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Simple Summary: Improving the precision of preoperative LNM assessment is crucial for deter-
mining the scope of PTC surgery, reducing complications, and preventing recurrence. Few studies
have applied radiomics analysis based on contrast-enhanced ultrasound (CEUS) to the prediction
of LNM in PTC. Our study found that CEUS-based radiomics, as a promising quantitative analysis,
provides incremental value to clinical prediction and management of LNM in PTC. In addition, the
developed clinical-radiomics nomogram demonstrated promising value for predicting LNM. It may
be an effective, noninvasive tool for preoperative prediction of LNM in clinical use.

Abstract: This study aimed to establish a new clinical-radiomics nomogram based on ultrasound
(US) for cervical lymph node metastasis (LNM) in papillary thyroid carcinoma (PTC). We collected
211 patients with PTC between June 2018 and April 2020, then we randomly divided these patients
into the training set (n = 148) and the validation set (n = 63). 837 radiomics features were extracted
from B-mode ultrasound (BMUS) images and contrast-enhanced ultrasound (CEUS) images. The
maximum relevance minimum redundancy (mRMR) algorithm, least absolute shrinkage and selec-
tion operator (LASSO) algorithm, and backward stepwise logistic regression (LR) were applied to
select key features and establish a radiomics score (Radscore), including BMUS Radscore and CEUS
Radscore. The clinical model and clinical-radiomics model were established using the univariate
analysis and multivariate backward stepwise LR. The clinical-radiomics model was finally presented
as a clinical-radiomics nomogram, the performance of which was evaluated by the receiver operat-
ing characteristic curves, Hosmer–Lemeshow test, calibration curves, and decision curve analysis
(DCA). The results show that the clinical-radiomics nomogram was constructed by four predictors,
including gender, age, US-reported LNM, and CEUS Radscore. The clinical-radiomics nomogram
performed well in both the training set (AUC = 0.820) and the validation set (AUC = 0.814). The
Hosmer–Lemeshow test and the calibration curves demonstrated good calibration. The DCA showed
that the clinical-radiomics nomogram had satisfactory clinical utility. The clinical-radiomics nomo-
gram constructed by CEUS Radscore and key clinical features can be used as an effective tool for
individualized prediction of cervical LNM in PTC.

Keywords: papillary thyroid carcinoma; cervical lymph node metastasis; radiomics; contrast-enhanced
ultrasound; nomogram

1. Introduction

Thyroid cancer (TC) ranked ninth among the incidence of human malignancies world-
wide [1], and papillary thyroid carcinoma (PTC) is the most common pathological type
among TC, accounting for 80–90% of cases [2]. PTC often has a good prognosis and a low
mortality rate [3]; however, some PTCs exhibit cervical lymph nodes metastasis (LNM),
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which increases the risk of local recurrence and decreases overall patient survival [4,5].
Surgery is the main treatment for PTC, but because there are no effective solutions for pre-
dicting cervical LNM before surgery, it is still debatable whether to do prophylactic cervical
lymph node (LN) dissection in patients with PTC. Although some experts recommend
prophylactic cervical LN dissection for PTC patients [6,7], other studies suggest that this
procedure may increase the risk of postoperative complications rather than considerably
improve survival [8,9]. Therefore, it is crucial to improve the precision of preoperative
LNM assessment to determine the scope of PTC surgery and enhance patient survival.

Preoperatively noninvasive assessment of cervical LNM is challenging. Ultrasound
(US) is commonly used and plays an important role [10], as radiologists can determine
the presence of cervical LNM by observing the sonographic features of bilateral cervical
LNs. However, the detection rate of metastatic LNs by conventional US is not satisfac-
tory, especially in the central region [7]. Given this, some scholars have targeted their
studies on the US characteristics of primary tumors. Liu et al. reported that intratumoral
microcalcification and parenchyma microcalcification were independent risk factors for
LNM of PTC [11]. Zhan et al. found that cervical LNM was associated with high or equal
enhancement at the peak time of CEUS, heterogeneous enhancement, and PTC size [12].
However, no validated and accepted model has been established, and US evaluation is
susceptible to differences in the professional experience of radiologists.

Radiomics offers the potential for noninvasively precise diagnosis and treatment by
extracting high-throughput quantitative information from medical images to create mod-
els that forecast intrinsic heterogeneity to support clinical decision-making [13]. Several
scholars have successfully applied the radiomics approach from the primary tumor to
predict LNM in malignant tumors, such as cervical cancer [14], pancreatic ductal adenocar-
cinoma [15], and laryngeal squamous cell carcinoma [16]. Several studies have not only
confirmed the feasibility of primary tumor-based radiomics analysis for predicting cervical
LNM in patients with PTC but also have combined the ultrasound radiomics signature
and clinical data to construct robust predictive models for predicting LNM. The radiomics
in these studies are mostly based on B-mode ultrasound (BMUS) and ultrasound elastog-
raphy [17–19]. Few studies applied CEUS-based radiomics from primary tumors to the
prediction of LNM in PTC, and it is not clear whether integrating CEUS-based radiomics
with clinical risk factors enhances the ability to predict LNM in PTC.

The nomogram is based on a multivariate regression analysis that integrates multiple
predictors, then graphically depicts the numerical relationship between the specific disease
and risk factors, and finally intuitively provides the numerical probability of an outcome
event through a scoring system [20–22]. Therefore, we aim to construct and validate a
nomogram model combining the use of CEUS radiomics and clinical data to provide tools
for the non-invasive prediction of cervical LNM in PTC for clinicians, thereby achieving
the goal of individualized medicine.

2. Materials and Methods
2.1. Study Population

This study was approved by the ethics committee at the Third Xiangya Hospital.
Written informed consent was waived owing to the retrospective nature of this study.
We retrospectively collected patients with thyroid nodules who underwent preoperative
ultrasound examination at the ultrasound department of our hospital between June 2018
and April 2020. Inclusion criteria: (1) postoperative pathology confirmed PTC; (2) treated
with thyroidectomy and cervical LN dissection; (3) primary and solitary thyroid carcinoma;
(4) no preoperative anticancer treatment; (5) ultrasound examinations were performed
within two weeks before surgery. Exclusion criteria: (1) the lesion displayed incompletely
in the US image due to excessive size; (2) poor image quality. A total of 211 patients were
finally included. According to postoperative pathology, the patients were divided into the
LNM group and the non-LNM group.
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2.2. Image Acquisition and Clinicoradiological Characteristics Collection

Ultrasonography was performed using a GE LOGIQ E9 color Doppler ultrasonic
instrument with a 9L linear array probe (2–9 MHz). The US physician first performed a
BMUS examination of the thyroid gland, and saved the BMUS image of the largest long-axis
section of the lesion, then switched to real-time CEUS mode. Next, the US physician asked
the patient to breathe calmly and tried to keep the observation section unchanged. The
contrast agent used was the SonoVue (Bracco, Milan, Italy). The patient received a bolus
injection of 2.4 mL contrast agent through the antecubital vein, followed immediately by
5 mL of normal saline. The US physician observed the dynamic perfusion process of the
lesion continuously and stored the dynamic images. A frame of the image at the peak time
of CEUS was selected to store. Finally, two images of each nodule (BMUS image and CEUS
image) were exported in Dicom format.

The conclusion suggestive of “LNM” in the US report was considered to be US-reported
LN status positive. The conclusions of “undetectable LN”, “reactive hyperplastic lymph
nodes” and “visible LN“ in the absence of metastasis were considered to be US-reported LN
status negative. According to the 2015 American Thyroid Association (ATA) guidelines [23],
the suspicious US signs suggestive of cervical LNM included round shape (aspect ratio > 0.5),
calcifications, cystic changes, hyperechogenicity, and peripheral blood flow signals. One or
more LNs that met one or more of the five criteria would be considered positive.

The following ultrasound features were recorded: primary site (left lobe, right lobe,
isthmus), location (sub-capsular, intra-thyroidal), tumor size, echogenicity (iso/hyperechoic,
hypoechoic, marked hypoechoic), aspect ratio (>1, ≤1), margin (smooth, ill-defined, ir-
regular), calcification (absent or present), enhancement pattern (hypo-enhancement, iso-
enhancement, hyper-enhancement). Demographic characteristics including gender and
age were collected from the medical records.

2.3. Image Segmentation and Feature Extraction

ITK-SNAP software (open source software; http://www.itksnap.org, accessed on
7 August 2020) was used to segment the nodules, and the region of interest (ROI) was
outlined along the contour of the targeted lesion. To assess interobserver reproducibil-
ity, 30 cases were randomly selected from all cases, and the images were segmented by
two US physicians (reader1 and reader2), respectively. One US physician (reader1) per-
formed all image segmentation. Next, the radiomics plug-in of 3D-Slicer software was used
to perform feature extraction of the thyroid nodules. Before extracting features, the images
were normalized including resampling to a voxel size of 1 mm × 1 mm × 1 mm, setting the
bin width parameter in 3D-Slicer at 25 HU to discretize the voxel intensity. 837 radiomics
features were extracted from each BMUS image and each CEUS image, respectively, and
feature categories included first-order statistics, gray level dependence matrix (GLDM),
gray level co-occurrence matrix (GLCM), gray level run length matrix (GLRLM), gray level
size zone matrix (GLSZM) and neighborhood gray tone difference matrix (NGTDM).

2.4. Feature Selection and Radiomics Score Construction

We divided the 211 patients into a training set (n = 148) and validation set (n = 63) by
7:3 stratified random sampling method, and then radiomics features in the training and
validation sets were z-score normalized according to the mean and standard deviation of
the training set.

The process of radiomics feature selection and radiomics score construction is as fol-
lows. First, we calculated the interclass correlation coefficient (ICC) based on the radiomics
features extracted after image segmentation by the two US physicians, and highly repro-
ducible (ICC > 0.75) features were retained. Then the redundant and irrelevant features
were removed using the minimum redundancy maximum correlation (mRMR) algorithm,
and the best top 30 features from each image were selected. Next, the radiomics features
associated with LNM were obtained by using the least absolute shrinkage and selection
operator (LASSO) algorithm. Finally, a backward stepwise logistic regression (LR) with

http://www.itksnap.org
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Akaike information criterion (AIC) was used to select the features constituting the logistic
regression model, and the model score was the radiomics score (Radscore). According to
the above process, we obtained BMUS Radscore and CEUS Radscore, respectively. Then a
Mann–Whitney U test was used to assess the association of the Radscore with LNM.

2.5. Development of the Clinical Model and the Clinical-Radiomics Nomogram

We constructed the model based on the training set and subsequently applied the
model in the validation set to test its performance. In the training set, first, we performed a
univariate analysis of clinical parameters (including demographic parameters and ultra-
sound features) and two Radscores. Stepwise multivariate LR analysis was then performed
to develop a clinical model using clinical risk factors with p-value < 0.05 in the univariate
analysis as candidate predictors.

Clinical risk factors and two Radscores were introduced into multivariate LR to build
the clinical-radiomics combined model. A backward stepwise selection process with the
AIC as the stopping rule was performed. A nomogram based on the clinical-radiomics
model was drawn to visualize the logistic regression model for individualized assessment
of patients’ risk of cervical LNM.

2.6. Model Validation

We plotted the receiver operating characteristic (ROC) curves and evaluated the
predictive ability of the clinical-radiomics nomogram by the area under the ROC curve
(AUC). Comparisons between the clinical model and the clinical-radiomics model were
made using the integrated discrimination improvement (IDI) index.

We used the Hosmer–Lemeshow test and calibration curve to assess the calibration
performance of the clinical-radiomics nomogram and used decision curve analysis (DCA)
to assess the clinical utility of the clinical-radiomics nomogram by estimating the net benefit
of the training set at each threshold probability.

2.7. Statistical Analysis

R software and associated packages were used for statistical analyses. Quantitative
data were presented as mean ± standard deviation or median ± interquartile ranges. The
t-test or Mann–Whitney U test was used to compare the differences in the measurement
data between the two groups, and the Chi-square test or Fisher’s exact test was used to
compare the differences in the enumeration data between the two groups. The difference
between the two groups was statistically significant with p < 0.05.

3. Results
3.1. Clinicoradiological Characteristics

The study flowchart and radiomics workflow are reported in Figure 1. This study
included 211 patients with solitary PTC, 88 of whom had positive cervical LNM results
and 123 of whom had negative cervical LNM results. The patients were randomly divided
in a 7:3 ratio, with 148 cases allocated to the training set and 63 cases allocated to the
validation set, and the positive rate of cervical LNM was 39.9% and 46.0% in the training
and validation sets, respectively, with no statistically significant difference (p = 0.406).
Patients in the training and validation sets are listed by their clinical features in Table 1.
Between the training and validation sets, there was no statistically significant difference
in the clinical characteristics of patients (p > 0.05 for all), indicating that the baseline data
were comparable for both sets. Table 2 shows the univariate analysis results between
cervical LNM and candidate variables in the two groups. Age, tumor size, and US-reported
LN status were associated with LNM in both the training and validation set (p < 0.05).
Primary site, echogenicity, margin, microcalcification, and enhancement patterns were
not associated with LNM in the training or validation set (p > 0.05). In the training set,
males were more likely to have LNM (p < 0.05); but gender was not associated with LNM
(p > 0.05) in the validation set. In the validation set, sub-capsular location was more likely
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to have LNM (p < 0.05); but tumor location was not associated with LNM (p > 0.05) in the
training set.

Figure 1. (a) Study flowchart of clinical-radiomics nomogram modeling for the LNM prediction in
patients with PTC; (b) Radiomics workflow. BMUS, B-mode ultrasound; CEUS, contrast-enhanced
ultrasound; ICC, interclass correlation coefficient; mRMR, minimum redundancy maximum relevance;
LASSO, least absolute shrinkage and selection operator; AIC, Akaike information criterion; Radscore,
radiomics score.
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Table 1. Baseline patient characteristics in training and validation sets.

Characteristic Training Set (n = 148) Validation Set (n = 63) p-Value

Lymph node metastasis 0.406
Negative 89 (60.1) 34 (54.0)
Positive 59 (39.9) 29 (46.0)

Age 0.531
<55 years 125 (84.5) 51 (81.0)
≥55 years 23 (15.5) 12 (19.0)

Gender 0.495
Female 111 (75.0) 50 (79.4)
Male 37 (25.0) 13 (20.6)

Primary site 0.299
Left lobe 61 (41.2) 33 (52.4)

Right lobe 78 (52.7) 26 (41.3)
Isthmus 9 (6.1) 4 (6.3)

Tumor location 0.980
Intra-thyroidal 35 (23.6) 15 (23.8)
Sub-capsular 113 (76.4) 48 (76.2)
Tumor size 0.106
≤10 mm 106 (71.6) 38 (60.3)
>10 mm 42 (28.4) 25 (39.7)

Echogenicity 0.583
iso/hyperechoic 7 (4.7) 3 (4.8)

hypoechoic 58 (39.2) 20 (31.7)
marked hypoechoic 83 (56.1) 40 (63.5)

Aspect ratio > 1 0.757
Absent 93 (62.8) 41 (65.1)
Present 55 (37.2) 22 (34.9)
Margin 0.579
Smooth 7 (4.7) 3 (4.8)

Ill-defined 12 (8.1) 8 (12.7)
Irregular 129 (87.2) 52 (82.5)

Microcalcification 0.571
Absent 39 (26.4) 19 (30.2)
Present 109 (73.6) 44 (69.8)

Enhancement pattern 0.329
Hyper-enhancement 7 (4.7) 1 (1.6)

Iso-enhancement 34 (23.0) 11 (17.5)
Hypo-enhancement 107 (72.3) 51 (81.0)

US-reported LN status 0.062
Negative 130 (87.8) 49 (77.8)
Positive 18 (12.2) 14 (22.2)

BMUS Radscore, 0.662
Median (Interquartile range) −0.40 (−0.71, −0.07) −0.32 (−0.84, 0.10)

CEUS Radscore, 0.185
Median (Interquartile range) −0.54 (−1.20, 0.29) −0.37 (−0.87, 0.36)

3.2. Radiomics Score Building

After removing the less stable features with ICC ≤ 0.75, 768 and 775 features were kept
from the BMUS and CEUS images of each patient, respectively; 30 features were retained
in each image by the mRMR algorithm. After the LASSO regression (Figure 2), 2 features
from BMUS images and 10 features from CEUS images were selected. After the backward
stepwise logistic regression analysis, 1 radiomics feature from the BMUS and 5 radiomics
features from CEUS images were found to associate with LNM and used to construct the
BMUS radiomics score and CEUS radiomics score, respectively. The formulas for BMUS
Radscore and CEUS Radscore were as follows:

BMUS Radscore = −0.4535 − 0.5901 × wavelet.HLH_glszm_ZonePercentage (1)
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CEUS Radscore = − 0.5624 − 0.5753 × wavelet.LHL_glcm_Idn − 0.4804 × wavelet.LHL_gldm_Depend-
enceVariance + 0.3809 × wavelet.HHH_firstorder_Median + 0.5590 × original_glszm_SizeZoneNonUni-

formity − 0.9770 × wavelet.LHH_glrlm_GrayLevelNonUniformityNormalized
(2)

Table 2. Associations between the lymph node metastasis and patient characteristics in the training
and validation sets.

Characteristic
Training Set Validation Set

LNM− LNM+ p-Value LNM− LNM+ p-Value

Age 0.017 0.023
<55 years 70 (78.7) 55 (93.2) 24 (70.6) 27 (93.1)
≥55 years 19 (21.3) 4 (6.8) 10 (29.4) 2 (6.9)

Gender 0.042 0.060
Female 72 (80.9) 39 (66.1) 30 (88.2) 20 (69.0)
Male 17 (19.1) 20 (33.9) 4 (11.8) 9 (31.0)

Primary site 0.642 0.401
Left lobe 34 (38.2) 27 (45.8) 17 (50.0) 16 (55.2)

Right lobe 49 (55.1) 29 (49.2) 16 (47.1) 10 (34.5)
Isthmus 6 (6.7) 3 (5.1) 1 (2.9) 3 (10.3)

Tumor location 0.118 0.020
Intra-thyroidal 25 (28.1) 10 (16.9) 12 (35.3) 3 (10.3)
Sub-capsular 64 (71.9) 49 (83.1) 22 (64.7) 26 (89.7)
Tumor size 0.002 <0.001

>10 mm 72 (80.9) 34 (57.6) 27 (79.4) 11 (37.9)
≤10 mm 17 (19.1) 25 (42.4) 7 (20.6) 18 (62.1)

Echogenicity 0.409 0.497
iso/hyperechoic 5 (5.6) 2 (3.4) 1 (2.9) 2 (6.9)

hypoechoic 31 (34.8) 27 (45.8) 13 (38.2) 7 (24.1)
marked hypoechoic 53 (59.6) 30 (50.8) 20 (58.8) 20 (69.0)

Aspect ratio > 1 0.309 0.029
Absent 53 (59.6) 40 (67.8) 18 (52.9) 23 (79.3)
Present 36 (40.4) 19 (32.2) 16 (47.1) 6 (20.7)
Margin 1.000 0.146
Smooth 4 (4.5) 3 (5.1) 1 (2.9) 2 (6.9)

Ill-defined 7 (7.9) 5 (8.5) 2 (5.9) 6 (20.7)
Irregular 78 (87.6) 51 (86.4) 31 (91.2) 21 (72.4)

Microcalcification 0.083 0.336
Absent 28 (31.5) 11 (18.6) 12 (35.3) 7 (24.1)
Present 61 (68.5) 48 (81.4) 22 (64.7) 22 (75.9)

Enhancement pattern 0.155 0.860
Hyper-enhancement 2 (2.2) 5 (8.5) 0 (0.0) 1 (3.4)

Iso-enhancement 23 (25.8) 11 (18.6) 6 (17.6) 5 (17.2)
Hypo-enhancement 64 (71.9) 43 (72.9) 28 (82.4) 23 (79.3)

US-reported LN status <0.001 0.031
Negative 85 (95.5) 45 (76.3) 30 (88.2) 19 (65.5)
Positive 4 (4.5) 14 (23.7) 4 (11.8) 10 (34.5)

BMUS Radscore 0.001 0.004
Median (Interquartile

range) −0.51 (−0.85, −0.21) −0.25 (−0.50, 0.04) −0.53 (−1.00, −0.16) −0.02 (−0.52, 0.28)

CEUS Radscore <0.001 0.002
Median (Interquartile

range) −0.89 (−1.71, −0.28) 0.12 (−0.54, 0.66) −0.66 (−1.18, −0.07) 0.10 (−0.37, 0.75)

3.3. Model Building and Validation

The univariate results showed significant differences (p < 0.05) in age, gender, tumor
size, and US-reported LN status between the LNM positive and negative groups in the
training set (Table 2). After backward stepwise multivariate logistic regression analysis, age
< 55 years and US-reported LN status positive were still identified to be significant factors
(p < 0.05) for LNM (Table 3). The AUCs for the clinical model were 0.700 (0.617–0.784) and
0.763 (0.650–0.877) in the training and validation set, respectively (Figure 3).
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Figure 2. Selection of radiomics features using the least absolute shrinkage and selection operator
(LASSO) algorithm in the training set. (a,c) LASSO coefficient profiles of the BMUS (a) and CEUS
(c) features. (b,d) The 10-fold cross-validation and the minimum criteria process were used to
generate the optimal penalization coefficient lambda (λ) in the BMUS and CEUS LASSO models.
Dotted vertical lines are drawn by using the minimum criteria and 1 standard error of the minimum
criteria. As a result, λ values of 0.08255607 and 0.05676918 were selected for the BMUS (b) and CEUS
(d) features, respectively.
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Table 3. Clinical model and clinical-radiomics model based on stepwise multivariate analyses for
prediction of LNM.

Characteristics Odds Ratio (95%CI) p-Value

Clinical model
Gender (male vs. female) 2.18 (0.95, 5.00) 0.067

Age (≥55 years vs. <55 years) 0.30 (0.09, 0.96) 0.042
Tumor size (>10 mm vs. ≤10 mm) 2.22 (1.00, 4.95) 0.051

US-reported LN status (positive vs. negative) 4.86 (1.40, 16.83) 0.013
Clinical-radiomics model
Gender (male vs. female) 2.22 (0.86, 5.74) 0.100

Age (≥55 years vs. <55 years) 0.18 (0.05, 0.70) 0.013
US-reported LN status (positive vs. negative) 5.16 (1.40, 18.98) 0.014

CEUS Radscore 2.75 (1.79, 4.23) <0.001
Abbreviations: CI, confidence interval.
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Six factors, namely, age, gender, tumor size, US-reported LN status, BMUS Radscore,
and CEUS Radscore were introduced into stepwise multivariate logistic regression. As
a result, the clinical-radiomics combined model was constructed based on gender, age,
US-reported LN status, and CEUS Radscore (Table 3). In the combined model, age (OR,
0.18; 95%CI, 0.05–0.70), US-reported LN status (OR, 5.16; 95%CI, 1.40–18.98), and CEUS
Radscore (OR, 2.75; 95%CI, 1.79–4.23) were independently associated with LNM. The
AUCs for the combined model were 0.820 (0.749–0.890) and 0.814 (0.707–0.922) in the
training and validation set, respectively (Figure 3). Then we compared the clinical model
and the clinical-radiomics model [IDI = 15.42% (9.15–21.69%), p < 0.001 in the training
set; IDI = 8.59% (0.91–16.26%), p = 0.028 in the validation set], a notable improvement in
discrimination was seen in the clinical-radiomics model. This might mean that the addition
of CEUS Radiomics improved LNM risk discrimination beyond the clinical model. We
visualized the clinical-radiomics model using a clinical-radiomics nomogram (Figure 4A).
The calibration curves (Figure 4B,C) and the Hosmer–Lemeshow test revealed that there
was no significant difference between the probability predicted by the clinical-radiomics
nomogram and actual probabilities (the Hosmer–Lemeshow test: p-value = 0.569 in the
training set; p-value = 0.558 in the validation set). The DCA (Figure 5) showed that a



Cancers 2023, 15, 1613 10 of 15

treatment plan based on the clinical-radiomics nomogram might be more beneficial than
either the treat-all-patients strategy or the treat-none strategy, and the net benefit of the
clinical-radiomics nomogram was higher than the clinical model across the majority of the
range of threshold probabilities.
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with LNM (all). The decision curves indicate that the net benefit of the clinical-radiomics nomogram was
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4. Discussion

Currently, surgery is the main treatment for PTC. However, it is controversial whether
total thyroidectomy and prophylactic lymph node dissection can provide substantial
benefits for patients with PTC. Furthermore, surgical demolitive interventions may be
accompanied by more severe complications, such as recurrent laryngeal nerve paralysis,
cervical hematoma, and hypoparathyroidism [24,25]. Therefore, preoperatively prognostic
markers to assess the risk of cervical LNM in PTC are of great significance to effectively
avoid overdiagnosis and improve prognosis. To this end, Vincenzo Marotta et al. found
that germline VEGF-A single nucleotide polymorphisms (SNPs) were stable and accessible
prognostic markers for DTC (Differentiated Thyroid Cancer; PTC accounts for 85% of
DTC [23]) obtained by peripheral blood testing, and constitute promising tools to enhance
prognostic stratification of DTC [26]. In addition, Zhang et al. analyzed the BRAFV600E
mutation from thyroid nodule samples collected by Fine-Needle Aspiration (FNA) biopsy
and found that BRAFV600E mutation was an independent prognostic marker of central
cervical LNM in PTC [27]. Unlike the aforementioned markers, radiomics is a non-invasive,
time-saving, and cost-effective prognostic marker which was confirmed by many recent
studies [13,28–30].

In the current study, we developed and validated a clinical-radiomics nomogram that
combines key clinical risk factors and CEUS radiomics features for the individualized predic-
tion of LNM in PTC. Compared with the clinical model, the clinical-radiomics nomogram had
the better diagnostic efficacy for predicting LNM, with AUCs of 0.820 and 0.814, in the training
set and validation set, respectively. Thus, our study suggests that clinical-radiomics nomogram
can be used to assess the risk of LNM for PTC patients preoperatively and non-invasively,
and provide a reference for individualized treatment planning.

According to the TNM staging system of the AJCC 8th edition [23], 55 years was used
as the cut-off value for the age of patients with PTC in this study. Both univariate and
multivariate analyses showed that age was significantly and negatively associated with
LNM, and young age was an independent risk factor for cervical LNM in patients with
PTC. This is consistent with previous findings [11,31]. Therefore, during the preoperative
US examination, it was crucial to carefully examine the LN status in young patients with
PTC. Male PTC patients had a higher likelihood of LNM than female PTC patients [32–34],
which was also confirmed by our findings. This may be related to sex hormones [35]. After
selection with the backward stepwise method, gender was kept in the final model. Both
univariate and multivariate analyses showed that US-reported LN status was significantly
associated with LNM, so US-reported LN status was included in the final prediction
model. This is similar to other studies [18,19], showing that US-reported LN status is
an important part of the preoperative prediction. However, US has limitations in the
assessment of cervical LNM. Central cervical LNM was easily missed due to its deep
location and the thyroid gland that overlies it; some meta-analyses have shown that the
sensitivity of ultrasound for the assessment of central cervical LNM is less than 35% [7,36].
In addition, US diagnosis is based on visual qualitative judgments that were constrained
by US physicians’ experience differences. Therefore, complementary indicators are needed
for a more efficient diagnosis.

In recent years, radiomics is one of the hot research topics in medical imaging. Ra-
diomics analysis can overcome the possible strong subjectivity of traditional medical image
interpretation and convert medical imaging data into quantitative biomarkers through
innovative computational methods [37]. US-based radiomics techniques have developed
rapidly and have been applied to the differential diagnosis of tumors and the assessment of
tumor aggressiveness, including malignant parotid gland lesions [38], breast cancer [39,40],
and renal cell carcinoma [41]. With regard to PTC, Enock Adjei Agyekum et al. [42] re-
ported that the radiomics model based on preoperative US images provided promising
results in assessing cervical LNM in patients with PTC. Some studies have explored the
further application of multimodal US radiomics [19,43,44]. Our preliminary study found
that radiomics analysis of BMUS and CEUS images has good diagnostic efficacy for dis-
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criminating thyroid nodules, and the diagnostic efficacy of the BMUS + CEUS radiomics
model is superior, suggesting the potential application value of multimodal radiomics in
identifying benign and malignant thyroid nodules [45]. CEUS can help for preoperative
prediction of LNM in PTC by intravenously injecting a blood pool contrast agent to show
tissue microperfusion [5]. In this study, we explored the use of combined BMUS and CEUS
images for radiomics analysis in predicting LNM of PTC. It is noticeable that in univariate
analysis, BMUS Radscore and CEUS Radscore were significantly associated with LNM, but
BMUS Radscore did not enter into the final clinical-radiomics model, which is similar to
the results of Jiang et al. [19], showing that the BMUS Radscore was excluded due to its
insufficient predictive power for LNM. We discovered that in the final multivariate stepwise
logistic regression, the superior discriminatory power of CEUS Radscore weakened the
weight of the BMUS Radscore.

Previous studies have found that the CEUS enhancement pattern of tumors can help
predict LNM and that hyper- or iso-enhancement can be an independent risk factor for
LNM [12,46]. The enhancement pattern of CEUS in our study is not related to LNM, proba-
bly due to the different data set with the small sample size of high enhancement in our study;
in addition, enhancement intensity, as a qualitative characteristic judged by the naked eye,
involves a certain degree of subjectivity. This does not affect our inspiring finding that
quantitative radiomics analysis based on the CEUS image is strongly associated with LNM.
In contrast to visual inspection of enhancement intensity and homogeneity, radiomics may
be able to quantitatively decode important information about the heterogeneity of tumor
microcirculation, which is associated with intratumoral perfusion, vascular permeability,
and angiogenesis [47–49]. The CEUS Radscore included five radiomics features, and 80%
of the selected radiomics features were wavelet-based features. The wavelet transform
can reveal the hidden features of medical images at multiple scales [50,51], amplify the
heterogeneous information of target tumor texture features, and enhance the discriminative
ability [52]. We also noticed that most selected CEUS radiomics features characterize the
spatial distribution of lesion voxels, proving that PTCs with higher vascular heterogeneity
are prone to exhibit aggressive biological behavior. These radiomics features, which are
hard to identify with the naked eye, have the potential to be non-invasive biomarkers for
the preoperative prediction of cervical LN status in PTC.

Finally, we combined the radiomics score and key preoperative clinical features to
create a clinical-radiomics model, and for clinical application, a nomogram was created as
a visualization of the logistic regression model. The AUC and clinical benefit of the clinical-
radiomics nomogram were higher than using the clinical model. Combining key clinical
features with CEUS Radscore resulted in a significant improvement in IDI, demonstrating the
incremental value of CEUS-based radiomics for preoperative clinical prediction of LN status.

The limitations of our study should be acknowledged. 1: This study was a retrospective
single-center study, so a prospective multicenter study with a large sample size is needed
for further improvement before practical application. 2: Our radiomics analysis of the
CEUS image was based on a single-frame image due to technological limitations, and much
information might be missed compared to the analysis of the entire perfusion process.
Further research is needed into image processing and feature extraction of the dynamic
image. 3: The radiomics analysis in this study was based on the images of the primary
tumors, and there are still few studies that establish a radiomics model based on LN
sonograms for LNM prediction in PTC patients. Future research is needed to determine
the feasibility and predictive value of radiomics analysis based on LN sonograms or a
combination of the primary tumor and LN images.

5. Conclusions

In conclusion, we constructed a clinical-radiomics nomogram incorporating CEUS
Radscore and key clinical features. It demonstrated favorable predictive ability for LNM
in patients with PTC and can be used as an effective tool for individualized prediction of
cervical LNM in PTC.
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