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Simple Summary: TNF-α is of interest in oral squamous cell carcinoma (OSCC), with its demon-
strated presence affecting both tumour and stromal inflammatory cells to enhance proliferation and
facilitate invasion. TNF-α gene polymorphisms have also been associated with an increased risk for
both oral pre-cancer and cancer development. Here we present a review of the current knowledge of
the role of TNF-α in the aetiology, pathogenesis, and potential therapy of OSCC.

Abstract: Uncovering the inflammatory mechanisms underpinning initiation, progression, and
promotion of oral squamous cell carcinoma (OSCC) development is fundamental to the rational
pursuit of targeted therapeutics. Here we present a review of the current knowledge of the role
of TNF-α in the aetiology, pathogenesis, and potential therapies with regards to OSCC. TNF-α is
worthy of particular attention in OSCC, with its presence demonstrated to enhance cell proliferation
and its downregulation demonstrated to inhibit proliferation and migration in other carcinomas in
both in vitro and in vivo models and oral cancer patients. Increased TNF-α in the OSCC tumour
microenvironment has been demonstrated to favour invasion through promotion of firstly the
pro-inflammatory, pro-invasive phenotypes of OSCC cells and secondly its paracrine mechanism
mediating recruitment and activation of inflammatory cells. Polymorphisms affecting the gene
expression of TNF-α have been strongly associated with an increased risk for oral squamous cell
carcinoma. A number of studies have considered TNF-α within biofluids, including saliva and
serum, as a potential biomarker for the early detection of OSCC, as well as its staging, differentiation,
and prognosis. The broad and multifaceted role that TNF-α plays in many inflammatory states
presents an obvious confounder, particularly with demonstrated increased TNF-α levels in common
oral disease states. Lastly, biologic agents targeting TNF-α are currently in clinical use for immune-
mediated inflammatory rheumatological and gastrointestinal diseases. There is the potential that
these biological agents might have an adjunctive role in OSCC prevention and treatment.

Keywords: TNF; tumour necrosis factor; cytokine; oral cancer; OSCC; oral squamous cell carcinoma;
head and neck SCC; inflammation; OPMD; leukoplakia

1. Introduction:

Oral squamous cell carcinomas (OSCC) are the most common mucosal cancers of
the head and neck [1]. OSCC cases are predicted to rise to 856,000 cases by 2035 in line
with predicted global demographics [2]. Globally, the overall five-year survival of OSCC
has not improved significantly beyond 50% and less than 1 in 5 patients who present
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with metastatic disease at the time of diagnosis will survive for 5 years [3]. Surgery and
adjunctive radiotherapy remain primary treatment approaches. Uncovering the mecha-
nisms underpinning initiation, progression, and promotion of tumour development are
fundamental to the rational pursuit of targeted therapeutics. In particular, the role of
inflammation in these mechanisms continues to be of interest.

There is increasing evidence of an association between OSCC and chronic inflamma-
tion. Particularly relevant is an observed progressive increase in inflammatory infiltrate
alongside increasing grades of epithelial dysplasia to OSCC [4]. The microenvironment of
chronic oral inflammatory conditions such as oral lichen planus have been established to
contain cytokine infiltrates, reactive oxygen species, and transcription factors capable of
inducing proliferation, epithelial-to-mesenchymal transition, and invasion [4]. Microarray
analysis in OSCC cell lines and OSCC patient samples have also identified dysregulation of
the many genes involved in inflammation, wound healing, angiogenesis, and growth regu-
lation [5]. Tumour associated-inflammatory cells and stromal cells are essential residents
of the tumour microenvironment and have an influence on OSCC genesis, proliferation,
survival, and ability to invade and metastasize [4]. Pro-inflammatory mediators, such as
interleukin (IL)-6, IL-8, and tumour necrosis factor (TNF)-α, have been demonstrated to be
elevated in oral cancer patients. Increased TNF-α in the tumour microenvironment has been
demonstrated to favour invasion through promotion of pro-inflammatory, pro-invasive
phenotypes of OSCC cells and paracrine mechanism mediated recruitment and activation
of inflammatory cells [6,7]. The broad and multifaceted role that TNF-α plays in many
inflammatory conditions presents an obvious confounder, particularly with demonstrated
increased TNF-α levels in common oral disease states. This paper explores the current links
between TNF-α and OSCC (Figure 1).
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2. TNF-α, Cancer and SCC

TNF-α (also named TNF, cachexin, and cachectin) has been implicated as a large player
in several inflammatory, infectious, metabolic, and neoplastic diseases. TNF-α plays a
central role in the onset of immune response. It is predominantly secreted by macrophages
but is also produced by other immune and non-immune cells, including fibroblasts, muscle,
and endothelial cells [8,9]. It affects almost every cell type and is involved across several
biological processes of cell growth, differentiation, metabolism, and death, as well as
coagulation [10].

TNF-α is a trimeric cytokine and exists in two isoforms—a transmembrane form and
a soluble form (mTNF and sTNF, respectively) [11,12]. The two known TNF receptors, TNF
receptors 1 (TNFR1) and 2 (TNFR2), are differently activated by the TNF isoforms and
have different ligands but have interconnected pathways and effects which can appear
paradoxical. TNFR1 is found in all cell types and has a death domain with signalling
proteins that link it to cytotoxic pathways as well as pathways that activate the nuclear
factor of kappa B (NFkB) factors as well as MAP kinases [13]. Activation of TNFR1 can
also stimulate downstream cell survival mechanisms through suppression of its cytotoxic
signalling, and default TNFR1 activity is actually pro-inflammatory [9]. TNFR2 does not
have a death domain but can stimulate NFkB signalling and various kinases. TNFR2 is
mainly found in immune cells, where it modulates immune response and inflammation
but can be induced on non-immune cells such as fibroblasts.

TNFα has been highlighted as a crucial mediator of cancer-related inflammation and
thus its targeting may be a key to oncological therapy resistance. Expression and induction
of TNFR1 and TNFR2 on immune stromal cells within the tumour microenvironment
has been shown to promote tumour growth and progression. Further, their induction of
immune suppressor cell differentiation also leads to evasion of tumour surveillance [14,15].

TNF-α has been linked to several human cancers, including breast [16], gastric [17],
pancreatic [18], ovarian [19], endometrial [20], prostate [21], bladder [22], colorectal [23],
oral [24], and liver [25]. It has also been detected in leukemias and lymphomas. Different
pathways, e.g., p38 MAPK, Erk1/2, β-catenin, NF-κB, and GM-CSF, among others, have
been found to be involved in different cancer types.

The discordant effects that TNFα can exert in cancer depend on a multitude of factors
that include its concentration and the ratio of its two isoforms (mTNF, sTNF), among others.
For example, one of the main characteristics of TNF superfamily members is their duality.
Being able to act as both ligands and receptors creates a peculiar phenomenon known
as “reverse signalling” [26]. TmTNFα can therefore signal outside-to-inside back to the
tmTNFα expressing cell while acting as a receptor, and although not fully characterised,
this mechanism has been shown to be involved in immune system regulation. Conversely,
the active soluble form, sTNFα, can exert a powerful autocrine, paracrine, and endocrine
effect. Moreover, the latter can be obtained via proteolytic cleavage of tmTNFα by an
enzyme known as TNFα Converting Enzyme [27,28].

Other factors that can modify the role of TNFα in cancer include caspase activation,
the variable expression of adaptor proteins, and proteins from the Bcl-2 family [29].

TNF-α can therefore act either as a pro-tumoral cytokine, favouring cell proliferation,
cell migration, angiogenesis, and diseases progression in a number of cancer types, or as an
anti-tumorigenic biomolecule. A summary of TNFα effects in several cancer types can be
found in the work by Mercogliano et al. [15].

TNF-α plays a critical role in the pathobiology of cancer. It has also shown to be
a key player in head and neck SCC (HNSCC), where it can stimulate the expression of
programmed death-ligand 1 (PD-L1), a ligand for PD-1 that is primarily expressed on
activated T/B cells, monocytes, and a small percentage of thymocytes [30]. PD-L1 is a
member of the CD28 receptor family and although it is only weakly expressed in healthy
tissues, it is both inducible and constitutively expressed in a wide variety of solid and
blood cancers. It has been shown that its intracellular upregulation can promote tumour
formation [31]. Additionally, tissues isolated from HNSCC showed the ability to synthesize
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PD-L1 through an aberrant PD-1 signalling pathway. This, in turn, can result in tumour
immunosuppression [32], suggesting a potential role for TNF-α in this biological event.

In contrast, a clear role in oesophageal SCC for tumour necrosis factor alpha-induced
protein 8 (TNFAIP8) has been demonstrated. TNFAIP8 is a suppressor of TNF-α-mediated
apoptosis, and its expression is induced by NF-κB activation. A retrospective study by
Sun et al. showed that TNFAIP8 overexpression correlated with lymphatic recurrence in
ESCC patients [33]. TNF-α has further been demonstrated to have a crucial role in skin
SCC. Skin TNF-α is produced as a proinflammatory cytokine in response to ultraviolet B
radiation (UVB) to facilitate UVB-induced apoptosis and therefore contributes to remove
the damaged cells and thus diminishing tumour genesis. In contrast, murine TNF-α-
knockout animal models have demonstrated that TNF-α is necessary for the early stages of
skin carcinogenesis and the development of SCC [34]. Therefore, TNF is involved in both
pro- and antitumorigenic functions in cutaneous SCC with the distinct effect exerted mostly
being context-dependent [35]. There is robust evidence that TNF-α is a crucial player in
several human cancers, although with very discordant effects on different types of cancer.

3. The Role of TNF-α in the Aetiology of OSCC

Polymorphisms affecting gene expression of cytokines related to inflammation, such
as IL-4, IL-6, IL-8, IL-10, and TNF-α, have been strongly associated with an increased risk
for OSCC [36]. Although further work is required to understand the complex mechanisms
underlying tumour microenvironment responses in relation to inflammatory cytokines,
evidence suggests that proinflammatory, proangiogenic, and immunoregulatory activity is
present in squamous cell carcinomas and become part of the local tumour milieu. Nuclear
factor-kappa beta (NF-κB) is an early response gene that is elevated with the use of tobacco
as well as chronic inflammatory conditions. Promoter regions for the proinflammatory and
proangiogenic cytokines of IL-4, IL-6, IL-8, IL-10, and TNF-α have all been found to have
the common nuclear transcription factor of NF-κB. Studies have demonstrated that there is
an increased level of TNF-α and inflammatory cytokines in oral squamous cell carcinoma
compared with premalignant lesions or undifferentiated oral leukoplakia [37–39]. It has
been postulated that proinflammatory cytokines contribute to the development of oral
squamous cell carcinoma through a positive cell cycle upregulation within the tumour
microenvironment. Aberrant activation of NF-κB leads to propagation of a continuous
vicious cycle of inflammatory cytokines, proangiogenic factors, and anti-apoptotic factor
upregulation [39]. In vitro studies have shown that TNF-α activation of the NF-κB path-
way leads to increased protein expression of IKKβ and P65, enhancing the ability of oral
squamous cell carcinoma cells to invade through the epithelial basement membrane, and
thus increase their ability to metastasize [24]. NF-κB interacts with important cell cycle
proteins, such as cyclin D1, cyclin E, and c-myc, to promote tumour cell proliferation [40]
and promotes survival and inhibits apoptosis through Bcl-2 and Bcl-xL, which regulates
apoptosis [41]. NF-κB has been found to regulate the expression of matrix metallopro-
teinases, in particular MMP9, that enhances the invasion of tumour cells. Several studies
have shown that expression of Snail, Slug, ZEB 1

2 , and Twist 1 are altered through NF-κB
activation [42–44]. Further, TNF-α upregulated Snail, Slug, ZEB 1

2 , and Twist 1 are depen-
dent on NF-κB activation and lead to cancer cell epithelial-mesenchymal transition, shown
to be related to increased invasion and metastasis. However, these results were observed
in a non-small cell lung cancer in vitro cell model requiring further extrapolation to oral
squamous cell carcinoma [45].

4. The Role of TNF-α in the Promotion of OSCC

Regarding the ability of OSCC to invade and metastasize or be enhanced by the
presence of inflammatory mediators [46,47], TNF-α is worthy of particular attention in
OSCC, with its presence demonstrated to enhance cell proliferation and its downregulation
demonstrated to inhibit proliferation and migration in other carcinomas, both in vitro [48]
and in vivo animal models [49].
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Although the mechanism of action through which TNF-α promotes these phenomena
has not yet been elucidated, there is evidence to demonstrate that the NF-kB signalling
pathway, activated by TNF-α, may be key to the promotion of invasion and migration [50].
In vitro studies conducted by Daofang Tang et al. [24] on OSCC cell lines demonstrated
that stimulation with 10 ng/mL of TNF-α at several time points (3, 6, 12, 24, 48, and
72 h) produced a statistically significant increase (after the 3rd time-point) of the p65
protein and of the Ikβ kinase, which, by phosphorylating the inhibitory protein Ikβ,
frees the NF-kB heterodimer from its inhibited state and allows it to carry out its pro-
inflammatory action [24]. The same mechanism was confirmed by in vivo experiments
on mice, demonstrating that selective inhibition of NF-κB suppresses bone invasion in a
model of mandibular invasion by OSCC [51], more specifically, over a period of 3 weeks,
using a model of mandibular invasion by squamous cell carcinoma cell line (SCCVII
cells), injected three times a week with NF-κB essential modulator binding domain (NBD
peptide), or control (a mutant NBD peptide) [52]. In all mice, an extension of bone invasion
by OSCC was seen; However, interestingly, in the group of mice in which NBD peptide was
injected, zygoma destruction was significantly suppressed [52]. This evidence gives strong
evidence that stimulation of the NF-kB signalling pathway, induced by TNF-α, promotes
the endosseous invasion of OSCC tumour cells.

A further mechanism of action through which TNF-α can be considered as a pro-
moter of OSCC cell invasion and migration has been demonstrated in an in vitro study
showing that TNF-α is able to activate the transcriptional repressor Snail that down-
regulates E-cadherin and induces the mechanism of epithelial-connective tissue transi-
tion [53]. Analysing three human OSCC cell lines treated with or without TNF-α (10
ng/mL) for 72 h demonstrated, via RT-PCR and Western blot analyses, that Snail was
strongly activated by TNF-α rapidly, within the first 30 min of treatment [53]. This study
further showed, by Western blotting analyses, that the NF-κB pathway contributed to the
activation of this mechanism [53].

The aforementioned mechanisms discussed clearly link the role of TNF-α with en-
hanced metastatic potential and highlight the ability of TNF-α to induce the malignant
cell epithelial-connective tissue transition in OSCC. In contrast to the above, a recent study
has demonstrated cross-talk between the macrophage-related inflammatory cytokines and
the migration of cancer cells [52]. IL-6, IL-1β, and TNF-α effected the migration rate of
both highly and poorly differentiated OSCC cell lines, CAL27 and SCC25, respectively,
demonstrating that only IL-6 exerted a significant increase in cell migration rate, whereas
TNF-α caused only a slight increase in migration rate and exclusively only in highly differ-
entiated OSCC cell lines [52]. These results would indicate that, potentially, IL-6 has greater
importance in migration and possibly metastases, and yet in those well-differentiated
OSCC cells, previously thought to have low metastatic potential, perhaps the role of TNF-α
is critical. Obviously, further unclarified bio-molecular mechanisms of signal transduction
regulation related to TNF-α in the promotion of OSCC requires further exploration.

5. OSCC Prognosis and TNF-α

Prognosis is defined as the predicted course of a disease process and the anticipated
outcome expected from treatment. In OSCC, TNM staging (tumour-node-metastasis),
cancer staging, and certain conventional histological tumour grading have been utilized
for therapeutic decision making but have been found to be imperfect predictors of prog-
nosis. Several biomarkers have been discovered that appear to correlate with tumour
aggressiveness and potentially prognosis of OSCC. These include epidermal growth factor,
p53, cyclooxygenase-2 (COX-2), and matrix metalloproteinase-9 (MMP-9) [54–57]. TNF-α
is another important biomarker being investigated in OSCC and head and neck cancers
in general. Very little evidence exists regarding the potential role of TNF-α and OSCC
prognosis. Its role as a pro-inflammatory cytokine makes it a possible promoter of cancer or
a potential cancer suppressor due to its pro-apoptotic effects [58]. These complex functions
and interactions make it problematic to attribute prognosis to TNF-α (Figure 2).
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challenging.

An indirect way of determining the importance of TNF-α in the prognosis of cancer is
by measuring TNF-α converting enzyme (TACE) activity. TACE belongs to a large group of
type I integral membrane proteins known as ADAMs (a disintegrin and metalloproteinase).
These proteins are involved in a variety of cellular processes, including conversion of
TNF-α as well as several other membrane-anchored proteins, including both epidermal
cell growth factors and TNF family receptors, to their active form [59,60]. TACE is the
enzyme responsible for proteolytic cleavage of the membrane bound precursor protein of
TNF-α to release the biologically active form of TNF-α protein (17-kDa), a process known
as sheddase. In human carcinogenesis, increased expression of TACE mRNA expression
has not been demonstrated to correlate with cancer clinical stage or aggressiveness [61].
However, measuring the TACE active form and its sheddase activity using a modified
TACE sheddase assay might be a better indicator of its role in tumourigenicity [60]. The
study by Ge et al., 2009, measured TACE protein levels and TACE sheddase activity
in head and neck squamous cell cancer cell lines (PCI-4A, PCI-4B, PCA-15A, PCI-13,
and PCI-13), fresh head and neck cancer tissue samples (collected from 63 patients with
samples from primary tumours, recurrent tumours, and lymph node metastases from a
variety of head and neck sites), and compared them with fresh samples of normal oral
keratinocytes. Using Western blot analysis, the authors demonstrated significantly higher
expression of both immature and mature TACE protein levels in human head and neck
squamous cell cancer cells, and fresh head and neck cancer tissue samples compared to
normal oral keratinocytes. Additionally, TACE protein levels and TACE sheddase activity
were both higher in T3/T4 tumours compared to T1/2 tumours; however, the difference
was only statistically significant in TACE sheddase activity, which was also significantly
higher in cases with lymph node metastasis and those that had recurrence after initial
treatment [61]. These findings demonstrate that TACE sheddase activity levels in head and
neck cancers are biologically and clinically relevant and may be a significant biomarker in
discriminating between cancers more likely to recur after initial treatment and hence have
a worse prognosis than those with a lower chance of recurrence and a better prognosis.
Hence, the activation of TNF-α by TACE sheddase activity may be an important prognostic
marker to consider as a reflector of disease aggressiveness for OSCC [61].

Identifying more specific genotypic expression of TNF-α from serum samples of head
and neck cancer patients may also provide another avenue to guide prognosis. In a study by
Santana et al., 2021, blood collected from 163 oral and oropharyngeal SCCs and 143 healthy
controls was genotyped for PON1, TNF-α (two different genotypes), and TGF-β single
nucleotide polymorphisms [62]. They found that the rs1800629 genotype of TNF-α was
more frequently found in more advanced stage tumours, and those with poorer survival.
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In contrast, another genotype of TNF-α was more frequently found in the serum of patients
with lip SCCs and clinical stage I and II tumours. Similar findings are being identified
in other types of cancers. In patients with breast cancer, elevated serum levels of TNF-α
were not necessarily found when comparing early ductal carcinoma patients with healthy
controls. However, serum TNF-α levels were found to be significantly elevated in higher
grade breast cancers and those with lymph node metastases compared with earlier stage
I cancers [63]. Identifying elevated serum TNF-α levels may signal higher grade disease;
however, this has not as yet been demonstrated in OSCC.

Recent studies have also demonstrated interesting findings when investigating the
potential role of TNF-α and its family proteins to predict prognosis, tumour immune char-
acteristics, and immunotherapy response in several cancer types. Although these studies
have not been replicated in OSCC, they pose an interesting avenue for future research. The
family proteins include the TNF receptor superfamilies that are composed of 19 ligands and
29 receptors. The communication between these pathways orchestrates inflammation and
controls cell survival, proliferation, and differentiation. Gene expression, overall survival
rate, and somatic mutation data were collected for 516 colorectal cancer cases from the
National Cancer institute GDC data Portal (TCGA) to identify the TNF family genes that
are risk factors for poor overall survival and the genes that are protective [64]. Out of 47
well defined TNF genes, nine genes were found to be relevant to overall survival, four as
risk factors, and five were protective. A TNF family-based signature (TFS) was generated
from these genes, and the patients were stratified into low and high risk. Low risk (low
TFS score) patients had a better overall survival, and it is believed this is due to a high infil-
tration of resting CD4 memory T cells and resting dendritic cells, with few immune escape
phenotypes, rending the tumour more sensitive to immunotherapy. A high TFS score was
associated with high infiltration of regulatory T cells, non-activated macrophages, natural
killer cells, and immune escape phenotypes. This led to poor response to immunotherapy
and increased metastasis-related pathways [64]. A similar study evaluating the potential
for a similar TNF signature for small-cell lung cancer and by stratifying patients into low
and high risk based on their TFS score, both prognosis and response to chemotherapy was
able to be predicted [65]. Within the same TCGA database, there is a similar comprehensive
data series for over 2700 head and neck cancers. Performing a similar analysis of TNF
family genes and development of a TFS score for OSCC may also demonstrate an important
link between these genes and OSCC prognosis and potential response to immunotherapy.

6. TNF-α as a Biomarker in OSCC

Studies have considered TNF-α within biofluids (Table 1) and tissue as a potential
biomarker for early detection of OSCC, staging, and differentiation. The broad and multi-
faceted role that TNF-α plays in inflammatory states presents an obvious confounder.

Whole saliva produced from the major and minor salivary glands are secreted fluid
transported from serum as well as from surrounding glandular tissues. Saliva is composed
of the secretions from salivary glands as well as oral mucosa, periodontium, and oral
microflora that contribute to the final content of whole saliva [66]. The heterogenous
nature of saliva, coupled with its ease of sampling, makes it an attractive prospect in
the diagnosis of salivary gland disorders and oral diseases, particularly that of OSCC.
A prospective cohort study investigating the use of saliva analysis involving multiple
biomarkers including TNF-α for the early detection of OSCC in OSCC patients compared
to controls showed that TNF-α as a saliva biomarker had a sensitivity of 39% and a
specificity of 100%, with levels of TNF-α having a statistically significant difference in
saliva compared to plasma of OSCC patients compared to controls [67]. In this study,
samples were collected from three groups: control patients (n = 24), stage I/II OSCC
(n = 22), and stage III/IV (n = 19), and multiple salivary markers were analysed. Regarding
TNF-α, control patients had a TNF-α level of 8.6 pg/mL ± 7.27, whilst patients with OSCC
had levels of 27.75 ± 30.94 pg/mL [67]. Altered salivary cytokine concentrations due
to dental and oral inflammatory conditions remain a relevant confounder, and queries
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whether serum based biofluid sampling presents a more reflective sample remain, although
serum has the drawback of not being as location specific as saliva. Multiple additional
studies have found similar results demonstrating that levels of TNF-α and other cytokines,
such as IL-6 and IL-8, are present in the saliva of patients with OSCC at significantly
different concentrations compared to healthy controls [39,68–71].

Interestingly, cytokines in salivary levels increased regularly when compared with
well differentiated to poorly differentiated oral squamous cell carcinoma. Levels of IL-6,
IL-8, TNF-α, IL-1β, TNF-α, and IFN-γ were raised in early stage OSCC when compared to
healthy controls [67]. Salivary and serum samples of patients analysed for TNF-α levels
was able to differentiate healthy samples, premalignant lesions, and OSCC [71]. Levels
increased in patients from premalignant lesions to OSCC, with a higher increase in stage
4 OSCC clinical staging. Levels of TNF-α were higher in salivary samples compared to
serum samples, and this is concordant with other studies [67,68,72]. Multiple studies have
also demonstrated the correlation of higher levels of TNF-α production in patients with
OSCC compared to premalignant lesions and healthy controls, specifically in salivary
samples with positive correlation of histological grading in OSCC [38,73,74]. Salivary
TNF-α samples have been shown to have the potential for non-invasive monitoring of
premalignant conditions during routine oral cancer screening [37,75]. However, further
research is required in the field of salivary biomarkers as there is a wide variation in the
average levels of salivary cytokines in oncologic patients and healthy controls [76].

Table 1. TNF-α levels as a liquid biopsy biomarker in OSCC and premalignant lesions and disease.

Outcome Sample Type Sensitivity/Specificity of Test Levels Reported

Diagnosis and levels

Normal

Saliva
Sensitivity 39%, Specificity 100%

for diagnosis of OSCC [67]

4.5 ± 2.5 pg/mL [71]
38 ± 3.23 pg/mL [75]
3.0 ± 1.9 pg/mL [38]
4.1 ± 2.1 pg/mL [74]

8.6 ± 7.27 pg/mL [67]

Blood (Serum or Plasma) Sensitivity 39%, Specificity 100%
for diagnosis of OSCC [67]

3.9 ± 2 pg/mL [71]
12.7 ± 4.89 pg/mL [77]

10.10 ± 6.08 pg/mL [67]

Premalignant lesion
Saliva Not described

136.8 ± 59.6pg/mL [71]
30 ± 3.01 pg/mL [75]
10.5 ± 7.4 pg/mL [38]

Blood (Serum or Plasma) Not described 180.1 ± 52.4pg/mL [71]

Premalignant disease

Saliva
Sensitivity 97%, Specificity 83%

for diagnosis of OSCC [71] 126.8 ± 59.2 pg/mL [71]

Blood (Serum or Plasma)
Sensitivity 72%, Specificity 75%

for diagnosis of OSCC [71] 166.5 ± 49.4 pg/mL [71]

OSCC

Saliva

311.9 ± 95.3 pg/mL [71]
34 ± 21.58 pg/mL [75]
28.9 ± 14.6 pg/mL [38]
35.2 ± 51.8 pg/mL [74]

27.75 ± 30.94 pg/mL [67]

Blood (Serum or Plasma)
225.1 ± 99.9 pg/mL [71]
45.8 ± 37.01 pg/mL [77]
11.65 ± 7.32 pg/mL [67]
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TNF-α serum levels for the correlation of OSCC for diagnosis remains inconsistent.
Schiegnitz et al., 2017, carried out a prospective cohort study investigating serum biomark-
ers (IL-6, IL-8, sIL-2R, and TNF-α) in patients with OSCC, oral lichen planus (OLP), and
healthy controls and found no significant differences in TNF-α serum levels between con-
trols, OLP, and OSCC patients [78]. Similar results were reported in a prospective cohort
study investigating the use of serum IL-6 and TNF-α as a serum biomarker in patients [79].
The prospective cohort study compared 36 newly diagnosed OSCC patients with 31 healthy
blood donors. High serum levels were defined as >6 pg/mL for IL-6 and >28.6 pg/mL for
TNF-α, and serum samples were analysed using ELISA testing. Interestingly, and different
from the later studies, the majority of patients had clinical stage 3 or 4 OSCC, with this
study reporting a positive correlation. Additional studies have shown that TNF-α in serum
may be higher or lower in OSCC patients compared to controls [75,77,79]. The contrasting
data within the literature highlights the complexity of TNF-α serum levels, approaches to
measurement, and possible inflammatory confounders. TNF-a serum level alone has not
yet emerged as a consistent biomarker for early detection of OSCC.

There are two studies investigating TNF-α levels in tissue samples and peripheral
blood or saliva looking for correlation. Healthy matched controls were compared with
clinically and histopathologically confirmed cases of SCC in a case control cohort study
(n = 75 per group) [80]. Results from this study found that TNF-α transcript expression
in OSCC patients was 2-fold higher compared to matched controls, as well as levels of
IL-1b (1.91 fold), TFG-b (3.72 fold), and IL-10 (2.25 fold). Interestingly, peripheral blood
levels of IL-10 and TGF-β were increased compared to matched controls, but other proin-
flammatory cytokines, including TNF-α, were comparable. These results reflect that the
tumour can secrete proinflammatory cytokines, including TNF-α and IL-1b, contributing
to the tumour milieu and propagation of the proinflammatory cascade. Samples of mu-
cosa and saliva were taken from patients with a diagnosis of OSCC or oral potentially
malignant disorders (OPMDs) in a cross-sectional cohort study sampling mucosa and
saliva from patients (n = 60); saliva was compared with healthy matched volunteers [81].
Histological samples were analysed using immunohistochemistry, and saliva was analysed
using ELISA. Immunoreactivity was significantly higher for TNF-α in th eepithelium and
stroma of oral epithelial dysplasia (OED) compared with normal mucosa from peripheries
of the tissue samples. Another cytokine that was significant was the presence of IL-8,
which was higher in the stroma of OSCC compared with normal mucosa. Regarding the
saliva, ELISA analysis levels of IL-6 (p = 0.0012), IL-8 (p = 0.0000), and TNF-α (p = 0.0492)
were higher in patients with OSCC compared to healthy controls and patients with oral
leukoplakia without associated dysplasia. The results of the above study are promising
as they represent a positive correlation with IL-8 and TNF-α for tumour expression and
salivary expression. Further studies are required to corroborate these results but constitute
a step forward towards a non-invasive bedside/chairside adjunct to differentiate dysplasia
or OSCC from suspicious oral lesions.

7. The Oral Microbiome and TNF-α in OSCC

There are over 770 bacterial species in the oral cavity [82], in addition to candi-
date phyla radiation (CPR) of bacterial organisms, bacteriophages, fungal genera, and
viruses [83]. A more diverse bacterial microbiome, with higher numbers of operational
taxonomic units (OTU) demonstrated by high throughput sequencing, was observed in
healthy individuals compared to samples from individuals with OSCC [84], with similar
findings of the fungal mycobiome [85]. Bacterial populations have also been shown to
change dynamically with the progression of OSCC [86]. TNF-α primarily exerts its effects
through the NF-kB pathway, which itself is significant in bacterial-associated inflammatory
response and is upregulated in OSCC [87]. Both bacterial metabolite-sourced and TNF-α
triggered reactive oxygen species (ROS) can promote DNA damage and angiogenesis,
resulting in OSCC growth and progression [88].
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The production of pro-inflammatory cytokines, such as interleukin IL-1b, IL-6,
and TNF-α, is enhanced by common lipopolysaccharides and bacterial endotoxin of
the pathogens associated with periodontal and endodontic disease (e.g., P. gingivalis
and F. nucleatum) and are considered responsible for immune related periodontal tissue
damage [83]. In vitro, OSCC cells infected with P. gingivalis showed an overexpression
of TLR2, which in turn promoted the overexpression of MMP9, TNF-α, and IL-6 that
augmented the proliferation and growth of infected cells. Further, P. gingivalis infection
associated increased transcription of TNF-α coincided with fibroblastic phenotypic shifts,
the expression of stem-cell like properties, and higher migratory invasive capacity of
OSCC cells [89,90]. In vivo, chronic infection with F. nucleatum and P. gingivalis in a
murine model of periodontitis-associated oral tumorigenesis demonstrated stimulation
of OSCC induction and proliferation through direct interaction with oral epithelial cells
via toll-like receptors [91].

TNF-α levels have been demonstrated to be increased in the gingival crevicular fluid
and serum of individuals with chronic periodontal disease. Increased levels of TNF-α has
also been highlighted as a link between periodontal disease and Diabetes Mellitus [92], as
well as other inflammatory conditions such as rheumatoid arthritis [93]. Demonstration
of the role of TNF-α in bone resorption by increasing osteoclastic activity and deceasing
osteoblastic activity has shared relevance to both periodontal disease and OSCC [94]. An
in vivo murine model of OSCC with some animals having periodontitis-associated bacteria
addition, demonstrated increased alveolar bone resorption in the addition group as well as
increased tumour mass and tumour growth rate that paralleled the significant upregulation
of TNF-α [95].

Candida has been associated with the progression of OSCC in vitro and in vivo [96],
and a significant association between oral cancer occurrence and Candida oral colonization
in humans has been demonstrated [97]. Endothelial cells are stimulated to synthesize
TNF-α in response to in vitro infection with C. albicans [98]. Interestingly, TNF-α has been
demonstrated to suppress the hyphal formation of C. albicans blastospores directly and
dose-dependently. In vivo, the oral administration of TNF-α significantly reduced the C.
albicans CFU and the in-situ number and size of C. albicans observed histopathologically
on the tongues of treated mice [99]. Interaction with, and contribution from, the oral
microbiome mediated by TNF-α continues to be of relevance in the mechanisms of OSCC
initiation, development, and progression.

8. TNF-α in Oral Potentially Malignant Disorders

Interest in the utility of TNF-α as a biomarker for early cancer detection connects
with its discovered role in stepwise inflammation-mediated carcinogenesis [39]. Oral
potentially malignant disorders (OPMDs) are a group of mucosal conditions characterized
by an associated risk of progression to OSCC. These conditions include, but are not limited
to, leukoplakia, erythroplakia, lichen planus (OLP), and oral submucous fibrosis. These
conditions are described as variably featuring chronic inflammation [100,101]. The TNF-α
encoding gene (−308 G/A) may be associated with the development of OPMDs with
polymorphisms significantly associated with the OPMD specimens [102].

The mechanisms of malignant transformation through its different stages, from non-
dysplastic, hyperkeratosis, and oral dysplasia to oral squamous cell carcinoma (OSCC) are
still unknown. However, it is postulated that chronic inflammation, consisting of various
types of proinflammatory mediators, such as activated cytokines and chemokines, likely
plays a role in this process [4].
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TNF-α can influence the different stages of etiopathogenesis of OLP, divided into
specific and non-specific mechanisms. However, the specific mechanisms involved in OLP
are poorly understood, and it is proposed that an altered or a foreign antigen in the basal
cell layer is a trigger to provoke a T cell-mediated autoimmune response against these cells.
Some genes of heat shock protein (HSP) have been found in the TNF-α gene region that
increase the expression of this protein on the keratinocyte surface and it heralds the role of
TNF-α in OLP [103]; oral keratinocytes release multiples of pro-inflammatory cytokines
such as TNF-α that contribute at different stages of OLP pathogenesis. Increased level
of TNF-α in OLP activates the Nuclear Factor Kappa B (NF-Kb), which is a transcription
factor, and this activation leads to provoke an abundance of the inflammatory cytokines
and chemokines that eventually recruit immune cells in this condition [104]; nonspecific
mechanisms are also a part of the pathogenesis of OLP. These mechanisms seem to have
been started by the degranulation of mast cells and the release of proinflammatory medi-
ators. Mast cells release TNF-α that increases the production of matrix metallopeptidase
(MMP), which leads to the destruction of the basement membrane [104]. In addition, the in-
creasing vascular permeability and proliferation of endothelial cells, mediated by TNFα in
the OLP, can be an indicator of the role of this proinflammatory cytokine in the non-specific
mechanisms involved in this condition [103].

A meta-analysis demonstrated that TNF-α levels in OLP were significantly increased
in various tissue types, suggesting that this increased level may be effective in initiating the
disease and activating auto-inflammatory mechanisms [104]. In particular, polymorphism
in the TNF-α gene was one of the factors [104]. Clinically, the elevated salivary TNF-α
levels observed in patients with OLP is proposed to herald the onset and progression of the
disease, and suggest potential utility in diagnosis and prognosis [105].

Cytokines may be involved in anti-tumour mechanisms or enhance the malignant
transformation and tumour growth. Immunoreactivity using IHC analysis has shown
significantly higher expression of TNF-α in OSCCs and OPMDs with and without dysplasia
compared to normal controls. Interestingly, comparing leukoplakias with dysplasia to
OSCC, significantly less TNF-α expression in the stroma (p = 0.0102) was found, which
may support its role in progressive pre-malignancy [81].

Immunoregulatory events that occur downstream of TNFR1 may be critical for the
development of OSCC in OPMDs. Increased TNF-α and TNFR1 expression, along with
increased recruitment of CD45+ inflammatory cells, was observed in samples from OPMDs,
which went on to become OSCC when compared to non-progressing OPMD samples [100].

Induced OSCCs in a 4-NQO mouse model of oral carcinogenesis also demonstrated
upregulation of TNF-α and TNFR1 expression. Further, neutralization of TNF-α lead
to in vivo decreased serum cytokines, inhibited development of invasion, and reduced
neutrophils in the tumour microenvironment [100].

Evidence has suggested that the NF-κB–dependent cytokine levels (TNF-α, and ad-
ditionally IL-4, IL-6, IL-8, and IL-10) are elevated in both the saliva as well as the tissue
specimens from patients with oral premalignant lesions [101] (Table 2). Salivary TNF-α
was significantly higher in patients with OSCC compared to patients with OPMDs without
dysplasia or OLP with a trend of an increase in dysplasia, which was not significantly
different from OSCC [81]. Further, salivary levels of TNF-α have been demonstrated to be
markedly higher in moderate to severe levels of dysplasia compared to mild ones [101].
Others have found no significant difference between levels of dysplasia (p = 0.08) and
significantly elevated salivary TNF-α levels in patients with OSCC compared to normal
tissue, as well as oral dysplasia with or without dysplasia (ANOVA p < 0.001) [39]. These
conflicting results make it difficult to conclude if TNF-α levels are useful for monitoring
the malignant transformation of oral leukoplakia.
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Table 2. TNF-α inhibitor therapy in OSCC.

TNF-α Inhibitor Mechanism of Action and Clinical Translation

ADALIMUMAB Monoclonal antibody with TNF-α as a target. No clinical studies at present.

ETANERCEPT Fusion protein produced by recombinant DNA. Reduces the efficacy of TNF and
works as a TNF antagonist. No clinical studies at present.

GOLIMUMAB

Monoclonal antibody with TNF-α as a target. The TNF-α antagonist golimumab has
been assessed in an experimental metastatic murine model in vivo, specifically using

OSCC cells depleted of interferon induced protein with tetratricopeptide repeats 2
(IFIT2), a protein known to promote cell death via apoptosis. TNF-α antagonists

reduced angiogenesis, tumour growth, and metastasis [106].

CERTOLIZUMAB Pegylated monoclonal antibody directed against TNF-α. No clinical studies at present.

INFLIXIMAB Chrimeric monoclonal antibody directed against TNF-α. No clinical studies at present.

Biologic agents targeting TNF-α are currently in clinical use for immune-mediated
inflammatory rheumatological and gastrointestinal disease. Current FDA approved drugs
are monoclonal antibodies (infliximab, adalimumab, golimumab, and certolizumab) or
receptor fusion proteins (etanercept). There is accumulating evidence that TNF-α may
be a target for solid tumour therapy, with clinical trials of etanercept showing disease
stabilization or partial improvement in patients with metastatic breast cancer [106]. There
are only limited reports of the use of TNF-α antagonists in OSCC (Table 2).

Small animal studies such as these are encouraging, but many therapeutic targets
have fallen short of the clinical bedside and remained on the lab bench or fallen victim to
the translational canyon. As such, further studies in larger animal models/clinical trials
are required to establish if TNF-α antagonists have a role to play in the management and
prevention of OSCC clinically.

9. Conclusions

TNF-α has proven to be an important cytokine in the inflammatory cascade and may
yet be a potential target in OSCC detection, prevention, and treatment. TNF-α has been
observed in a participant role in OSCC but additionally in pre-malignant mucosal and
microbiome-related oral disease, complicating its allocation to a biomarker role. Despite
some promising results, further work is required in larger clinical populations to correlate
TNF-α with prognosis and suitable utility as a biomarker, and ultimately if the TNF-α
antagonism can play a novel adjunctive therapeutic role in the prevention or treatment
of OSCC.
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