAP values not only provide insight into how
much each feature contributes to the prediction but also to the direction of the contribution,
either towards the positive class or the negative class. Multiple biomedical studies have
used SHAP to provide clear explanations of features driving predictions [124,205–209].

Another form of explanatory methods is through biological-network explanations
(Table 3) [210,211]. Biological networks have been used to build network-based predictive
models based on graph convolutional networks (GNN) (Box 1) [212–214]. An interpretabil-
ity challenge for a GNN learning biological networks is understanding the network struc-
ture and how sub-networks contribute to the prediction. GNNExplainer [215] provides
explanations of GNN-based prediction by identifying a dense sub-network structure along
with a small subset of node features that play an important role in the GNN-based predic-
tion. GNNExplainer can be used to understand the contributions of sub-networks’ nodes and
their roles in determining predictions, allowing for biological interpretability. Interpretation
models can help bridge the gap between model developers and clinicians, potentially allowing
for clinical utility of more complex model-based mutational patterns [190,191,216–218].

Another challenge for uncovering complex patterns of mutations is linked to the
sparse nature of mutation data themselves (Figure 4C). Mutations, even in cancer, are
generally infrequent when the entire genome or exome is taken into consideration [219,220].
This sparsity extends to other sources of biological data [220–225]. Most machine-learning
models have difficulty learning and picking up patterns for prediction based on sparse data,
which can lead to overfitting [219,226–230]. This results in poor reproducibility [227–230].
Feeding into this issue is the fact that cancer is highly heterogeneous, and rare events do not
preclude clinical relevance [231,232]. Including the methods discussed above, aggregation
of mutations can potentially mitigate this sparsity. Although aggregation may reduce
sparsity, care must be taken to ensure results are biologically interpretable [233,234].

Another factor that can lead to sparsity is missing data. Missing data can result from
experimental design or different types of human errors [235,236]. In addition to sparseness,
missing data can also lead to biased datasets and results [237]. Several techniques have
been developed to handle missing data, such as imputing missed instances with estimated
values [238–240]. Machine-learning methods can also be used to perform data imputation,
such as regression- and ensemble-based models [241,242]. Furthermore, several methods
have been developed recently to improve the quality of data imputation [243–247].

Another challenge is linked to how mutations are accumulated in cancer evolution. As
cancer develops, mutations arise in certain cell lineages, and tumor mutations are therefore
clonal and not homogenous [248–250]. Different cells within the same tumor have different
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clonal lineages and therefore different patterns of mutations [248,251]. Within the same
patient, lineages can be very different. This complicates typical data analysis because the
data being analyzed are subjected to specific clonal lineages where some mutations may
be misrepresented. As a result, in bulk datasets the actual clinically relevant mutational
players may be obscured [252] and the clonal composition of the tumor may change over
time, especially in response to treatment. Several methods have been developed to address
issues surrounding clonality [251,253–257], but more work is needed to address clonality
in the context of computational tools and modeling.

6. Summary

With the introduction of next-generation sequencing, numerous causal and actionable
mutations have been identified and used clinically as biomarkers or for new targeted thera-
pies. Due to the increasing realization of the vast complexity underlying tumorigenesis,
future clinical breakthroughs are likely to increasingly rely on computational methods
to identify these clinically actionable patterns of mutations. Mutation signatures allow
for exploration of intricate patterns of mutations in cancer, effectively identifying muta-
tional patterns to describe DDR pathways and environmental effects. However, mutation
signatures require extensive sequencing of cancer genomes, limiting clinical applications
beyond these purposes. Other methods have been developed to uncover complex pat-
terns of mutations for clinical use. These include methods that identify drivers of cancer,
methods that predict clinical outcomes by integrating mutations with biological pathways,
and methods incorporating other types of omics. However, such methods have yet to be
integrated into the clinic. The major challenges for clinical integration of computationally
driven mutational patterns are lack of reproducibility, the difficulty of interpreting complex
models, and issues associated with intrinsic attributes of cancer-mutational data, such as
sparsity and clonality. State-of-the-art computational and machine learning can be adjusted
to address these issues, improving the interpretation of complex models and enhancing
reproducibility. With the consistent accumulation of cancer-genomic datasets and the
complexity of cancer genomes, many of the next great clinical breakthroughs in cancer
research will rely on computational tools to fully understand the complicated patterns of
mutations that characterize cancer.

Table 3. Summary of tools reviewed in this article, software resources, and mention of the review
section where tools are referenced. All referenced tools and websites were accessed between 16
February 2023 and 19 February 2023.

Method Name Method Description Code/Tool Reference Review
Section

IntOGen
A method to access the
database of
mutational-cancer drivers

https://www.intogen.org/search [2] 1

SigProfiler

Framework for
deciphering mutation
signatures from
mutational catalogues of
cancer genomes

https://www.mathworks.com/matlabcentral/fileexchange/38724-
sigprofiler [24–27] 2.1

MutSpec Somatic-mutation analysis
in human and mouse https://toolshed.g2.bx.psu.edu/ [31] 2.1

MutSignatures
Cancer-mutation-
signatures
analysis

https://github.com/dami82/mutSignatures [32] 2.1

SigneR
Bayesian approach to
discover mutation
signatures

http://bioconductor.org/packages/release/bioc/html/signeR.html [35] 2.1

https://www.intogen.org/search
https://www.mathworks.com/matlabcentral/fileexchange/38724-sigprofiler
https://www.mathworks.com/matlabcentral/fileexchange/38724-sigprofiler
https://toolshed.g2.bx.psu.edu/
https://github.com/dami82/mutSignatures
http://bioconductor.org/packages/release/bioc/html/signeR.html
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Table 3. Cont.

Method Name Method Description Code/Tool Reference Review
Section

pmsignature

Probabilistic model to
infer and visualize
cancer-mutation
signatures

https://github.com/friend1ws/pmsignature
https://friend1ws.shinyapps.io/pmsignature_shiny/ [36] 2.1

SomaticSignatures Inferring characteristics of
mutation signatures

https://www.bioconductor.org/packages/release/bioc/html/
SomaticSignatures.html [38] 2.1

Helmsman Mutation-signature
analysis https://github.com/carjed/helmsman [39] 2.1

deconstructSigs Mutation signature by
machine learning https://github.com/raerose01/deconstructSigs [40] 2.1

SignatureEstimation
Discovering the existence
of mutation signatures in
cancer

https://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/index.cgi#
signatureestimation [41] 2.1

Signal Mutation-signature
analysis https://github.com/Nik-Zainal-Group/signature.tools.lib [42] 2.1

MutationalPatterns
Comprehensive analysis
of mutation processes
across the genome

http://bioconductor.org/packages/release/bioc/html/
MutationalPatterns.html [43] 2.1

Identification of mutation
signatures https://github.com/team113sanger/mouse-mutatation-signatures [55] 2.2

CHORD

Classifier identifying
homologous
recombination deficiency
across cancers

https://github.com/UMCUGenetics/CHORD [68] 3.1

SigMA Identification of mutation
signatures https://github.com/parklab/SigMA [70] 3.1

mutfootprints
Identification of mutation
footprint of and for cancer
treatment

https://bitbucket.org/bbglab/mutfootprints/src/master/ [88] 3.2

Identification of mutation
signatures https://github.com/UMCUGenetics/5FU [89] 3.2

CUPLR
Classification of
primary-tumor identity of
metastatic tumors

https://github.com/UMCUGenetics/CUPLR [98] 3.2

MutSigCV Identification of mutated
genes in cancer https://software.broadinstitute.org/cancer/cga/mutsig [104] 4

inVex
Identification of positive
selection for non-silent
mutations

https://software.broadinstitute.org/cancer/cga/invex [105] 4

MuSiC
Identification of
mutational relevance in
cancer genome

http://gmt.genome.wustl.edu/ [106] 4

CHASM

Identification of important
biological
single-nucleotide
mutations in cancer

http://wiki.chasmsoftware.org/index.php/Main_Page [107–109] 4

PolyPhen-2

Classification of
missense-mutation
damaging effects on
protein

http://genetics.bwh.harvard.edu/pph2/ [110] 4

e-Driver
Identification of protein
functional regions driving
cancer

https://github.com/eduardporta/e-Driver [111]

SIFT
Classification of
amino-acid-substitution
impact on proteins

https://sift.bii.a-star.edu.sg/ [112,113] 4

https://github.com/friend1ws/pmsignature
https://friend1ws.shinyapps.io/pmsignature_shiny/
https://www.bioconductor.org/packages/release/bioc/html/SomaticSignatures.html
https://www.bioconductor.org/packages/release/bioc/html/SomaticSignatures.html
https://github.com/carjed/helmsman
https://github.com/raerose01/deconstructSigs
https://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/index.cgi#signatureestimation
https://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/index.cgi#signatureestimation
https://github.com/Nik-Zainal-Group/signature.tools.lib
http://bioconductor.org/packages/release/bioc/html/MutationalPatterns.html
http://bioconductor.org/packages/release/bioc/html/MutationalPatterns.html
https://github.com/team113sanger/mouse-mutatation-signatures
https://github.com/UMCUGenetics/CHORD
https://github.com/parklab/SigMA
https://bitbucket.org/bbglab/mutfootprints/src/master/
https://github.com/UMCUGenetics/5FU
https://github.com/UMCUGenetics/CUPLR
https://software.broadinstitute.org/cancer/cga/mutsig
https://software.broadinstitute.org/cancer/cga/invex
http://gmt.genome.wustl.edu/
http://wiki.chasmsoftware.org/index.php/Main_Page
http://genetics.bwh.harvard.edu/pph2/
https://github.com/eduardporta/e-Driver
https://sift.bii.a-star.edu.sg/


Cancers 2023, 15, 1958 17 of 29

Table 3. Cont.

Method Name Method Description Code/Tool Reference Review
Section

MSEA
Classification of cancer
genes based on patterns of
mutation hotspots

https://github.com/bsml320/MSEA [114] 4

iPAC
Identification of
non-random somatic
mutations in proteins

http://www.bioconductor.org/packages/2.12/bioc/html/iPAC.html [115] 4

GraphPAC
Identification of
non-random somatic
mutations in proteins

http://bioconductor.org/packages/release/bioc/html/GraphPAC.html [116] 4

ActiveDriver
Effect of mutation on
post-translational
signaling

http://www.baderlab.org/Software/ActiveDriver [117] 4

HotNet2

Identification of rare
somatic-mutation
combinations in pathways
and protein complexes

http://compbio-research.cs.brown.edu/pancancer/hotnet2/#!/
http://compbio.cs.brown.edu/software/ [118] 4

MUFFINN
Cancer-gene detection
through network analysis
of somatic mutations

http://www.inetbio.org/muffinn/ [119] 4

boostDM

Identification of driver
mutations in cancer genes
from observed mutations
in human tumors

https://zenodo.org/record/4813082#.Y9L38dLMKV4 [124] 4

DEOGEN2/MutaFrame
Classification of
single-amino-acid variant
loss in human proteins

http://babylone.3bio.ulb.ac.be/MutaFrame/ [126] 4

PrimateAI
Classification of clinical
impact of human
mutations

https://basespace.illumina.com/s/cPgCSmecvhb4 [128] 4

Classification of immune-
checkpoint-inhibitor
therapy response

https://github.com/AuslanderLab/Mutated_pathway_ICI_prediction [132] 4

Identification of
associations between
driver mutations and
chromosomal aberrations

https://github.com/noamaus/INTERPLAY-TUMOR-CODES [135] 4

KP-NET Classification of
immunotherapy response https://github.com/0219zhang/KP-NET [136] 4

Causal identifications of
individual instances of
cancer

https://bitbucket.org/sajal000/multihit-combinations/src/master/ [138] 4

CLICnet

Identification of
somatic-mutation
combinations that predict
cancer survival

https://github.com/gussow/clicnet [142] 4

Classification of primary
and metastatic tumors https://github.com/ICGC-TCGA-PanCancer/TumorType-WGS [144] 4

SMASH
Identification of
somatic-mutation
associations

https://github.com/Sun-lab/SMASH [152] 4

Learning evolution of a
tumor through mutational
time series

https://github.com/noamaus/LSTM-Mutational-series [153] 4

Classification outcomes of
checkpoint inhibition by
tumor and immune-signal
combination

https://zenodo.org/record/5528497#.Y9Ps1dLMKV4 [156] 4

DeepDRK Drug response prediction https://github.com/wangyc82/DeepDRK [159] 4

https://github.com/bsml320/MSEA
http://www.bioconductor.org/packages/2.12/bioc/html/iPAC.html
http://bioconductor.org/packages/release/bioc/html/GraphPAC.html
http://www.baderlab.org/Software/ActiveDriver
http://compbio-research.cs.brown.edu/pancancer/hotnet2/#!/
http://compbio.cs.brown.edu/software/
http://www.inetbio.org/muffinn/
https://zenodo.org/record/4813082#.Y9L38dLMKV4
http://babylone.3bio.ulb.ac.be/MutaFrame/
https://basespace.illumina.com/s/cPgCSmecvhb4
https://github.com/AuslanderLab/Mutated_pathway_ICI_prediction
https://github.com/noamaus/INTERPLAY-TUMOR-CODES
https://github.com/0219zhang/KP-NET
https://bitbucket.org/sajal000/multihit-combinations/src/master/
https://github.com/gussow/clicnet
https://github.com/ICGC-TCGA-PanCancer/TumorType-WGS
https://github.com/Sun-lab/SMASH
https://github.com/noamaus/LSTM-Mutational-series
https://zenodo.org/record/5528497#.Y9Ps1dLMKV4
https://github.com/wangyc82/DeepDRK
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Table 3. Cont.

Method Name Method Description Code/Tool Reference Review
Section

MetAML Prediction of
metagenomics-based tasks https://github.com/segatalab/metaml [176] 5

Generalization in machine
learning for dataset
characteristics

https://github.com/pietrobarbiero/dataset-characteristics [177] 5

Auptimizer Hyperparameter
optimization https://github.com/LGE-ARC-AdvancedAI/auptimizer [178] 5

TPOT
Automated
ML–tree-based
optimization pipeline

https://github.com/EpistasisLab/tpot [181,182] 5

Hyperband Hyperparameter
optimization https://github.com/automl/pylearningcurvepredictor [183] 5

DanQ
Classification of the
function of DNA de novo
mutations from sequences

http://github.com/uci-cbcl/DanQ [188] 5

An explainable machine
learning tool of
severity-level predictions
of COVID-19 patients

https://github.com/freddygabbay/covid19explainableML [196] 5

DeepLIFT An explainable
machine-learning tool https://github.com/kundajelab/deeplift [197] 5

SpliceRover Classification of donor
and acceptor splice site http://bioit2.irc.ugent.be/rover/splicerover/ [199] 5

RIDDLE Imputation technique
using deep learning https://github.com/jisungk/RIDDLE [200] 5

P-NET Classification of prostate
cancer https://github.com/marakeby/pnet_prostate_paper [203] 5

SHAP An explainable machine
learning tool https://github.com/slundberg/shap [204] 5

devCellPy
Classification of cell types
across complex annotation
hierarchies

https://github.com/devCellPy-Team/devCellPy [205] 5

BCrystal

An interpretable
sequence-based
protein-crystallization
predictor

https://github.com/raghvendra5688/BCrystal [206] 5

MetaNet Metastatic-risk assessment
of a primary tumor https://github.com/WangLabHKUST/METANET-analysis [207] 5

Ocelot
Prediction of relationships
across histone
modifications

https://github.com/GuanLab/Ocelot [208] 5

DeepHF

Optimization of CRISPR
guide RNA design using
deep learning for two
high-fidelity Cas9 variants

https://github.com/izhangcd/DeepHF
http://www.deephf.com/#/home [209] 5

MTGCN Identification of
cancer-driver genes https://github.com/weiba/MTGCN [213] 5

GNNExplainer An explainable graph
neural-network tool https://github.com/RexYing/gnn-model-explainer [215] 5

SBMClone
Identification of tumor
clones in sparse
single-cell-mutation data

https://github.com/raphael-group/SBMClone [221] 5

Mix-MMM
Identification of mutation
signatures from sparse
mutation data

https://github.com/itaysason/Mix-MMM [222] 5

https://github.com/segatalab/metaml
https://github.com/pietrobarbiero/dataset-characteristics
https://github.com/LGE-ARC-AdvancedAI/auptimizer
https://github.com/EpistasisLab/tpot
https://github.com/automl/pylearningcurvepredictor
http://github.com/uci-cbcl/DanQ
https://github.com/freddygabbay/covid19explainableML
https://github.com/kundajelab/deeplift
http://bioit2.irc.ugent.be/rover/splicerover/
https://github.com/jisungk/RIDDLE
https://github.com/marakeby/pnet_prostate_paper
https://github.com/slundberg/shap
https://github.com/devCellPy-Team/devCellPy
https://github.com/raghvendra5688/BCrystal
https://github.com/WangLabHKUST/METANET-analysis
https://github.com/GuanLab/Ocelot
https://github.com/izhangcd/DeepHF
http://www.deephf.com/#/home
https://github.com/weiba/MTGCN
https://github.com/RexYing/gnn-model-explainer
https://github.com/raphael-group/SBMClone
https://github.com/itaysason/Mix-MMM
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Table 3. Cont.

Method Name Method Description Code/Tool Reference Review
Section

JDINAC

Identification of
differential interaction
patterns of network
activation using
high-dimensional sparse
omics data

https://github.com/jijiadong/JDINAC [223] 5

MoGP

Identification of patterns
in amyotrophic
lateral-sclerosis
progression from sparse
longitudinal data

https://github.com/fraenkel-lab/mogp [225] 5

Multi-cancer analysis of
clonality in paired primary
tumors and metastases

https://github.com/cancersysbio/pan-metastasis [251] 5

CHESS

Spatial stochastic
tumor-growth model to
simulate multi-region
sequencing data derived
from spatial sampling of
neoplasm

https://github.com/kchkhaidze/CHESS.cpp [256] 5
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