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Simple Summary: Epigenetic changes occur in parts of the genome other than in nucleotides. They
are considered reversible and are therefore important targets for cancer therapy. Epigenetic changes
have been observed in urological cancers, including urothelial carcinoma, and in recent years have
been a topic of investigation for the treatment of metastatic bladder cancer that has failed traditional
therapy. We performed a review of the current literature to assess the evidence and role for targeted
epigenetic therapy in bladder cancer. While we found 25 clinical trials investigating this topic, there
have been no phase 3 human clinical trials to date. This is an emerging topic in urology, and future
directions involve further research into bladder cancer-specific epigenetic changes, as well as the
development of novel agents to target these mutations.

Abstract: Epigenetics is a growing field and in bladder cancer, it is of particular interest in advanced
or metastatic disease. As opposed to genetic mutations in which the nucleotide sequence itself is
altered, epigenetic alterations refer to changes to the genome that do not involve nucleotides. This
is of great interest in cancer research because epigenetic alterations are reversible, making them
a promising target for pharmacological agents. While chemoimmunotherapy is the mainstay for
metastatic disease, there are few alternatives for patients who have progressed on first- or second-line
treatment. By targeting reversible epigenetic alterations, novel epigenetic therapies are important
potential treatment options for these patients. A search of clinical registries was performed in order
to identify and collate epigenetic therapies currently in human trials. A literature search was also
performed to identify therapies that are currently in preclinical stages, whether this be in vivo or
in vitro models. Twenty-five clinical trials were identified that investigated the use of epigenetic
inhibitors in patients with bladder cancer, often in combination with another agent, such as platinum-
based chemotherapy or pembrolizumab. The main classes of epigenetic inhibitors studied include
DNA-methyltransferase (DNMT) inhibitors, histone deacetylase (HDAC) inhibitors, and histone
methyltransferase (HMT) inhibitors. At present, no phase 3 clinical trials have been registered. Few
trials have published results, though DNMT inhibitors have shown the most promise thus far. Many
patients with advanced or metastatic bladder cancer have limited treatment options, particularly
when first- or second-line chemoimmunotherapy fails. Epigenetic alterations, which are common in
bladder cancer, are potential targets for drug therapies, and these epigenetic agents are already in
use for many cancers. While they have shown promise in pre-clinical trials for bladder cancer, more
research is needed to assess their benefit in clinical settings.
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1. Introduction

Bladder cancer is a common urological malignancy with approximately 573,000 new
diagnoses and 213,000 deaths reported worldwide in 2020, and among men, it ranks 6th for
new cancer diagnoses and 9th for cancer deaths [1]. The 5-year survival rate for bladder
cancer is reported as 54%, and even after curative-intent treatment with radical cystectomy,
disease recurrence ensues in up to 30% [2,3]. Advanced or metastatic urothelial cancer of
the bladder carries an even poorer prognosis with an overall survival of just over one year,
even with first line chemotherapy and immunotherapy [4].

The current standard of care for patients with metastatic urothelial cancer depends
on fitness for platinum. Platinum-fit patients typically receive cisplatin- or carboplatin-
containing chemotherapy first-line, whereas platinum-unfit patients receive checkpoint
inhibitors, such as pembrolizumab [5]. Patients who fail chemoimmunotherapy, however,
have limited treatment options. For this reason, several novel agents are currently being
studied in both pre-clinical and clinical trials. These include epigenetic inhibitors, which
are drugs that target epigenetic alterations found in multiple human cancers. Epigenetic
therapy is already established in the treatment of haematological malignancies and is
increasingly being studied in urological cancers. In this review, we aim to summarise the
current status of epigenetics and potential epigenetic treatments for bladder cancer.

2. Epigenetics and Bladder Cancer

Epigenetics is a term that was first used in 1940 to broadly describe anything relating
to the process by which a genotype is expressed as a phenotype [6]. Today epigenetic
alterations refer to acquired or heritable changes in a gene’s function that do not involve
disruption of the nucleotide sequence [7]. This is in contrast to genetic mutations, in which
the nucleotide sequences themselves are affected. Epigenetic alterations have been found in
a variety of human malignancies and are thought to be reversible, making them promising
targets for novel cancer therapies [8]. This is of particular interest in advanced or metastatic
malignancies for which limited treatment options exist.

The enzymes responsible for epigenetic alterations can be categorised into three broad
groups: writers, erasers, and readers. ‘Writers’ are proteins that add modifications, such as
methyl or acetyl groups, to DNA or histones [9]. Common writers implicated in human
cancers include DNA methyltransferases (DNMTs), histone-lysine N-methyltransferases
(HMTs), and histone acetyltransferases (HATs). ‘Erasers’ directly oppose the action of writ-
ers by catalysing the removal of acetyl or methyl groups and include histone deacetylases
(HDACs) [9]. The final group, ‘readers’, are proteins that are responsible for enacting the
alterations made by writers and erasers [9].

2.1. Writers
2.1.1. DNA Methyltransferases (DNMTs)

DNA methylation, carried out by DNMTs, involves the addition of a methyl group
to CpG sites, which is the region of DNA in which a cytosine nucleotide is followed by a
guanine nucleotide (Figure 1) [10]. There are four types of DNMTs found in mammals, of
which DNMT1 is the most abundant [11]. DNA methylation is essential for normal cell
growth and development, imprinting, and X-chromosome inactivation [8]. Given that up
to 80% of human CpG sites are methylated [10], any deviation from the normal process can
have profound effects on gene expression. Aberrant methylation, whether it be hyper- or
hypomethylation, has been observed in many cancers, particularly when it occurs in gene
promoters, oncogenes, or tumour suppressor genes [8].
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Figure 1. schematic representation of the epigenome with enzymes grouped into three broad cate-
gories of ‘writers’, ‘readers’, and ‘erasers’. Methyl and acetyl groups are shown attached to DNA, 
and histones and are marked as ‘Me’ and ‘Ac’, respectively. Epigenetic inhibitors currently involved 
in clinical trials are listed in black, shown to be inhibiting their respective enzymes. Agents notated 
with an asterisk (*) are under investigation in clinical trials for non-urothelial cancers only. 

Patients with urothelial carcinoma of the bladder have been shown to have hyper-
methylation in multiple genes, with several studies even finding that the detection of hy-
permethylation in urine samples has higher sensitivity for diagnosing bladder cancer than 
traditional cytology [12,13]. There is also evidence to suggest that the degree of hyper-
methylation correlates with the aggressiveness of the cancer [14–16]. Hypermethylation 
in certain promoters has also been linked to tobacco smoking, a known risk factor for 
bladder cancer [15]. Tissue studies, such as that performed by Liu et al., have shown that 
DNMT1 is upregulated in bladder cancer samples compared to levels in the normal 
urothelium [17]. Here, the authors showed that silencing DNMT1 inhibited the growth 
and migration of tumour cells, whereas increasing DNMT1 expression had the opposite 
effect, confirming its role in bladder cancer [17]. 

2.1.2. Histone-Lysine N-Methyltransferases (HMTs) 
HMTs are enzymes that catalyse the addition of methyl groups to histones, which are 

the proteins around which DNA is wound into nucleosomes [18]. Like DNA methylation, 
histone methylation also plays a crucial role in normal development and is involved in 
processes, including DNA replication and repair and gene transcription [19]. Aberrant 
histone methylation has been observed in many human cancers, and the most well-known 
aberrations occur in enhancer of zeste 2 (EZH2), which is thought to be the main enzyme 
involved in histone modification [20]. 

In urological oncology EZH2 is best known for its role in castrate-resistant prostate 
cancer (CRPC), in which its mutated form can activate genes involved in the androgen 
receptor pathway [21]. It has also been implicated in bladder cancer, with one study find-
ing a correlation between EZH2 overexpression and non-muscle invasive bladder cancer 
(NMIBC) in both mouse models and humans, as well as an increased likelihood of disease 
recurrence in those with EZH2 overexpression [22]. Warrick et al. found that EZH2 ex-
pression was highest in bladder CIS, followed in descending order by muscle invasive 

Figure 1. Schematic representation of the epigenome with enzymes grouped into three broad
categories of ‘writers’, ‘readers’, and ‘erasers’. Methyl and acetyl groups are shown attached to DNA,
and histones and are marked as ‘Me’ and ‘Ac’, respectively. Epigenetic inhibitors currently involved
in clinical trials are listed in black, shown to be inhibiting their respective enzymes. Agents notated
with an asterisk (*) are under investigation in clinical trials for non-urothelial cancers only.

Patients with urothelial carcinoma of the bladder have been shown to have hyper-
methylation in multiple genes, with several studies even finding that the detection of
hypermethylation in urine samples has higher sensitivity for diagnosing bladder cancer
than traditional cytology [12,13]. There is also evidence to suggest that the degree of hyper-
methylation correlates with the aggressiveness of the cancer [14–16]. Hypermethylation in
certain promoters has also been linked to tobacco smoking, a known risk factor for bladder
cancer [15]. Tissue studies, such as that performed by Liu et al., have shown that DNMT1
is upregulated in bladder cancer samples compared to levels in the normal urothelium [17].
Here, the authors showed that silencing DNMT1 inhibited the growth and migration of
tumour cells, whereas increasing DNMT1 expression had the opposite effect, confirming
its role in bladder cancer [17].

2.1.2. Histone-Lysine N-Methyltransferases (HMTs)

HMTs are enzymes that catalyse the addition of methyl groups to histones, which are
the proteins around which DNA is wound into nucleosomes [18]. Like DNA methylation,
histone methylation also plays a crucial role in normal development and is involved in
processes, including DNA replication and repair and gene transcription [19]. Aberrant
histone methylation has been observed in many human cancers, and the most well-known
aberrations occur in enhancer of zeste 2 (EZH2), which is thought to be the main enzyme
involved in histone modification [20].

In urological oncology EZH2 is best known for its role in castrate-resistant prostate
cancer (CRPC), in which its mutated form can activate genes involved in the androgen
receptor pathway [21]. It has also been implicated in bladder cancer, with one study
finding a correlation between EZH2 overexpression and non-muscle invasive bladder
cancer (NMIBC) in both mouse models and humans, as well as an increased likelihood of
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disease recurrence in those with EZH2 overexpression [22]. Warrick et al. found that EZH2
expression was highest in bladder CIS, followed in descending order by muscle invasive
bladder cancer (MIBC), NMIBC, and the normal epithelium, though they did not find an
association with the oncological outcome [23].

Similar findings were observed by Chen et al., leading authors to conclude that not
only is EZH2 associated with bladder cancer, but that its degree of expression correlates
with disease severity [24]. EZH2 has also been found in urine through RNA released from
cancer cells, and Zhang et al. report that its measurement can distinguish between MIBC
and NMIBC and is a more sensitive diagnostic test than urine cytology [25].

2.1.3. Histone Acetyltransferases (HATs)

HATs also act on histones but catalyse the addition of acetyl groups rather than methyl
groups. They are a diverse group of enzymes that play an important role in DNA repair and
overall gene stability [26]. One protein complex demonstrating HAT activity, though not
technically classified as a HAT, is the CREB-binding protein (CBP)/p300 coactivator family.
CBP/p300 acetylates various oncoproteins and tumour-suppressor proteins, and thus, it is
via these relationships that CBP/p300 abnormalities are associated with cancer [26].

While CBP/p300 mutations are more closely associated in haematological malignan-
cies, they have also been found in many solid tumours, including colorectal, breast, ovarian,
and pancreatic cancers [27]. Its impact on the androgen receptor pathway and subsequent
association with prostate cancer is well known [28,29], though its role in bladder cancer
is less clear. A 2011 study, however, noted that p300 is under-expressed in doxorubicin-
resistant bladder cancer cells, generating interest in this class as a potential therapeutic
target for chemotherapy-resistant cancers [30].

2.2. Erasers
2.2.1. Histone Deacetylases (HDACs)

HDACs are a group of enzymes that oppose the actions of HATs by catalysing the
removal of acetyl groups from histones. This is a large group comprising 18 subtypes in
humans, which are further divided into four classes [31].

Class I enzymes, which include HDAC1, 2, 3, and 8, are expressed in all cells, whereas
the other three classes are more tissue-specific [32]. Just like their HAT counterparts,
HDACs act on histones to regulate gene expression, apoptosis, and cell proliferation [31].
Inappropriate expression of these enzymes has been identified in haematological malignan-
cies, such as acute myeloid leukaemia (AML) and non-Hodgkin’s lymphoma, as well in a
range of solid tumours, including breast, cervical, colon, and prostate cancers [33].

More is known about the relationship between bladder cancer and class I HDACs,
though enzymes from other classes have been studied as well [32]. Mutations in multiple
HDAC genes have been identified in urothelial bladder cancers, leading to the overexpres-
sion of HDAC1 [34], HDAC2, and HDAC8, as well as the under-expression of HDAC5 and
HDAC7 [35]. HDAC4’s association with bladder cancer is somewhat unclear, with one
study finding it under-expressed in urothelial cancer [35] and another showing it as both
overexpressed and associated with more severe disease [36]. Aberrations in HDAC1, in
particular, are associated with poorer prognosis compared to other HDAC types [37].

HDAC3 microRNA in urine has also been shown to be significantly higher in patients
with urothelial bladder cancer than in control patients [38]. HDACs have also been studied
in non-urothelial bladder cancer, with one study finding HDAC4, HDAC7, and HDAC9 to
be overexpressed in basal-squamous bladder cancer [39].

2.2.2. DNA Demethylases

DNA demethylases counteract DNMTs by removing a methyl group from the CpG
sites. DNA hypomethylation was actually the first epigenetic alteration implicated in tu-
mour development, though it was quickly overlooked as researchers shifted their focus to
hypermethylation. Nonetheless, hypomethylation is a feature of several cancers, including
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ovarian epithelial carcinoma, metastatic prostate cancer, hepatocellular carcinoma, and
colon adenocarcinoma [40]. In bladder cancer, hypomethylation has not been studied
as thoroughly as hypermethylation, and most current research focuses on inducing hy-
pomethylation to slow or reverse tumour growth. However, the upregulation of DNA
demethylase has been noted in bladder cancer, although it appears to be linked to low-grade
tumours, whereas hypermethylation is more common in high grade tumours [41].

2.2.3. Histone Demethylases (HDMs)

The addition of methyl groups to histones by methyltransferases was historically
thought to be an irreversible process, and it was not until 2004 that the discovery of the
first histone demethylase demonstrated that methyl groups could in fact be removed [42].
Histone demethylases (HDMs) are grouped by their mechanism of action and comprise two
families: lysine-specific demethylases (LSDs) and Jumonji C-domain-containing demethy-
lases (JMJDs), both of which are overexpressed in certain malignancies, such as prostate
cancer [43]. While JMJDs appear protective against bladder cancer, LSD1 has been reported
at higher levels in urothelial cancer compared to those in the normal urothelium [44].
Evidence on LSD1’s prognostic value is mixed, however, with some studies finding it
linked to low grade but not high grade tumours [44], and others finding it significantly
overexpressed in high-grade or metastatic cancers [45].

2.3. Readers
2.3.1. Bromodomain and Extraterminal Domain (BET)

The bromodomain and extraterminal domain (BET) family is a group of proteins that
includes BRD2, BRD3, BRD4, and BRDT. While each protein performs a different function,
they are all involved in the recognition of acetylated lysine residues on histones [46]. By
‘reading’ acetyl groups put down by HATs, BET proteins can regulate the activity and
function of enzymes and proteins, thereby affecting gene transcription and chromatin
remodelling [47].

One such type of gene directly regulated by BET proteins is the Myc family, which
includes regulator genes and proto-oncogenes. Abnormal BET activity can result in the
amplification or overexpression of Myc genes, resulting in tumorigenesis [48]. Myc genes
are major players in haematological malignancies, such as Burkitt lymphoma, but are
also important in many solid tumours, including neuroblastoma, melanoma, and breast
cancer [48].

BRD4 is particularly relevant in urothelial bladder cancer and has been shown to
be overexpressed in cancerous cells compared to levels in the normal urothelium, likely
causing tumorigenesis through the Myc pathway [49]. Higher BRD4 expression has also
been linked to a higher histological grade, as well as lymph node and distant metastasis [50].

2.3.2. Methyl-CpG-Binding Domain (MBD) Proteins

MBD proteins are a group of readers that are involved in the readout of DNA methyla-
tion, though they may also influence chromatin remodelling and histone methylation [51].
They are most well-known for their role in Rett syndrome, a neurodegenerative disorder
caused by an X-linked mutation of the MBD gene MECP2, in which the gene loses its
function [52]. Loss-of-function mutations in MBD protein genes have also been reported
in human malignancies, including breast, lung, pancreas, colon, and prostate cancers [51].
Because MBD proteins help regulate DNA methylation, the absence of these proteins can
cause DNA methylation to occur unchecked, which can be cancer-inducing as discussed
previously. MBD2, a type of MBD protein, is thought to have a protective role against blad-
der cancer as demonstrated by Zhu et al., whose 2004 study reported that high expression
of MBD2 is associated with a reduced risk of urothelial carcinoma [53].
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3. Pre-Clinical and Clinical Trials
3.1. DNA Methyltransferases (DNMTs)

DNMT inhibitors are one of the few classes of epigenetic inhibitors approved by
the American Food and Drug Association (FDA) for use in malignancy. These approved
agents, azacytidine and decitabine, are currently only approved for use in myelodysplastic
syndrome, though they have also been trialled for other malignancies, including breast and
prostate [54]. Azacytidine acts on all DNMT classes, whereas decitabine acts preferentially
on DNMT1.

To date, eight clinical trials have been performed using DNMT inhibitors in patients
with advanced or metastatic urothelial bladder cancer, often in combination with platinum-
based chemotherapy or pembrolizumab (Table 1). Three of these studies were phase I
dose-finding trials, reporting that azacytidine and the novel agent guadecitabine were
well-tolerated [55–57]. Only one phase 2 trial has been completed, and although it was
terminated early due to slow accrual, progression-free survival was better than expected in
urothelial cancer patients treated with the DNMT inhibitor 5-fluoro-2′-deoxycytidine [58].
There is currently one active phase 2 trial investigating guadecitabine in combination
with atezolizumab, and it was expected to be completed in 2022 (NCT03179943). A phase
1/2 trial using NTX-301, an inhibitor targeting DNMT1 specifically, in combination with
platinum-based chemotherapy, is currently recruiting (NCT04851834). A further studying
using azacytidine was terminated early by sponsors, though further details were not
provided (NCT02959437).
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Table 1. Summary of current human clinical trials investigating epigenetic inhibitors in bladder cancer.

Trial Identifier Start Date Expected End Date Drug Combination Phase Inclusion Cohort Status Results

DNMT inhibitors

NCT04851834 25 August 2021 November 2023 NTX-301 Platinum-
based chemotherapy 1/2

Locally advanced or
metastatic

bladder cancer;
refractory/intolerant to

standard of
care therapies

Recruiting Pending

NCT03179943 27 November 2017 July 2022 Guadecitabine Atezolizumab 2

Advanced or metastatic
urothelial carcinoma;

must have received/been
ineligible for CTx; must

have had received PD-L1
or PD-1 targeting agent

Active—
not recruiting Pending

ISRCTN16332228 1 March 2016 10 July 2018 Guadecitabine Cisplatin
and gemcitabine 1b/2a Incurable metastatic

bladder cancer Completed

Guadecitabine
20 mg/m2 is the
recommended

dose [55]

NCT00978250 20 August 2009 11 April 2019 5-Fluoro-2′-
Deoxycytidine Tetrahydrouridine 2

Advanced or metastatic
urothelial carcinoma;

received at least one line
of standard therapy

Completed

Well-tolerate; AUC
increase 4-fold;

progression-free
survival above
expected [58]

NCT02030067 December 2013 July 2019 RX-3117 N/A (monotherapy) 1 Advanced
bladder cancer Completed Not reported

NCT00030615 December 2001 September 2008 Decitabine N/A (monotherapy) 1

Advanced or metastatic
bladder cancer for which

all other treatment
has failed

Completed Not reported

NCT02223052 27 October 2014 11 June 2018 CC-486 (oral form
of azacitidine) N/A (monotherapy) 1 Metastatic or inoperable

bladder cancer Completed Not reported

NCT01478685 29 November 2011 17 November 2015 CC-486 (oral form
of azacitidine)

Carboplatin
or ABI-007 1

Relapsed or refractory
urothelial carcinoma of

the bladder, renal pelvis,
ureter, or urethra

Completed

CC-486 is tolerated as a
priming agent with

carboplatin and
ABI-007 [56]
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Table 1. Cont.

Trial Identifier Start Date Expected End Date Drug Combination Phase Inclusion Cohort Status Results

NCT00005639 March 2000 July 2005 Azacitidine Phenylbutyrate 1 Locally advanced or
metastatic bladder cancer Completed Three doses were

well-tolerated [57]

NCT02959437 27 February 2017 15 February 2019 Azacitidine Pembrolizumab
and epacadostat 1/2

Advanced or metastatic
solid tumour, which has

failed prior
standard therapy

Terminated
(by sponsors) Not reported

EZH2 inhibitors

NCT03854474 17 May 2019 30 June 2023 Tazemetostat (EPZ-6438) Pembrolizumab 1/2

Locally advanced or
metastatic urothelial

carcinoma with
progression during

or following
platinum-based CTx (or

ineligible for CTx)

Recruiting Pending

NCT03525795 14 December 2017 12 June 2019 CPI-1205 Ipilimumab 1/2

Unresectable or metastatic
urothelial carcinoma

(urethra, bladder, ureters,
or renal pelvis)

Completed Not reported

HDAC inhibitors

NCT02619253 14 January 16 31 May 2023 Vorinostat Pembrolizumab 1/2

Urothelial cell
carcinoma—previously
treated and progressive

disease, locally advanced
or metastatic; must have

received a prior
platinum-based regimen in

the metastatic setting

Active, not recruiting Pending

NCT00045006 July 2001 July 2008 Vorinostat N/A (monotherapy) 1

Advanced or metastatic
bladder cancer that is

refractory to
standard treatment

Completed Not reported

NCT00565227 April 2007 November 2008 Vorinostat Docetaxel 1
Bladder/urothelial cancer

that has progressed
after chemotherapy

Terminated (toxicity) Not reported
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Table 1. Cont.

Trial Identifier Start Date Expected End Date Drug Combination Phase Inclusion Cohort Status Results

NCT00363883 June 2006 December 2010 Vorinostat N/A (monotherapy) 2

Bladder/urothelial TCC
that has recurred or

progressed on
platinum-based CTx

Terminated (futility) Limited efficacy and
significant toxicity [59]

NCT05154994 14 January 2022 30 November 2023 Belinostat Tremelimumab
and durvalumab 1

Urothelial carcinoma
with metastatic disease

or with unresectable,
locally advanced disease

Recruiting Pending

NCT00413075 June 2006 August 2011 Belinostat N/A (monotherapy) 1
Primary or metastatic

solid tumour refractory
to standard treatment

Completed Not reported

NCT00413322 September 2005 March 2008 Belinostat 5-Fluorouracil 1
Advanced bladder

cancer with progression
on standard treatment

Completed Not reported

NCT00421889 August 2005 February 2009 Belinostat Carboplatin
or paclitaxel 1/2

Urothelial carcinoma,
received up to three CTx

regimens in advanced
disease setting

Completed
No published results;

partial response in
4/15 patients

NCT01638533 12 June 2012 29 November 2018 Romidepsin N/A (monotherapy) 1
Recurrent bladder cancer

and concurrent
hepatic impairment

Active, not recruiting
Similar toxicity to

other HDAC
inhibitors [60]

NCT00087295 June 2004 April 2006 FR901228 (Romidepsin) N/A (monotherapy) 2

Metastatic or poorly
differentiated TCC;

progression after one
CTx regimen

Terminated
(poor accrual) Not reported

NCT01552434 16 March 2012 31 March 2022 Valproic acid Bevacizumab
and temsirolimus 1

Metastatic urothelial
cancer that is refractory

to standard therapy
Active, not recruiting Pending

NCT01738815 December 2011 May 2013 Valproic acid N/A (monotherapy) 1 Suspected or confirmed
bladder tumour Completed Not reported

NCT03978624 23 September 2020 1 October 2023 Entinostat Pembrolizumab 2

MIBC ineligible for or
refused neoadjuvant

cisplatin-based
CTx; pre-cystectomy

Recruiting Pending
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While human clinical trials have thus far administered azacytidine as a subcuta-
neous or intravenous injection, intravesical instillation has recently been investigated in
a 2021 study using rat models, which reported a reduction in tumour burden using this
method [61]. Other DNMT inhibitors that have not yet progressed to clinical trials include
chromobox 7 (CBX7), which has been shown to cause tumour suppression in vitro [62], and
CM-272, which can cause tumour and metastasis regression in in vivo transgenic mouse
models [63].

3.2. Histone Methyltransferases (HMTs)

Inhibition of Enhancer of Zeste 2 (EZH2), a type of HMT, has been proven effective
for metastatic or locally advanced epithelioid sarcoma and it is for this indication that the
EZH2 inhibitor tazemetostat has been approved by the FDA [54]. Other EZH2 inhibitors
are undergoing clinical trials to assess efficacy in myeloma, non-Hodgkin’s and B-cell
lymphoma, and solid tumours, including breast, lung, and prostate, though none have
progressed to phase 3 trials [64].

Few clinical trials have been conducted using EZH2 inhibitors in bladder cancer
(Table 1), and the single completed trial has not reported results (NCT03525795). A phase
1/2 trial investigating tazemetostat in combination with pembrolizumab is currently re-
cruiting patients with locally advanced or metastatic bladder cancer who have progressed
on first-line chemotherapy (NCT03854474).

Despite the paucity of human clinical trials, there have been multiple studies pub-
lished on EZH2 inhibitors using in vitro cell lines or animal models. The EZH2 inhibitor
EPZ011989 has been reported to cause cell cycle arrest in in vitro assays and decreased
tumour volume in xenograft mouse models [65]. UNC1999 is another EZH2 inhibitor
that is observed to have an anti-tumorigenic effect on human bladder cancer cells [24].
EZH2 is also thought to have a direct relationship with lysine-specific demethylase 6A
(LSD-6A), which is a histone demethylase and therefore performs the opposite function of
EZH2. Several studies have reported that bladder cancers showing mutations in KDM6A,
the gene coding for LSD-6A, are especially susceptible to EZH2 inhibition [65,66]. This is
an interesting prospect given the rise of personal genomics as it suggests that particular
genetic mutations may be more amenable to one kind of treatment than another.

3.3. Histone Acetyltransferases (HATs)

The inhibition of HAT-like CBP/p300 in cancer is less well-studied than other epi-
genetic targets with currently no approved agents in use. Clinical trials are also lack-
ing with only three active currently and none completed. CCS1477 is a CBP/p300 in-
hibitor with phase 1/2 trials currently recruiting patients with haematological malignancy
(NCT04068597), as well as advanced or metastatic solid tumours, including breast, lung,
and prostate (NCT03568656). A phase 1 clinical trial using another CBP/p300 inhibitor,
FT-7051, is also currently recruiting and is focusing on patients with metastatic CRPC
(NCT04575766). To date, there are no past or current trials using CBP/p300 inhibitors in
bladder cancer patients.

There is also a paucity of pre-clinical data investigating the use of CBP/p300 inhibitors
in bladder cancer. A 2019 in vitro study had promising results, finding that CBP/p300
inhibition in bladder cancer cells led to decreased Myc expression, thereby increasing
apoptosis and reducing the proliferation of malignant cells [67]. However, CBP/p300
inhibition in this study was performed using the process of transfection rather than via the
use of an epigenetic agent. Thus, further studies are needed to identify CBP/p300-inhibiting
drugs and to test their effects on urothelial cancer.

3.4. Histone Deacetylases (HDACs)

HDAC inhibitors are a well-studied group and make up three of the seven currently
approved epigenetic agents, all of which are in use for T-cell lymphoma [54]. Vorinostat,
also known as suberoylanilide hydroxamic acid or SAHA, was the first epigenetic agent
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approved by the FDA and is used mainly for refractory cutaneous T-cell lymphoma
(CTCL) [54]. It also has shown an effect in clinical trials investigating lymphoma, lung
cancer, breast cancer, head and neck carcinoma, and colorectal and prostate cancers [66].
As an HDAC inhibitor, its primary effect is on acetylation, but in vitro studies have
shown that it may also have some action on methylation and miRNA expression in
certain cancers [66].

Thus far, vorinostat has not yielded particularly promising results in human bladder
cancer trials. A phase 1 trial combining vorinostat with docetaxel was terminated in 2008
due to toxicity (NCT00565227), and a phase 2 trial using it as a single agent was terminated
due to both a lack of demonstrable efficacy, as well as intolerable side effects [59]. One trial
using vorinostat as a single agent ran to completion in 2008, though results have not been
published (NCT00045006). There is currently one active trial investigating vorinostat in
combination with pembrolizumab in patients with metastatic bladder cancer who have
failed chemotherapy, which was expected to finish in 2022 (NCT02619253).

Belinostat, or PXD101, is another FDA-approved HDAC inhibitor that is used for
peripheral T-cell lymphoma (PTCL) [54]. It has also progressed to phase 2 trials for
ovarian cancer [68], hepatocellular carcinoma [69], and AML [70]. In vivo urothelial
cancer trials using animal models have reported promising results, including a re-
duced tumour volume, less haematuria, and slower disease progression, in mice treated
with belinostat [71,72]. There have been three completed clinical trials using belinos-
tat in patients with refractory bladder cancer, two of which have not reported results
(NCT00413075, NCT00413322). The third, which combined belinostat with carboplatin
or paclitaxel, has not published results but preliminary outcomes show at least a partial
response in four of fifteen enrolled patients (NCT00421889). A further phase 1 trial
investigating belinostat in combination with tremelimumab and durvalumab is currently
recruiting (NCT05154994).

The third HDAC inhibitor that has been granted FDA approval is FK-228, or
romidepsin, used for CTCL [54]. Romidepsin was initially isolated in 1994 from
Chromobacterium violaceum, and although it displays minimal antibacterial properties, it
was noted to have cytotoxic effects selectively on malignant cells [73]. In 2007, Karam
et al. reported that in vitro treatment of bladder cancer cells with FK-228 caused tumour
regression and also observed a similar finding in xenograft mice given intravenous doses
of FK-228 [74]. To date, there have been two registered clinical trials using romidepsin
in bladder cancer patients, one of which was terminated in 2006 due to poor accrual
(NCT00087295). The other is currently active in phase 1 but has published dose-finding
results, which showed that romidepsin is generally tolerable and has a similar toxicity
profile to that of other HDAC inhibitors [60].

Valproic acid, a drug that is typically used to treat epilepsy and bipolar disorder, also
has an inhibitory effect on HDACs. Given that valproate has been widely used for the
management of neurological conditions, subsequent work on its HDAC-inhibiting proper-
ties focused on neurodegenerative disorders, such as Alzheimer’s disease, Huntington’s
disease, and Parkinson’s disease [75]. It has also garnered attention in oncological settings,
particularly in advanced cervical cancer where a double-blinded randomised controlled
trial reported a significant improvement in PFS [76].

In urothelial cancer, multiple in vitro studies have shown that valproate is cytotoxic
against human bladder cancer cells [77–79]. Intravesical instillation into rat bladder cancer
models has also shown anti-tumorigenic properties, particularly when used in synergy
with chemotherapy [79]. There have been two phase 1 clinical trials investigating val-
proate in bladder cancer patients, one of which is completed but without reported results
(NCT01738815) and the other which is currently active (NCT01552434).

The last HDAC inhibitor involved in clinical trials for bladder cancer is entinostat.
A 2020 in vitro study by Wang et al. showed that when used in combination with
decitabine, a DNMT inhibitor, entinostat, exhibited a cytotoxic effect on chemoresistant
bladder cancer cells without damaging normal urothelial cells [80]. A phase 2 trial of
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entinostat paired with pembrolizumab is currently underway, with results expected in
late 2023 (NCT03978624).

3.5. Histone Methylation Readers

Several small-molecule BET inhibitors, including OTX015 and TEN-010, have pro-
gressed to clinical trials for haematological malignancy and select solid tumours, such
as breast and prostate cancer [81]. Toxicity has been a major concern, however, and
this is thought to be due to relatively poor selectivity. Further work into BET inhibition
has yielded newer agents that target specific components of the bromodomain, such as
ABBV-744, which acts primarily on bromodomain 2 [81]. While there have so far been
no clinical trials using BET inhibitors in bladder cancer, a 2019 in vitro study by Li et al.
reported the suppression of urothelial cancer cells by the BET inhibitor JQ1, an analogue
of TEN-010 [82]. It has challenging pharmacokinetics due to its short half-life and poor
bioavailability, however, which is perhaps a reason why it and so many other BET inhibitors
have not progressed as far as other types of epigenetic agents.

4. Conclusions

There are few treatment options for patients with advanced or metastatic bladder
cancer who have failed first-line chemoimmunotherapy, making this an important area for
future research. Epigenetic agents, long in use for haematological malignancies, have also
shown promise for the treatment of advanced solid tumours. In vitro and in vivo studies
have repeatedly shown that epigenetic agents can be of benefit for bladder cancer, even
with chemoresistant cells, but so far, these results have not been convincingly replicated in
human clinical trials.

A recurrent issue limiting the clinical applicability of epigenetic therapies has been
a lack of selectivity for urothelial cancer cells, leading to high toxicity and a lack of
demonstrable efficacy. Combining these agents with established first- or second-line
therapy, such as platin-based chemotherapy or pembrolizumab, is a common strategy
to improve the side-effect profile as it usually allows for a lower dose of epigenetic
inhibitors to be given. This may also increase efficacy as many epigenetic inhibitors
act in synergy with chemoimmunotherapy. However, most epigenetic drugs trialled
for bladder cancer were originally developed for other diseases or malignancies, such
as lymphoma, and greater selectivity for malignant urothelial cells remains the goal of
treatment at this time. Although further work is required to identify novel epigenetic
targets and agents specifically for urothelial cancer, it is inevitable that we will see
progress in this domain and likely the greater applicability of epigenetic therapies to
urothelial cancer of the bladder in the future. Urologists should be aware of this class of
agent and understand their derivation and potential to improve bladder cancer-specific
survival in the future.
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BET bromodomain and extraterminal domain
CBP CREB-binding protein
DNMT DNA methyltransferase
EZH2 enhancer of zeste 2
HAT histone acetyltransferase
HDAC histone deacetylase
HMT histone-lysine N-methyltransferase
MBD methyl-CpG-binding domain
MIBC muscle invasive bladder cancer
NMIBC non-muscle invasive bladder cancer
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