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Simple Summary: This contribution allows for the computation of exact p-values and for conducting
accurate statistical hypothesis tests of ROC AUC-values. As a result, the development of diagnostic
tests is facilitated. This work is illustrated via simulated data and through the development of
proteomic blood biomarkers for the early detection of cancer.

Abstract: The Receiver Operating Characteristic (ROC) is a de facto standard for determining the
accuracy of in vitro diagnostic (IVD) medical devices, and thus the exactness in its probability dis-
tribution is crucial toward accurate statistical inference. We show the exact probability distribution
of the ROC AUC-value, hence exact critical values and p-values are readily obtained. Because the
exact calculations are computationally intense, we demonstrate a method of geometric interpolation,
which is exact in a special case but generally an approximation, vastly increasing computational
speeds. The method is illustrated through open access data, demonstrating superiority of 26 com-
posite biomarkers relative to a predicate device. Especially under correction for testing of multiple
hypotheses, traditional asymptotic approximations are encumbered by considerable imprecision,
adversely affecting IVD device development. The ability to obtain exact p-values will allow more
efficient IVD device development.

Keywords: receiver operating characteristic; AUC-value distribution function; AUC p-value;
exact test

1. Background

The ROC concept [1] has become a de facto standard for determining the accuracy
of binary predictors within many areas, such as IVD medical devices [2–4]. In order to
provide a regulator with valid scientific evidence supporting the conclusion that there
is reasonable assurance that an IVD device is safe and effective [5], it is highly valuable
to demonstrate that the ROC Area Under Curve (AUC) value of the novel IVD device is
non-inferior relative to a predicate device. Because the ROC-curve and the AUC-value is
subject to randomness due to sources of error including sampling error and measurement
imprecision, statistical hypothesis tests are necessary.

The motivation for this work, specifically, is our effort to develop biomarkers for the
early detection of cancer. Because of combinatory proliferation when composite biomarkers
are generated, the correction for testing multiple hypotheses is often severe, yielding critical
values that are situated in the far tails of the AUC-value probability distribution. It is a
well-known phenomenon that the tails of probability distributions are particularly sensitive
to inaccuracies; hence, exactness in the AUC-value probability distribution is crucial toward
accurate statistical inference.

The term ROC was introduced by Ref. [6] and the phrase AUC was used by Ref. [7].
While a complete literature review is beyond the scope of this article, a summary of
approaches used to approximate the AUC-value probability distribution is warranted and
follows in this paragraph and the next. It was shown [8] that when computed by the
trapezoidal rule, the trapezoidal AUC-value equals a constant times the Mann–Whitney
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U statistic, which is asymptotically normal [9]. Refs. [10–14] use this rationale toward a
normal distribution approximation, with variance estimates under a range of assumptions.
Under a normal distribution assumption, a confidence interval for the AUC-value can
extend above 1, and therefore transformations have been proposed [14–16] to ensure that
the confidence interval is contained in the interval [0, 1].

The method of empirical likelihood was proposed by Ref. [17], yielding an empirical
log-likelihood ratio that is asymptotically χ2-distributed. A distinct approach is to estimate
the probability distributions of the cases and controls by kernel smoothing methods [15,18],
where the obtained AUC-value is either approximately normally distributed per the afore-
mentioned rationale, or can be estimated by bootstrap, jackknife, or similar computer
intensive methods as proposed by Ref. [19]. Outright Monte Carlo-simulation of AUC-
values has also been proposed [20]. Parametric estimation of the probability distributions
of the cases and controls has been discussed [21,22], yielding Wald and likelihood ratio
statistics, which are both asymptotically χ2-distributed. Reviews of note are Chapter 1
of Ref. [23], which discuss the development of the ROC concept, and Refs. [24,25], which
discuss ROC statistics and their distributions in detail. A large number of approximate
methods is compared by Ref. [19] under a range of conditions, showing through simulation,
e.g., that asymptotic approximations are particularly challenging when the underlying
AUC-value is above 0.85 due to a slow rate of convergence.

This article is structured as per the following. In three subsections, Section 2 discusses
obtaining the AUC-value probabilities through exact computation, Monte Carlo-simulation,
and through geometric interpolation between the aforementioned two. Section 3 discusses
employing the AUC-value probability distribution for statistical hypothesis testing purposes.
Section 4 illustrates the methods through simulated and real data, and Sections 5 and 6
contain the discussion and conclusions.

2. Probability Distribution of the AUC-Value
2.1. Exact Computation via Order Statistics

This subsection derives the exact AUC-value probability distribution under the as-
sumption of observed values of the True Positives (TPs) and True Negatives (TNs) that
each are independent and identically distributed, iid with probability distribution functions
denoted as F and G, respectively.

Because the ROC-curve is determined by the ranks of the observed values of the
TPs and TNs, the probability of an AUC-value can be computed through order statistics.
In general, suppose there are n observed values of the TPs, x1, . . . , xn, and m observed
values of the TNs, y1, . . . , ym, and the two have probability density functions f and g,
respectively, then under the iid assumption the order statistic joint probability density
function, η, presuming they are indexed such that y1 ≤ · · · ≤ ym and x1 ≤ · · · ≤ xn, equals{

m!n!g(y1) · · · g(ym) f (x1) · · · f (xn) if y1 ≤ · · · ≤ ym and x1 ≤ · · · ≤ xn,
0 otherwise.

Because each ROC-curve is determined completely by the ranks of the observed values
of the TPs and TNs, the probability that a given ROC-curve will manifest itself can thus be
obtained through integration of the joint probability density function.

For example, the ROC-curve that has an AUC-value equal to unity corresponds to
observing values of the TPs and TNs such that ym ≤ x1, and under the iid assumption and
existence of probability density functions, the probability of the ROC-curve equals∫ ∞

−∞
· · ·

∫ x2

−∞

∫ x1

−∞
· · ·

∫ y2

−∞
η dy1 · · ·dymdx1 · · ·dxn,

which after application of the chain rule can be shortened to

n
∫ ∞

−∞
(1− F(x1))

n−1 f (x1)G(x1)
m dx1.
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For another example, the ROC-curve that has an AUC-value equal to 1− 1/mn, i.e., the
second highest AUC-value possible, corresponds to observing values of the TPs and TNs
such that ym−1 ≤ x1 ≤ ym ≤ x2, and under the same assumptions the probability of that
ROC-curve equals

mn(n− 1)
∫ ∞

−∞

∫ x2

−∞

∫ ym

−∞
(1− F(x2))

n−2 f (x2) f (x1)g(ym)G(x1)
m−1 dx1dymdx2.

Continuing to the example of the ROC-curve with AUC-value 1− 2/mn, the reader
will note that there are two distinct ROC-curves that produce the AUC-value, one that
corresponds to observing values of TPs and TNs such that ym−1 ≤ x1 ≤ x2 ≤ ym ≤ x3
and the other such that ym−2 ≤ x1 ≤ ym−1 ≤ ym ≤ x2. Because the two ROC-curves
are mutually exclusive, the probability of observing TPs and TNs such that the AUC-
value equals 1− 2/mn is equal to the sum of the probabilities of those two ROC-curves.
Generally, distinct ROC-curves are mutually exclusive and consequently the probability of
a given AUC-value equals the sum of the probabilities of all ROC-curves that produce the
given AUC-value.

In practice, numerical computation requires explicit probability distribution functions
F and G. A common choice of probability distribution functions is two normal distributions
with equal variance and some difference in their means [25], sometimes referred to as
binormal. Since many common parametric choices of probability distributions are quite
smooth, numerical integration using the trapezoid method is typically accurate and also
fast in its algorithmic implementation [26].

The probability distribution function of the AUC-value can be determined by comput-
ing the probability for each of the AUC-values 0, 1/mn, 2/mn, . . . , 1; for an illustration, see
Figure 1a. However, the number of ROC-curves that produce a given AUC-value tends to
be large in many situations, particularly when the AUC-value is around the centre of the
unit interval, and consequently determining the whole AUC-value probability distribution
function through this method is in many instances computationally impractical.
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Figure 1. Exact probability distributions of the AUC-value under a range of parameters. (a) Exact
computation and Monte Carlo estimation of the AUC-value distribution when TPs and TNs are
10 each and iid with normal distributions of equal variance and unit difference in mean. Inset, top
10 percentiles. (b) Exact computation and MC estimation of the AUC-value distribution when TPs
and TNs are 50 each and iid normal with equal variance and unit difference in means. Geometric
interpolation between exact computation and the MC estimated 99th percentile is included. Inset,
top percentile. (c) Stability of the ratio of subsequent differences under a range of parameters,
i.e., (∆xi/∆xi−1)/(∆ki/∆ki−1), with solution through the bisection method included in dashed lines.
(d) Plot similar to Subfigure (c), albeit with numbers of TPs and TNs selected such that their products
are approximately equal, with two selections having equal numbers of TPs and TNs and the third
twice the TPs relative to TNs.

2.2. Monte Carlo-Simulation of the AUC-Value Probabilities

When estimated through iid sampling, by the strong law of large numbers the empir-
ical distribution function converges point-wise, with probability one, to the distribution
function from which the observations were drawn. The result can be strengthened further;
through the Glivenko–Cantelli lemma the convergence is uniform and through Donsker’s
theorem the normalized difference converges in distribution to a Gaussian process [27].
Because of its desirable asymptotic properties, and properties such as simplicity of com-
putation, the empirical distribution function is commonly utilized for estimation of the
distribution functions through Monte Carlo-simulation.

Percentiles can be estimated through the empirical distribution function by taking
the infimum of the superlevel set, i.e., if α is a number in the unit interval then the 100α-
percentile is estimated through inf{x : F̂k(x) ≥ α}, where F̂k denotes the empirical distribu-
tion function at sample size k. In a common algorithmic implementation, determining the
empirical distribution function and the infimum of the superlevel set amounts to sorting
the observed values and selecting the value that is the 100α percent largest. Through the
aforementioned beneficial asymptotic properties of the empirical distribution function,
the percentile estimate obtains many desirable properties, however if the distribution
function is constant in an interval then the percentile estimate obtains a discontinuity when
viewed as a function of α. Further, even if the distribution function is strictly increasing,
a relatively shallow slope of the distribution function yields the practical problem of a slow
rate of convergence.

When correction for testing of multiple hypotheses is applied, which is common in
for instance biomarker discovery, the critical values to be estimated are typically situated
in the far tail of the probability distribution, where the distribution function often has a
shallow slope. As an illustration, if the type-one error probability subsequent to correction
for testing of multiple hypotheses equals 10−10, then the Monte Carlo-simulation estimate
of the corresponding critical value is equal to the maximum AUC-value simulated for
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all simulations that are constituted of 1010 or fewer simulated AUC-values. However, in
contrast, as discussed in Section 2.1, computing the exact probability of AUC-values is
relatively quick when the AUC-values are close to the extremities of the unit interval.
A pragmatic compromise is to employ exact computation in the far tails and use Monte
Carlo-simulation in the body of the AUC-value distribution.

2.3. Geometric Interpolation

As discussed, the number of AUC-value probabilities that can be computed exactly is
in practice limited by the availability of computational resources. At the time of writing,
we use a computer with an Intel (Santa Clara, CA, USA) Xeon W-2123 CPU, having
8 cores running at 3.6 GHz, and 48 GB RAM, and computing 50 consecutive AUC-value
probabilities requires less than 2 h while computing 60 AUC-value probabilities requires
about 13 h. We have observed that each subsequent AUC-value probability requires
22% additional time relative to the preceding AUC-value probability, thus yielding an
exponential growth in the amount of time required as the number of consecutive AUC-
value probabilities computed increases.

Ideally, the sum of the AUC-value probabilities, computed consecutively from zero
or one, is such that the corresponding percentile is suitable for estimation through Monte
Carlo-simulation. However, in many instances the sum of the computed AUC-value
probabilities is materially smaller than would be desired vis-à-vis percentile estimation
through Monte Carlo-simulation. Consequently, the limitation of computational resources
effectively yields a gap between the sum of the computed AUC-value probabilities and the
largest value deemed suitable for percentile estimation through Monte Carlo-simulation.
In this instance, we have observed a perceived stability of ratios of subsequent differences
of AUC-value probabilities, arising from a special case, and exploited it toward bridging
the aforementioned gap through geometric interpolation.

Denote by i = 0, 1, 2, 3, . . . the sequence of AUC-values 1, 1− 1/nm, 1− 2/nm, 1− 3/nm,
. . . , where n and m are, as in Section 2.1, the number of observed values of TPs and TNs,
respectively. Suppose the observed values of TPs are iid with probability distribution
function F and the observed values of TNs are iid with probability distribution function
G, and denote by x0, x1, x2, x3, . . . the probabilities that the AUC-value attains 1, 1− 1/nm,
1− 2/nm, 1− 3/nm, . . . .

Consider firstly the special case when F = G, i.e., the observed values of the TPs
and TNs follow the same probability distribution. Then the expressions of Section 2.1
simplify so that the probability of each ROC-curve equals n!m!/(n + m)!, and therefore the
probability of an AUC-value is determined by the number of distinct ROC-curves that yield
the AUC-value. Consequently, in this special case it holds that xi = kin!m!/(n + m)!, where
k0, k1, k2, k3, . . . denotes the number of distinct ROC-curves that yield the AUC-values
1, 1− 1/nm, 1− 2/nm, 1− 3/nm, . . . . Figure 2 illustrates the number of ROC-curves that
yield the AUC-value 26/30 when n = 5 and m = 6; in the example k4 = 5.
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Figure 2. Five ROC-curves yielding the same AUC-value. Illustration of the five distinct ROC-
curves that yield the AUC-value 26/30 when the number of TPs and TNs are n = 5 and m = 6,
respectively. The gray boxes illustrate the subtracted four rectangles each with area 1/nm; hence
1− 4/nm = 26/30.

Let ∆ denote the difference operator, ∆xi = xi − xi−1. The present authors have ob-
served that, in the top percentile of the probability distribution, the ratio of subsequent
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differences ∆xi/∆xi−1 is well approximated by C∆ki/∆ki−1 where C is a constant. As dis-
cussed, this is in the special case when F = G equality holds with C = 1. See Figure 1c,d
for a numerical example with a selection of values of n and m, and where F and G are
each normal distributions with equal variance and a selection of differences in their means.
Rearranging terms yields the approximation

xi ≈ xi−1 + C
∆ki∆xi−1

∆ki−1
,

which can be employed to bridge the gap between the exact computations discussed in
Section 2.1 and the Monte Carlo-simulations discussed in Section 2.2.

An estimate of C in the above approximation can be obtained by solving for equality
between the Monte Carlo estimate of the, say, 99.9th percentile and the same percentile
when estimated through exact computation and geometric interpolation using the above
approximation. For example, the bisection method is a simple yet effective method to
solve for C, thus obtaining an estimate using the aforementioned equality [26]. The reader
will note that there will be division by zero in the above approximation when ∆ki−1 = 0,
i.e., ki−1 = ki−2, however the authors have only seen this occur when i = 2 or in some
instances when i ≈ nm/2 and those instances do not constitute the typical intervals of
application of the approximation, cf. Figure 1b.

While analyzing the dataset of Ref. [28], see Figure 3, we noted that the aforementioned
ratio is less stable when the numbers of TPs and TNs are highly unbalanced. In Figure 3d,
where the balance of TPs to TNs for the pancreatic cohort is approximately 1 : 9, a slightly
positive trend can be visually perceived, and when a constant is assumed, the distribu-
tion function will, seen from the right, firstly drop too quickly and then too slowly, see
Figure 3b. When an approximation is unsatisfactory, common approaches are to either use
a more sophisticated approximation or to lessen the use of the approximation. Figure 3d
shows an approximation using a monotonically increasing function, an exponent func-
tion, that connects the AUC-value probabilities with the AUC-value probability at the
median, which is inferred from the curvature of the S-shape yielding ∆xi/∆xi−1 = 1.
Lessening the use of the approximation is achieved by shortening the gap to be bridged;
computing more exact AUC-value probabilities and estimating a higher percentile through
Monte Carlo-simulation.
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Figure 3. Geometric interpolation for cohorts with balanced and highly unbalanced numbers of TPs
and TNs. (a) Monte Carlo-simulated AUC-value distribution functions for biomarkers on par with
benchmark predicate FIT, with numbers of TPs and TNs 1004 and 800 (pan-cancer) and 93 and 800
(pancreatic). Critical values at 99% significance level, Bonferroni corrected for simultaneous testing of
53,352 hypotheses. (b) Upper 99.9th percentile of (a), with MC-simulation and exact computation
bridged by geometric interpolations. For a pancreatic cohort, an alternative interpolation with a
monotonically increasing geometric coefficient is included. (c) Ratio of subsequent differences for
pan-cancer cohort, with a ratio inferred from the median of the S-shaped distribution function at AUC
0.88. (d) Ratio of subsequent differences for the pancreatic cohort, with a non-constant geometric
coefficient, connecting the exactly computed ratios with the inferred ratio through a monotonically
increasing positive exponent function.

Determining the numbers k0, k1, k2, . . . , i.e., the numbers of distinct ROC-curves that
yield an AUC-value, see Figure 2 for an illustrative example, can be achieved through the
following recursion, which is stylized in pseudo-code in Algorithm 1.

Algorithm 1 Recursive algorithm returning the number of ROC curves that yield an input
AUC-value

1: procedure RECURSFCN(x, max_dim1, max_dim2)
2: if x < 0 or max_dim2 < 0
3: return 0
4:
5: if max_dim1 == 1
6: if x <= max_dim2
7: return 1
8: else
9: return 0

10:
11: if x == 0
12: return 1
13:
14: return RECURSFCN(x, max_dim1− 1, max_dim2)
15: +RECURSFCN(x−max_dim1, max_dim1, max_dim2− 1)
16: end procedure

The recursive algorithm employs the recursive equality that is described in the fol-
lowing. Denote by (u · v) the number of permutations in which u rectangles, each with
area 1/nm cf. Figure 2, can be subtracted under a maximum of v rectangle side lengths.
For instance, the side length may be taken along the horizontal axis, cf. Figure 2, where the
maximum number of horizontal side lengths is 6. The number of permutations (u · v) can
be decomposed into two parts as per the equality
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(u · v) = (u · v− 1) + (u− v · v).

The first part of the decomposition are the permutations that use only v− 1 side lengths,
and the second part are the permutations that use all v side lengths, which therefore equals
the number of permutations (u− v · v).

The recursion terminates under the conditions (u · v) = 0 for all u < 0, i.e., there are
nil permutations in which a negative number of rectangles can be subtracted, (u · 1) = 1,
i.e., there is one permutation in which any number of rectangles can be subtracted under a
maximum of only one side length, and (0 · v) = 1, i.e., there is one permutation in which
nil rectangles can be subtracted under any maximum of rectangle side lengths. Further,
a condition on the maximum of the number of side lengths along the axis perpendicular
relative to the axis thus discussed is implemented, denoted by max_dim2 in the pseudo-code.
While the authors view it as possible that a closed form expression for the numbers ki,
i = 0, 1, . . . , nm, exists, we have at the time of writing not been able to derive such; hence
the recursive algorithm.

3. Statistical Hypothesis Testing of AUC-Values

Because the AUC-value is a number in the unit interval, a one-sided acceptance re-
gion with type-one error probability α is constructed through the interval [0, c] where c
is the critical value satisfying P(X > c) = α and X is the random test variable under
the null-hypothesis [29]. In applications such as biomarker discovery, it is common to
simultaneously consider numerous binary predictors. In particular, systematically forming
composite biomarkers from constituent measurands often causes a combinatory prolifera-
tion, and thus AUC-values for millions of composite biomarkers may be simultaneously
considered. As a result of correction for testing of multiple hypotheses through Bonferroni-
correction or other methods, the type-one error probability, α, is commonly small. For a
numerical example, a statistical significance level of 99% and 108 composite biomarkers
yields a Bonferroni-corrected α-value of 10−10.

With AUC-values, estimation of the critical value through outright Monte Carlo-simulation
will be especially taxing because each AUC-value requires simulation of the observed values
of TPs and TNs. Within the setting of a clinical trial, the numbers of TPs and TNs could be
between 100 and 1000 each, and to obtain an estimate of a critical value at α equalling 10−10,
at least 1010 + 1 AUC-value simulations are needed. Hence, to obtain the most coarse estimate
of the critical value through Monte Carlo-simulation, several trillion random numbers are
often needed, and to obtain a more precise estimate perhaps a quadrillion random numbers
would be desired in the presently discussed numerical example.

Furthermore, when the purpose of the Monte Carlo-simulation is estimation of sta-
tistical power or experimental design optimization, then simulations will typically need
to be performed under a range of design parameter values, which will greatly compound
the difficulties. For a numerical indication, at the time of writing the authors are able to
simulate 1010 AUC-values in 2.63× 106 s, or 30.4 days, at 400 cases and 400 controls using
computationally optimized algorithms in R (version 3.3.2) [30] and computer equipment as
detailed in Section 2.3. Simulation across a range of sample sizes and possibly other design
parameters would multiply the required time by several folds. Hence, statistical hypothe-
sis testing of AUC-values is simple in principle, but the determination of the probability
distribution tails is computationally challenging.

4. Examples
4.1. Illustration through Simulated Data

For illustrative purposes, a few numerical examples are provided. In these examples
the observed values of TPs and TNs are each normally distributed with unit variance and
some difference in their mean values. When the difference in means is taken to be equal to
one, then the resulting AUC-value is on average about 0.76 with a standard deviation that
depends largely on the number of TPs and TNs.
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Figure 1a,b show probability distribution functions of the AUC-value when the dif-
ferences in the means of the observed values of TPs and TNs are equal to one, and the
number of TPs and TNs are n = m = 10 and n = m = 50, respectively. When the numbers
of TNs and TPs are 10, then the AUC-value can attain 101 distinct values and consequently
it is feasible to compute the probability of each AUC-value exactly, as per Section 2.1. In
addition, estimates of the probabilities obtained through Monte Carlo-simulation, as per
Section 2.2, are shown. Alignment between the two is visually evident.

In Figure 1b, the numbers of TNs and TPs are 50, and consequently the AUC-value can
attain 2501 distinct values, and with the computers used at the time of writing computation
of exact probabilities of all AUC-values, as per Section 2.1, it was deemed infeasible as it
would require several years of computing time as per the observed exponential growth
detailed in Section 2.3. The 57 AUC-value probabilities shown in Figure 1b have a sum of
about 5.05× 10−10 and the turquoise line shows geometric interpolation, as per Section 2.3,
between the left-most AUC-value probability and the 99th percentile estimated through
Monte Carlo-simulation. As examples, AUC-values 0.90, 0.95 and 0.99 have p-values
4.4× 10−4, 4.3× 10−7 and 8.5× 10−16 respectively. Similarly, under Bonferroni-correction
for 108 hypotheses, the critical value for a one-sided test at the 99% significance level
is 0.9816, i.e., if any of the observed AUC-values are greater than 0.9816 then the null-
hypothesis is rejected; it seems improbable that the observed value is an observation from
the hypothesized probability distribution.

Figure 1c,d illustrates the degree of stability of the ratios of subsequent probability
differences normalized by the corresponding ratios of the differences of numbers of ROC-
curves per AUC-values, i.e., the normalized ratios (∆xi/∆xi−1)/(∆ki/∆ki−1), for the first
56 differences, which were the greatest number deemed feasible to compute when prepar-
ing the present example. As discussed in Section 2.3, when the TP and TN-distribution
difference in means is zero, the ratio is identically equal to unity. The constant C, discussed
in Section 2.3, is estimated using the bisection method, and is plotted in the figures in
dashed lines. Alignments between the stabilizing ratios and the constants C estimated
using the bisection method are visually evident.

Because the distribution function curve, cf. Figure 1b, possesses an S-shape, i.e., it
first accelerates then decelerates, the ratio of subsequent probability differences is likely
approximately constant only within an interval of limited length. However, as discussed in
Section 2.3, the need to bridge exact computations and Monte Carlo-estimates is typically
confined to the top or bottom percentile of the probability distribution, and within that
finite region the approximation tends to be quite valid as illustrated in Figure 1c,d.

4.2. Illustration through Biomarker Data

Statistical hypothesis testing and determination of p-values of AUC-values under cor-
rection for multiple hypothesis testing is illustrated using the proteomic dataset of Ref. [28].
The data encompass 39 proteins measured across 1004 individuals newly diagnosed with
cancer and 812 healthy controls. The cancer diagnoses are breast, colorectal, esophagus,
liver, lung, ovary, pancreas, and stomach cancer. In addition, a ninth pan-cancer diagnosis
is formed by merging the eight cancer diagnoses. It may be noted that the aforementioned
data source did not include statistical hypothesis tests or p-values. For ovarian cancer, we
chose to only include female healthy controls.

Composite biomarkers are formed as per Ref. [31]. From the 39 proteins, 741 composite
biomarkers are formed by combining the proteins into pairs. The 741 are further multiplied
by 8 as a result of allowing positive classification when one or both of the proteins are down-
regulated and when either or both of the proteins are up or down-regulated. By testing
for the 9 diagnoses, a total of (39 choose 2)× 8× 9 = 53,352 composite biomarkers are
simultaneously statistically hypothesis tested. p-values are adjusted as per the Bonferroni
method. The null-hypothesis is that the biomarkers are on par with the colorectal cancer
test FIT, which has an AUC-value of 0.88 ([32], p. 31). As a commonly used screening test,
the stool-based test FIT is a direct predicate IVD device for the colorectal cancer cohort,
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and also a relevant benchmark for the other cohorts that lack regulatory approved screening
predicate IVD devices [33]. Rejection of the null-hypothesis is interpreted as evidence that,
sources of error notwithstanding, the biomarker has an AUC-value that is superior vis-à-vis
the AUC-value of FIT.

For each of the 9 diagnoses, 58 AUC-value probabilities were computed exactly,
i.e., 1, 1− 1/nm, 1− 2/nm, . . . , 1− 57/nm where n and m are the numbers of TPs and
TNs, respectively. The nine probability distributions were then interpolated geometrically,
as per Section 2.3, to the 99.99th percentiles, which were determined by Monte Carlo-
simulation of 108 AUC-values per diagnosis. The distinctly large Monte Carlo-simulation
was used because some of the cohorts have highly unbalanced numbers of TPs to TNs,
which affects the geometric interpolation as discussed in Section 2.3 and illustrated in
Figure 3. Figure 3a shows distribution functions for the pan-cancer and pancreatic cohorts,
where the difference in the number of TPs, 1004 versus 93, yields a lower critical value
for the pan-cancer cohort relative to the pancreatic cohort. Figure 3c,d show geometric
interpolation for the pan-cancer cohort and the pancreatic cohort, where the pan-cancer
cohort possesses a balanced ratio of TPs to TNs (1004 : 812) and the pancreatic cohort
possesses a highly unbalanced ratio of TPs to TNs (93 : 812) yielding a relatively better fit
of the geometric constant interpolation for the pan-cancer cohort than for the pancreatic
cohort (cf. Section 2.3). Using computer equipment as detailed in Section 2.3, computation
of the 58 AUC-value probabilities required about 7.2 h per diagnosis, and the Monte Carlo-
simulation required about 1.3 h per diagnosis. The probability distributions are available
on GitHub as per the data availability statement.

In total, 26 cancer biomarkers were statistically significant at the 99%-level, mean-
ing that they have an AUC-value that is higher than the highest AUC-value out of
53,352 biomarkers, which is on par with what FIT would reasonably produce. The in-
terpretation is that those biomarkers are, sources of error notwithstanding, superior relative
to FIT. In this instance, separation of training and validation data does not constitute an
issue because every biomarker is tested statistically; i.e., no training is conducted.

Table 1 shows Bonferroni corrected critical values relative to the null-hypothesis that
the 53, 352 biomarkers have an AUC-value on par with FIT. It is evident that tumour type
cohorts that have larger sample sizes exhibit critical values that are lower than for cohorts
that have relatively smaller sample sizes. Of the biomarkers tested, 26 are significantly
better at the 99% level, than FIT, including 4 liver, 14 ovarian, and 8 pancreatic cancer
biomarkers. Table 2 details those 26 biomarkers; which proteins they use, whether the
proteins are up or down regulated, and whether up or down regulation of either protein
or both is necessary for positive classification. A selection of significant biomarkers is
graphically shown in Figure 4.
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Figure 4. Biomarkers for the detection of ovarian, liver, and pancreatic cancers, that are superior
vis-à-vis benchmark predicate device FIT at the 99% significance level. (a) Scatter plot of CancerSeek
data, CA-125 and Prolactin, per OvCa stage (I, II and III) and female healthy controls. (b) Scatter plot
similar to Subfigure (a), with cut-offs at 4.5 and 10.3; illustrating positive and negative classification
regions. (c) ROC-curves for CA-125 and Prolactin as a biomarker for the detection of OvCa, per
stages. Stronger biomarker signals for more advanced cancers are evident. For reference, FIT for CRC
and the diagonal line is included. (d) ROC-curves for biomarkers for detection of OvCa (CA-125,
Prolactin), LiCa (HGF, Osteopontin) and PaCa (CA 19-9, sErbB2). FIT and the diagonal line included
for reference.

Table 1. Critical values for two-protein biomarkers. One-sided 99% critical values relative to the
null-hypothesis that the biomarker has an AUC-value on par with the colorectal cancer test FIT, which
has AUC 0.88, Bonferroni-corrected for the simultaneous testing of 53,352 hypotheses. The numbers
of TPs and TNs account for some missing values.

Tumor Type Number of Critical Value Number of
Cohort TPs TNs 99%, corrct’d sign. biom.

Breast 209 800 0.942 0
Colorectal 388 800 0.930 0
Esophagus 45 800 0.978 0
Liver 44 800 0.978 4
Lung 104 800 0.959 0
Ovary 54 372 0.974 14
Pancreas 93 800 0.961 8
Stomach 68 800 0.969 0
Pan-cancer 1004 800 0.919 0

Table 2. Two-protein blood biomarkers for liver, ovarian, and pancreatic cancers. Details of the
26 cancer biomarkers that have AUC-values greater than the critical values in Table 1. Proteomic
dataset from Ref. [28] and composite biomarkers are formed as per Ref. [31]. Up arrow, ↑, the protein
is up-regulated among donors who have cancer relative to the healthy controls. Down arrow,
↓, the protein is down-regulated among cancers relative to controls. ‡ Whether it is necessary for
positive classification that either or both of the proteins are up or down-regulated. § The pAUC-value
is computed in the interval [0, 0.2]. ¶ The p-value is Bonferroni corrected for simultaneous hypothesis
testing of 53,352 biomarkers, under the null-hypothesis that each are on par with the colorectal cancer
test FIT, which has AUC 0.88 ([32] p. 21).

Tumour Type Proteins ∗ Regulation ‡ AUC pAUC § p-Value ¶

Liver

HGF↑ OPN↑ Either 0.983 0.183 4.33× 10−4

AFP↑ OPN↑ Either 0.982 0.187 7.85× 10−4

HGF↑ PRL↑ Either 0.979 0.182 7.03× 10−3

GDF15↑ IL-8↑ Both 0.979 0.179 8.73× 10−3
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Table 2. Cont.

Tumour Type Proteins ∗ Regulation ‡ AUC pAUC § p-Value ¶

Ovary

CA-125↑ PRL↑ Either 0.987 0.194 1.63× 10−6

CA-125↑ TIMP-1↑ Either 0.984 0.186 6.67× 10−6

CA-125↑ TSP2↓ Either 0.985 0.192 2.32× 10−5

CA-125↑ IL-6↑ Either 0.982 0.184 8.12× 10−5

CA125↑ IL-6↑ Both 0.981 0.181 1.76× 10−4

PRL↑ TIMP-1↑ Either 0.980 0.180 3.66× 10−4

CA-125↑ GDF15↑ Either 0.978 0.182 1.22× 10−3

CA-125↑ CEA↓ Either 0.977 0.179 2.40× 10−3

CA-125↑ OPN↑ Both 0.977 0.182 2.61× 10−3

CA-125↑ TGF-α↑ Either 0.976 0.184 2.76× 10−3

CA-125↑ OPN↑ Either 0.976 0.182 3.16× 10−3

CA-125↑ sFas↓ Either 0.976 0.176 4.23× 10−3

IL-6↑ sFas↓ Both 0.975 0.178 6.06× 10−3

CA-125↑ ENG↑ Either 0.974 0.177 9.03× 10−3

Pancreas

CA19-9↑ sErbB2↑ Either 0.971 0.176 1.88× 10−5

CA19-9↑ GDF15↑ Either 0.967 0.172 3.68× 10−4

CA19-9↑ OPN↑ Either 0.966 0.171 8.14× 10−4

CA19-9↑ IL-6↑ Either 0.966 0.172 1.05× 10−3

CA19-9↑ TIMP-2↑ Either 0.964 0.172 2.22× 10−3

CA19-9↑ IL-8↑ Either 0.962 0.168 8.33× 10−3

CA19-9↑ PRL↑ Either 0.962 0.170 8.89× 10−3

CA19-9↑ HGF↑ Either 0.961 0.173 9.81× 10−3

5. Discussion

Historically, AUC-value probability distributions have commonly been approximated
via asymptotic properties or bootstrap-percentiles [19,24,25]; however the approach pro-
vides inadequate accuracy in the tails of the probability distribution where critical values un-
der correction for multiple hypotheses are situated. With exact computation of AUC-value
probabilities, impeccable precision is obtainable; permitting accurate statistical inference.
In biomarker development, if critical values are too low, the type-one error probability will
be too high; effectively yielding false expectations. If critical values are too high, then the
type-two error probability will be too high; effectively barring identification of potentially
valid biomarkers. Using the exact AUC-value probability distribution, the aforementioned
risks are avoided, all while allowing for computation of exact p-values.

In order to provide reasonable assurance that a study has sufficiently large sample
sizes to demonstrate a putative effect, experimental design optimization is warranted.
The computational challenges inherent to Monte Carlo-simulation are greatly compounded
when critical values under a multidimensional set of parameter values need to be estimated.
With the proposed method of exact computation of AUC-value probabilities paired with
Monte Carlo-simulations and geometric interpolation, a method is obtained that is both
computationally feasible and relatively precise.

A disadvantage of the presently proposed approach using exact computation of AUC-
value probabilities is that the method is relatively computationally intense. Historically,
computers have become more capable over time, which will gradually mitigate the dis-
advantage. Moreover, we commit to uploading the exact distributions on GitHub, as per
the data availability statement, so that the exact probabilities can be shared and thus make
them readily available for all who need them.

A topic of future research, proposed by one of the reviewers of this article, is that exact
probabilities of the Mann–Whitney U statistic can be obtained analogously relative to the
proposed method detailed in Section 2.
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6. Conclusions

In the early 21th century, a consensus formed within the biomarker literature around
the notion that, despite substantial economic resources invested, the scientific community
has hitherto failed to produce biomarkers for cancer that translate into clinical use [34–40].
Among the known pitfalls identified, the use of statistical methods that are unsuitable or
improper for the purpose is commonly named among the most meaningful.

The ability to compute exact p-values and conduct accurate statistical hypothesis tests
of ROC AUC-values, we believe, will facilitate biomarker development and expedite the
introduction of IVD devices into clinical use.
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