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Simple Summary: Supervised deep learning techniques can now automatically process whole der-
moscopic images and obtain a diagnostic accuracy for melanoma that exceeds that of specialists.
These automatic diagnosis systems are now appearing in clinics. However, the computational
techniques used cannot be easily interpreted by the experts using the systems, and they still fail
to detect a minority of melanomas. We describe an approach that detects critical irregularities in
pigment patterns, a clinical feature, and uses this knowledge to improve deep learning diagnostic
accuracy. In this research, we trained a deep learning network to identify visible patterns associ-
ated with melanoma. We combine these patterns with a supervised whole-image deep learning
method to improve diagnostic accuracy and provide a publicly available dataset with the clinical
structures annotated.

Abstract: Deep learning has achieved significant success in malignant melanoma diagnosis. These
diagnostic models are undergoing a transition into clinical use. However, with melanoma diagnostic
accuracy in the range of ninety percent, a significant minority of melanomas are missed by deep
learning. Many of the melanomas missed have irregular pigment networks visible using dermoscopy.
This research presents an annotated irregular network database and develops a classification pipeline
that fuses deep learning image-level results with conventional hand-crafted features from irregular
pigment networks. We identified and annotated 487 unique dermoscopic melanoma lesions from
images in the ISIC 2019 dermoscopic dataset to create a ground-truth irregular pigment network
dataset. We trained multiple transfer learned segmentation models to detect irregular networks in this
training set. A separate, mutually exclusive subset of the International Skin Imaging Collaboration
(ISIC) 2019 dataset with 500 melanomas and 500 benign lesions was used for training and testing
deep learning models for the binary classification of melanoma versus benign. The best segmentation
model, U-Net++, generated irregular network masks on the 1000-image dataset. Other classical
color, texture, and shape features were calculated for the irregular network areas. We achieved
an increase in the recall of melanoma versus benign of 11% and in accuracy of 2% over DL-only
models using conventional classifiers in a sequential pipeline based on the cascade generalization
framework, with the highest increase in recall accompanying the use of the random forest algorithm.
The proposed approach facilitates leveraging the strengths of both deep learning and conventional
image processing techniques to improve the accuracy of melanoma diagnosis. Further research
combining deep learning with conventional image processing on automatically detected dermoscopic
features is warranted.

Keywords: deep learning; machine learning; fusion; cascade generalization; melanoma; atypical
network; branch streaks; angulated lines

Cancers 2023, 15, 1259. https://doi.org/10.3390/cancers15041259 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15041259
https://doi.org/10.3390/cancers15041259
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://doi.org/10.3390/cancers15041259
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15041259?type=check_update&version=3


Cancers 2023, 15, 1259 2 of 24

1. Introduction

The number of cases of invasive malignant melanoma estimated for 2023 in the US
was 97,610, a slight decline from the 99,780 cases estimated for 2022, but accompanied by
a rise in fatalities from 7650 in 2022 to 7990 estimated deaths in 2023 [1,2]. The projected
number of cases of early in situ melanoma for 2023 was 89,070. Melanomas detected and
treated at this stage are entirely curable. Since all but a few melanomas are visible in the
skin, the case for early detection and treatment is particularly compelling for melanoma.

The number of estimated cases of melanoma is only expected to grow. Projections
indicate that melanoma will become the second most prevalent form of cancer by 2040 [3].
This highlights the importance of raising melanoma awareness, implementing prevention
measures, and improving the early diagnosis of skin lesions.

Machine vision techniques incorporating deep learning (DL) used as diagnostic assis-
tants via computer-aided diagnosis (CAD) can contribute to early melanoma detection, and
they have shown a diagnostic accuracy equal to or exceeding that of dermatologists [4,5].
DL accuracy depends critically upon large numbers of training examples.

To aid biomedical image processing, experts have been directly involved in the cura-
tion of datasets, as well as directing machine learning researchers to incorporate relevant
and useful features into the datasets. One example of such work is the HAM10000 dataset
of dermoscopic images [6], which has contributed to the International Skin Imaging Col-
laboration (ISIC) challenge datasets. These have been released in several iterations since
2016 and include a range of skin lesion-related tasks [7–9]. Other datasets have also been
used in CAD research, including PH2 [10], which has 200 dermoscopic images with three
diagnosis classes, and the Interactive Atlas of Dermoscopy [11], which has over 1000 clinical
cases with clinical and dermoscopy images, annotations of specific features, histopathology
results, and difficulty levels.

There have been many surveys that have highlighted both machine learning and deep
learning approaches to skin lesion research. An analysis of recent DL and machine learning
models for lesion classification trained on public datasets, focused on Artificial Neural
Networks (ANNs), Convolutional Neural Networks (CNNs), Kohonen Self-Organizing
Neural Network (KNNs), and Radial Basis function-based Neural Networks (RBFNs), is
presented in [12]. The survey in [13] presents DL and a combination of DL and conventional
models, which also incorporate whole-image hand-crafted feature extraction. The survey
concludes that there is a lot of potential in using models to aid diagnostic decisions rather
than attempting to replace physicians. Another recent survey [14] gives an overview
of different DL methods used for lesion classification with clinical, dermoscopy, and
histopathology datasets, highlighting the novelty and limitations of each approach. The
survey also discusses the poor generalization ability of DL models across different domains
compared to dermatologists. In [15], a mobile application is developed that uses models
trained on the HAM10000 dataset for early detection and classification. They also use
metadata such as location information to find the UV radiation degree and type of skin in
their application. All of the recent surveys and applications, including the ones presented
here, focus entirely on whole-image classification and do not rely on the dermoscopically
relevant features used by dermatologists in the clinic. This is a gap in the current research,
the filling of which is vital for building explainable and interpretable methods and needs to
be developed further.

The segmentation of dermoscopic features has been identified as a particularly chal-
lenging task in skin lesion analysis. The only publicly available dataset that has provided
masks for five dermatological features is the lesion attribute detection challenge dataset
for the ISIC 2018 [6,16] challenge. The dataset used coarse Superpixel-based masks for
the features that included the general location of the feature but did not delineate the
features precisely. In the follow-up review of the ISIC 2018 challenge [16], it was noted that
the dermoscopic attributes were hard to segment and the overall performance was very
poor on this task, with the highest Jaccard score being only 0.473. They pointed out that
one possibility for aiding in the development of detection methods that use dermoscopic
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features would be to work on annotating patterns that strongly correlate with the diagnosis
of interest. This is what we set out to achieve with our globule segmentation dataset [17]
and in the current study. Some research has focused on the automatic identification of
clinical dermoscopic structures. These include granularity [18] and blotches [19]. These ap-
proaches have used conventional image processing, rather than deep learning, to determine
visible clinical features. Conventional imaging processing uses morphology, color statistics,
texture measures, and localization techniques to identify these structures and distinguish
them from mimics. The time-consuming and intensive work needed to develop databases
of a sufficient size for the accurate detection of these objects has hindered progress.

Therefore, recent successful DL approaches to diagnosing melanoma in dermoscopic
images have primarily used whole-image processing [4,5], avoiding the time-consuming
annotation and detection of individual melanoma features. However, the prominence of
pigment network irregularities in the very earliest examples of melanoma prompted us to
analyze these network irregularities.

Irregular Network

Irregular network, as used here, is a general term that encompasses several types
of network irregularities that can be present in melanomas. The most common type of
irregular network is the atypical pigment network, defined in a consensus conference as
a “black, brown, or gray network with irregular holes or thick lines” [20]. A more recent
terminology standardization conference defined the atypical network as a “network with
increased variability in the color, thickness, and spacing of the lines of the network that is
asymmetrically distributed” [21]. These areas have also been described as brown to black
in color, chaotic, and sometimes smudged or out of focus [22].

Another irregular network structure in melanocytic lesions that correlates with melanoma
is irregular streaks: dark, widened, irregular lines [23]. These are a subset of branched
streaks: broadened network lines with incomplete connections. Branched streaks may be
found in both benign and malignant melanocytic lesions [21].

Angulated lines constitute a third irregular configuration on a larger scale [24]. Angu-
lated lines are very broad and approximately linear structures that may appear as polygons.
These structures often show hazy gray areas or dots within the angulated lines. Examples
of these irregular network structures are shown in Figure 1.
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Figure 1. Figures showing examples of irregular network structures: (a) irregular network, (b) ir-
regular streaks, and (c) angulated lines. 
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above. This percentage was somewhat above that found in other studies, such as 55.5% in 
superficial spreading melanomas [25], a difference that could be due to different datasets. 
However, the finding that perhaps one-third of the lesions that deep learning misdiag-
nosed had an irregular network provided additional support for the importance of irreg-
ular networks in dermoscopic diagnosis. This was surprising to us because it was not rare 
varieties of melanoma that the DL network missed, but rather lesions with an irregular 
network that DL did not detect. 

In summary, irregular networks are a critical dermoscopic feature indicating mela-
noma. Because of the importance of this feature in indicating the need for further evalua-
tion, including a skin biopsy, we undertook the development of an irregular network da-
tabase. Additionally, we developed preliminary benchmarks on the segmentation task us-
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lar streaks, and (c) angulated lines.



Cancers 2023, 15, 1259 4 of 24

Several studies have found that an irregular network is associated with an increased
likelihood of melanoma [20,22,25]. A recent meta-analysis using 182 articles [22] found
that the odds ratio (OR) for melanoma in lesions with an irregular network was 1.8 to
9.0. Another study on 200 melanoma cases found that the prevalence of the feature was
55.5% [25] and that it was primarily found in superficial spreading melanoma.

Before the advent of deep learning models for computer vision tasks, researchers devel-
oped specialized feature detection/extraction algorithms to identify relevant dermoscopic
features, which would then be leveraged for lesion diagnosis. One example of the early
detection of irregular/atypical networks in machine learning extracted textural features to
detect atypical network regions in dermoscopy images (annotated by a dermatologist) and
was subsequently used for benign versus malignant classification [26]. These techniques
have not been further used for melanoma detection in large datasets.

In a preliminary study, we tabulated irregular networks in lesions missed by a deep
learning classifier (probability of melanoma < 0.6) using ChimeraNet [27] to diagnose a
separate dataset. We sought to determine the most critical feature that could help correct
deep learning errors. Sixty-eight melanomas had a calculated DL probability of less than
0.6 using ChimeraNet [27]. Of these lesions, 46 (68%) had an irregular network, as defined
above. This percentage was somewhat above that found in other studies, such as 55.5% in
superficial spreading melanomas [25], a difference that could be due to different datasets.
However, the finding that perhaps one-third of the lesions that deep learning misdiagnosed
had an irregular network provided additional support for the importance of irregular
networks in dermoscopic diagnosis. This was surprising to us because it was not rare
varieties of melanoma that the DL network missed, but rather lesions with an irregular
network that DL did not detect.

In summary, irregular networks are a critical dermoscopic feature indicating melanoma.
Because of the importance of this feature in indicating the need for further evaluation,
including a skin biopsy, we undertook the development of an irregular network database.
Additionally, we developed preliminary benchmarks on the segmentation task using a
range of different segmentation architectures. We also introduce a novel method of lever-
aging DL classification probabilities and mask-based hand-crafted features while using
conventional classifiers to improve the final test set accuracy for benign versus melanoma
classification. The remaining sections of the article are (2) Methods; (3) Results; (4) Hard-
ware and Software; (5) Discussion; and (6) Conclusion.

2. Methods
2.1. Datasets

The dataset used in this study was curated using a subset of images from the ISIC 2019
dataset [6,8,9]. Using the metadata provided with the image dataset, we associated the
ISIC19 training ground-truth CSV file with the metadata file using an image identifier as the
primary key. This primary key was labeled as the ‘image’ field in the provided metadata
file. The dataset contains 25,331 images compiled from at least three different pre-existing
datasets, including the HAM10000 [6], the BCN20000 [9], and the MSK [8] datasets. Due to
the data collection and curation method, many of these images were duplicates of a lesion
that were either captured at a different angle or at different times [9]. Some of these images
have an additional field called ‘lesion_ID’, which assigns the same image identifier to the
same lesion. In the dataset, there are 2084 lesions that do not have an assigned ID, to these
we assign the ISIC19 image ID as the lesion ID after removing the ‘_downsampled’ suffix
that exists on some images. We treated these 2048 images as unique images in our analysis.

Two separate datasets were created for the irregular-network segmentation and benign
versus melanoma classification tasks. Additionally, we use the ‘lesion_ID’ to ensure that
our splits for segmentation and classification do not overlap and that images with the same
‘lesion_ID’ do not appear across our training, validation, and test set.
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The segmentation dataset is used to train segmentation models to generate irregular-
network masks, and then hand-crafted features extracted from these masks are used in the
subsequent classification task.

2.1.1. Segmentation Dataset

A group of trained undergraduate student annotators first create an initial irregular
network mask for each image in the separated segmentation dataset. This set consists
of 487 melanoma images (449 unique ‘lesion_IDs’) which have a total of 498 masks. The
annotators sought to identify those irregular networks consistent with found in melanoma,
but not all possible irregular network structures in the images, some of which are associated
with atypical but benign lesions. These initial masks were then verified by a practicing
dermatologist [WVS] and corrected if necessary. The annotations follow the definitions
provided by the virtual consensus meeting for dermoscopy [20].

2.1.2. Classification Dataset

To create the dataset for classification, we first discard all the images in the segmenta-
tion dataset from the ISIC 2019 dataset. We then randomly selected 500 melanoma (MEL)
images and 100 images per class from the Actinic keratosis (AK), Melanocytic nevus (NV),
Benign keratosis (BKL), Dermatofibroma (DF), and Vascular lesion (VASC) classes in ISIC
2019. The dataset has 374 MEL lesion identifiers (IDs), 100 NV lesion IDs, 98 BKL lesion
IDs, 89 AK lesion IDs, 76 VASC lesion IDs, and 69 DF lesion IDs. Our classification task
has a 1000-image dataset with 806 unique lesion IDs. To train and test our DL classification
models, we split this dataset into training, testing, and validation sets.

Next, morphological and color features of irregular networks are used to classify the
skin lesions as either benign or melanoma. These features extend the features developed
for vessels proposed by Cheng et al. [28], with additional features modified for irregular
network masks. Morphological features, including count, length, width, area, and eccen-
tricity of objects, are computed from the final detected irregular network mask. Color
features include the mean and standard deviation of each set of RGB pixels that make
up an irregular network object, inside and outside the lesion area. All color statistics are
computed in the LAB color space. The lesion mask was generated using the ChimeraNet
model by Lama et al. [27].

2.2. Models

In our study, we developed a procedure that leverages the advantages of established
DL architectures and fusing them with conventional learning models to build a binary
classifier for melanoma. We start our pipeline by first building an irregular network
segmentation model and used four established architectures: U-Net [29], U-Net++ [30],
MA-Net [31], and PA-Net [32], commonly used for segmentation. All the architectures are
based on an encoder-decoder structure like the ones in auto-encoders and popularized for
medical image segmentation by U-Net.

The U-Net++ architecture is a modified version of the U-Net architecture that incorpo-
rates nested dense convolutions to connect each encoder level to its corresponding decoder
level. In addition, the architecture features multiple segmentation branches that originate
from different levels of the encoder network. Two variants of the U-Net++ architecture exist:
the fast mode and the accurate mode. The fast mode selects the final decoder segmentation
output as the final mask, while the accurate mode averages all the segmentation masks to
generate the final mask. In our work, we use the fast mode.

The Multi-scale Attention Net (MA-Net) is a segmentation model developed primarily
for liver and tumor segmentation. It introduces two new blocks incorporating a self-
attention mechanism, namely, the Position-wise Attention Block (PAB) and the Multi-scale
Fusion Attention Block (MFAB). These blocks are designed to capture attention feature maps
at both the spatial and channel levels. Specifically, the PAB is intended to obtain the spatial
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dependencies between pixels in a global view, whereas the MFAB captures the channel
dependencies between any feature maps by fusing high and low-level semantic features.

The Pyramid Attention Network (PA-Net) is a semantic segmentation model that
utilizes global contextual information. It proposes combining an attention mechanism and
a spatial pyramid to extract precise dense features for pixel masking. The combination
is achieved by introducing a Feature Pyramid Attention (FPA) module, which performs
spatial pyramid attention on the high-level output and incorporates global pooling to
enhance feature representation. A Global Attention Upsample (GAU) module is employed
to guide low-level feature selection using a global context.

We replaced the encoder stage of each of those architectures with four variants of
the EfficientNet [33], specifically EfficientNet-B2, EfficientNet-B3, EfficientNet-B4, and
EfficientNet-B5 as the encoder networks. Each model in the EfficientNet series of models
is a compound-scaled model of previous model iterations. Therefore, this lets us assess
the behavior of each architecture under scaling of the encoder. The decoder is constructed
symmetrically based on the encoder network used. All segmentation models used were
constructed using the implementation in [34] for Pytorch [35] and were pre-trained on the
ImageNet dataset [36].

For the next stage of our pipeline, classification, we used three different architectures,
EfficientNet-B0, EfficientNet-B1, and ResNet50, which were also pre-trained on the Ima-
geNet dataset [36]. We finally use conventional classifier models such as linear support
vector machines (SVM), radial basis function (RBF) SVM, random forests (RF), decision
trees (DT), and neural networks (NN) to further enhance melanoma classification in the
next stage of our pipeline.

This method of using classifiers sequentially is a variation of the cascade generalization
framework proposed in [37] and the more generalized idea of stacked generalization
proposed in [38]. We use the nomenclature from [37] and [39] to describe each “level” of our
classification process. In the cascade generalization framework, the predicted probabilities
of an initial classifier (level-0 models) are concatenated with the inputs to the classifier and
fed into a second classifier (level-1 models). In contrast, stacked generalization involves
multiple models (all of which are level-0 models) that are used to generate predictions on
the dataset and then concatenated and given to a second classifier (level-1 models) for final
classification. A similar deep learning approach termed multi-task network cascade was
also proposed in [40] for end-to-end instance segmentation.

In our method, DL models used for classification constitute the level-0 models, while
the subsequent conventional classifiers trained using hand-crafted features concatenated
with the initial DL output probabilities are the level-1 models. This approach allows us to
improve the performance of melanoma classification by leveraging the strengths of both
deep learning and conventional classifiers. An overview of the whole process is presented
in Figure 2.

2.3. Evaluation Metrics

In our study, we used overall pixel-based metrics on the test dataset to evaluate
the quality of our segmentations. These metrics were calculated after thresholding the
predicted masks using a threshold of 0.5 and accumulating true-positive (TP), false-positive
(FP), true-negative (TN), and false-negative (FN) pixels across the entire test dataset. TP, FP,
TN, and FN are calculated as follows,

TP = ΣI
i=1ΣNi

j=11((p(i, j) = 1) ∧ (g(i, j) = 1)), (1)

FP = ΣI
i=1ΣNi

j=11((p(i, j) = 1) ∧ (g(i, j) = 0)), (2)

TN = ΣI
i=1ΣNi

j=11((p(i, j) = 0) ∧ (g(i, j) = 0)), and (3)
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FN = ΣI
i=1ΣNi

j=11((p(i, j) = 1) ∧ (g(i, j) = 0)). (4)

In the equations above I is the total number of images in the segmentation test dataset,
Ni is the number of pixels in the ith image in the test dataset, p(i, j) represents the jth pixel
in the predicted mask for the ith image, t(i, j) represents the jth pixel in the ground-truth
mask of the ith image, and p(i, j), t(i, j) ∈ {0, 1}. t(i, j) = 1, means that the jth pixel in the
ground-truth mask of the ith image has been annotated as an irregular network pixel and is
not an irregular network pixel when t(i, j) = 0. p(i, j) = 1, means that the jth pixel in the
predicted mask of the ith image has been predicted as an irregular network pixel and not
an irregular network pixel when t(i, j) = 0. 1 is the indicator function defined below,

1(statement) =
{

1, i f statement true
0, otherwise

, (5)

and ∧ is the operator for logical conjunction (and).
We then use the standard definitions for precision, recall, F1-score, and specificity to

calculate these metrics as described in the equations below. We also calculated the per-pixel
accuracy over the entire test dataset.

Precision = TP/(TP + FP) (6)

Recall = Sensitivity = TPR = TP/(TP + FN) (7)

F1-Score = (2 × Precision × Recall)/(Precision + Recall) (8)

Specificity = TN/(TN + FP) (9)

IoU = TP/(TP + FN + FP) (10)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (11)

To further evaluate the quality of the masks produced by our algorithm, we used the
Jaccard index, also known as the Intersection-over-Union (IoU) metric. The Jaccard index
is defined as the ratio of the area of the intersection of the predicted binary mask and the
ground-truth binary mask to the area of their union, its definition in terms of TP, FP, and FN
can be found in Equation (10). It is a widely used metric in the field of image segmentation,
as it provides a measure of the similarity between the predicted and ground-truth masks.

To assess our deep learning and conventional classifiers for the binary benign versus
melanoma classification task, we used the metrics, precision, recall, f1-score, and accuracy.
In addition to this, we calculated the area under the Receiver Operating Characteristic
(ROC) curve (AUC). We also calculate the AUC when the false-positive rate (FPR) is greater
than 0.40, as dermatologists prefer higher sensitivity (true-positive rate) in this region of the
ROC curve. This means that it is better for a model to be conservative in classifying a lesion
as benign compared to classifying it as melanoma, resulting in fewer missed melanomas.

Our study used the feature permutation importance method to assess feature impor-
tance [41]. This method involves randomly shuffling the input feature order and measuring
the decrease in model performance (accuracy). By assessing the decrease in performance
after shuffling each feature, we can determine the relative importance of each feature in
the model’s predictions. This feature permutation importance score is a model-agnostic
score, meaning it can be applied to any machine learning model. However, it is essential to
note that this method only provides a relative measure of feature importance and does not
consider the possible interactions between features, especially if correlated features exist.
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Figure 2. Overview of the steps involved in our implementation. The segmentation dataset is
used to train and test the DL segmentation model. The segmentation model is used over the
classification dataset to generate masks and extract hand-crafted features for level-1 of the Cascade
generalization pipeline. The classification dataset is also used to train a DL classification model
(level-0), which is used with the hand-crafted features to train conventional classifiers for the final
diagnosis classification.

2.4. Training
2.4.1. Segmentation

For segmentation, the segmentation dataset was first split into a 50% training set, a
20% validation set, and a 30% hold-out test set before overlap handling. After ensuring
that the same lesions do not appear across the sets, the splits are, 53% in the training
set, 15% in the validation set, and 32% in the hold-out test set. We train the models for
100 epochs with an early stopping patience of 20 epochs based on the Jaccard score over
the validation set. During training we used an initial learning rate of λs =0.001 for the
first 50 epochs and reduced it to λs = 0.0001 for the last 50 epochs. All models take an
input of size 448 × 448 which was randomly cropped from the image. Batch size varied
depending on the size of the encoder model used due to hardware limitations on the
amount of GPU RAM available for training. Batch size of 6 was used for EfficientNet-
B2, a batch size of 4 for EfficientNet-B3 and EfficientNet-B4, and a batch size of 2 for
EfficientNet-B5. We used various data augmentation techniques to increase the robustness
of our segmentation model to variations in lesion color, shape, and viewing angle. Spatial
augmentation techniques included random shifting, scaling, horizontal flips, and vertical
flips applied to the randomly cropped input images. Color-based augmentation techniques
included random hue and saturation adjustments, contrast-limited adaptive histogram
equalization (CLAHE), random brightness adjustments, random gamma adjustments, and
equalization applied to the input images.

Other image augmentation methods, such as the addition of random noise, pixel
dropout, image sharpening, and blurring were also applied to the input images. Addition-
ally, we randomly performed perspective and elastic transformations to add variations in
viewing angles and to account for the elastic nature of human skin. These techniques were
used to artificially increase the training sets diversity and improve the model’s generaliza-
tion capabilities.

The loss used for training the segmentation model is the Dice Loss [42], which has
shown great promise in the domain of medical image segmentation [43]. This loss function
is particularly well-suited for image segmentation tasks as it measures the similarity
between the predicted and ground-truth masks.
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During testing, overlapping patches of dimensions 448 × 448 were extracted from the
image, with patches overlapping by 50 pixels along both the height and width dimensions.
The model takes the crops as inputs and outputs probability masks of dimensions 448 ×
448 for each crop. Test Time Augmentation (TTA), which includes combinations of no-flip
and horizontal flip along with rotations of 0◦, 90◦, 180◦, and 270◦ are performed on each
cropped patch. The application of the 8 augmentations gives us 8 augmented crops which
were then passed to the model to generate 8 probability masks. No other spatial or color-
based augmentations were performed during testing. The probability masks are passed
through the inverse of the augmentation operations to de-augment them. The resulting 8
de-augmented masks are averaged together to obtain the probability mask on the input
image patch. After doing this for all patches generated for an image, the final probability
masks are patched back together with the appropriate weighting over overlapping regions
to obtain the full probability mask having the same dimensions as the input image.

2.4.2. Classification

After evaluating the performance of our segmentation models using the Intersection-
over-union (IoU) metric, we selected the best model and used it to identify irregular
networks, irregular network mimics, and similar network-like structures in a dataset of
1000 images. A hold-out test set of 30% of the images is separated from this dataset for final
testing. The remaining 70% of the data is split into 5 folds for 5-fold cross-validation of the
deep learning classification models.

To train the deep learning classification models we used a constant initial learning rate
of λc = 0.00001, batch size of 8, weight decay of γ = 1e− 3, and input size of 448 × 448. To
prevent over-fitting, early stopping was performed if the validation loss did not improve
for 10 epochs.

Similar to the data augmentation techniques described in our segmentation pipeline,
we apply various augmentations to the training images for our classification task. These
augmentations included spatial transformations such as random shifting, scaling, horizon-
tal flips, and vertical flips. However, we used fewer color-based augmentations and did
not apply elastic transformations. The augmented image was either cropped or resized to
448 × 448 with equal probability to make the model robust to scale variations and to enable
whole lesion classification if desired. The Binary Cross-Entropy (BCE) loss was used as the
loss function for training the model. All models used for segmentation and classification
were trained using the Adam [44] optimizer.

Next, taking inspiration from the data folding strategy for stacked generalization
in [39], we used the predicted probabilities on the five validation folds of the classification
dataset to train five sets of conventional classifier models. Specifically, we used the vali-
dation set of the deep learning classifier for a fold to generate another set of 80% training
and 20% validation data. The cascade generalization framework (Section 2.2), where the
prediction probabilities of the deep learning classifier on a fold are concatenated with
the inputs to the classifier and fed into another classifier, was used to train each type of
conventional model over a training and validation set. Training each conventional classifier
on the five validation sets generated by the folding strategy mentioned above, results in
five models per type of conventional model used. It is important to note that these con-
ventional classifiers are out-of-the-box models, and no extensive hyperparameter tuning
was performed. Once trained, the predictions from the five models for each conventional
classifier were averaged to obtain the final output probabilities on that type of classifier. To
obtain the final predictions, and analysis of classification results, both with and without
cascade generalization, a constant threshold of 0.5 is applied to all output probabilities.

3. Results
3.1. DL Segmentation

Table 1 shows the best overall pixel-based scores per architecture for the irregular-
net segmentation task. The complete results for each architecture with all the encoders
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and under different levels of output thresholding can be found in Table A1. The highest
IoU was obtained using the U-Net++ model with an EfficientNet-b4 encoder. The IoU
appears low, but the ground-truth irregular-network masks used for assessment are precise
annotations of a feature that is very diverse. Further assessment of the predicted mask
using overlays shows that the model sometimes detects globules and pseudopod structures,
and an example of this can be seen in Figure 3, where no irregular network was present in
the input lesion.

Figure 4 shows the overlay for an image where the model detects irregular networks
on the periphery and a normal network in the lesion center, increasing the number of FP
pixels in the mask. The IoU for this image, approximately 0.28, is the mean per image
IoU for the whole test dataset (Table 1). Figure 5 shows a high IoU of 0.78, with an extra
network detected by the model.

Table 1. The table shows the pixel-based metrics 1 for the best encoder for each architecture based on
the IoU score after applying a threshold of 0.5 on the model outputs.

Architecture Encoder Precision Recall F1-Score Specificity IoU

U-Net EfficientNet-b4 0.363 0.523 0.428 0.984 0.273
U-Net++ EfficientNet-b4 0.358 0.562 0.438 0.982 0.280
MA-Net EfficientNet-b5 0.383 0.461 0.419 0.987 0.265
PA-Net EfficientNet-b5 0.345 0.501 0.408 0.983 0.257

1 Rounded to three significant digits. The highest value for each metric is in bold.
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3.2. Classification

For classification with our level-0 models, i.e., using conventional classifiers or DL
models alone, we see that the DL models and their ensembles perform slightly better in
terms of melanoma detection accuracy compared to the ensemble of conventional models
when the probabilities are thresholded at 0.5. This is shown in Table 2 and can also
be observed in the confusion matrices presented in Figures A2 and A3 in Appendix A.
We also observe that the ensembles of DL-only and conventional-only models show an
improvement in accuracy over the individual classifiers of each type. After ensembling
the DL models, we see an improvement of almost 4% in accuracy and recall over the best
conventional-only model, the conventional classifier ensemble. This trend is also reflected
in the ROC curves presented in Figure A1, where we have a high AUC of 0.917 for the DL
ensemble compared to 0.881 for the conventional-only ensemble.

Table 2. The table presents the classification metrics for both deep learning (DL) models applied to
lesion images and conventional models using only hand-crafted features. Additionally, the ensemble
of DL architectures and conventional models, obtained by averaging the output probabilities, is
presented. The metrics were calculated after applying a threshold of 0.5 on the output.

Level-0 Type Precision Recall F1-Score Accuracy

Efficientnet-B0 DL 0.842 0.787 0.813 0.817
Efficientnet-B1 DL 0.847 0.787 0.816 0.820

Resnet50 DL 0.899 0.686 0.779 0.802
Ensemble DL 0.886 0.781 0.830 0.838

Decision Tree Conventional 0.744 0.757 0.751 0.745
Linear SVM Conventional 0.823 0.716 0.766 0.778
Neural Net Conventional 0.806 0.763 0.784 0.787

Random Forest Conventional 0.821 0.734 0.775 0.784
RBF SVM Conventional 0.748 0.669 0.706 0.718
Ensemble Conventional 0.833 0.740 0.784 0.793

The highest value for each metric for each type of model (DL or Conventional) is highlighted in bold, and the best
across both types is underlined.

Once the cascade generalization framework is used with the probabilities from the DL
models, we always see an improvement in the number of melanoma true positives over the
classifications made based on the DL models alone. Figure A2 shows this improvement,
where, compared with the level-0 ResNet50 model, the melanoma true positives jump by
25 with the level-1 conventional ensemble model and by 35 with the level-1 random forest
model, resulting in a higher recall for melanoma. This increase in recall can be seen in
Table 3 where the ResNet50 model with random forest gives the highest recall of 0.893.
This trend can be seen for all models in the cascade generalization framework and can be
observed by looking at the confusion matrices in Figures A4, A6 and A8. The corresponding
ROC curves in Figures A5, A7 and A9 show that the AUC and AUC(FPR > 0.4) of the
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ensembled level-1 models are almost as close as those of the DL-only level-0 models and
their ensemble. Despite this, the AUC, AUC(FPR > 0.4), and recall are all highest for the
level-1 random forest, which uses the ResNet50 (level-0) output probabilities. Comparing
the metrics without cascade generalization in Table 2 and with cascade generalization in
Table 3 shows improvements to all metrics, including accuracy.

Table 3. The table presents the classification metrics for cascade generalization with DL models as
level-0 models and conventional models as level-1 models. The metrics were calculated after applying
a threshold of 0.5 to the probabilities.

Level-0 Level-1 Precision Recall F1-Score Accuracy

Efficientnet-B1 Ensemble 0.832 0.852 0.842 0.838
Efficientnet-B1 Neural Net 0.811 0.811 0.811 0.808
Efficientnet-B1 Random Forest 0.847 0.852 0.850 0.847
Efficientnet-B1 Decision Tree 0.819 0.828 0.824 0.820
Efficientnet-B1 RBF SVM 0.796 0.692 0.741 0.754
EfficientNet-B1 Linear SVM 0.826 0.757 0.790 0.796

EfficientNet-B0 Ensemble 0.860 0.870 0.865 0.862
EfficientNet-B0 Neural Net 0.835 0.781 0.807 0.811
EfficientNet-B0 Random Forest 0.835 0.840 0.838 0.835
EfficientNet-B0 Decision Tree 0.830 0.811 0.820 0.820
EfficientNet-B0 RBF SVM 0.778 0.663 0.716 0.733
EfficientNet-B0 Linear SVM 0.841 0.751 0.794 0.802

Resnet50 Ensemble 0.849 0.834 0.842 0.841
Resnet50 Neural Net 0.830 0.781 0.805 0.808
Resnet50 Random Forest 0.825 0.893 0.858 0.850
Resnet50 Decision Tree 0.822 0.822 0.822 0.820
Resnet50 RBF SVM 0.772 0.663 0.713 0.730
Resnet50 Linear SVM 0.860 0.728 0.788 0.802

The highest value for each metric for each type of level-0 model is highlighted in bold, and the best across all
cascade generalization pipelines is underlined.

Tables 4 and 5 present an overview of the results for the classification pipelines
presented. Table 4 shows the models and classification pipelines with the highest accuracy
across the different pipelines presented in this work. We see a 2% increase in accuracy with
the best cascade generalization pipeline over the best DL-only approach (ensemble) and
an increase of around 7% over the ensemble of conventional classifiers. Table 5 shows the
models with the highest recalls for the classification pipelines presented, with a higher recall
implying fewer missed melanomas. With cascade generalization, we see an improvement of
around 11% over the DL-only approach (Efficientnet-B1) and an improvement of 13% over
the conventional classifier (Neural Net). Therefore, we always achieve an improvement in
recall, f1-score, and accuracy over the naïve models (DL-only and conventional-only) when
using the presented cascade generalization framework.

Table 4. The table presents the classification metrics for the pipelines with the highest accuracy across
each of the different pipelines used for classification. CG stands for cascade generalization.

Model Classification
Pipeline Precision Recall F1-Score Accuracy

Conventional Ensemble No CG 0.833 0.740 0.784 0.793

DL Ensemble No CG 0.886 0.781 0.830 0.838

EfficientNet-B0 + Conventional
Ensemble CG 0.860 0.870 0.865 0.862

The highest value for each metric is in bold.
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Table 5. The table presents the classification metrics for the pipelines with the highest recall across
each of the different pipelines used for classification. The highest value for each metric is highlighted
in bold. CG stands for cascade generalization.

Model Classification
Pipeline Precision Recall F1-Score Accuracy

Neural Net No CG 0.806 0.763 0.784 0.787

Efficientnet-B1 No CG 0.847 0.787 0.816 0.820

Resnet50 + Random Forest CG 0.825 0.893 0.858 0.850
The highest value for each metric is in bold.

The permutation feature importance scores, as described in Section 2.3, are calculated,
and the top 10 features with and without cascade generalization are presented in Tables 6
and 7, respectively. Surprisingly, with cascade generalization, the DL level-0 probabilities
were only the second most important feature. The standard deviation of an object’s (non-
overlapping distinct contours or blobs) color inside the lesion along the L-channel in
the LAB color space ranks as the most important feature both with and without cascade
generalization. Of the top ten features across both Tables 6 and 7, eight features are common
across both methods. The variation of “lightness”, i.e., the L channel within the lesion,
within and without objects (network-like structures), is a critical feature regardless of
cascade generalization. The ratio of irregular network pixels inside the lesion to the lesion
area and the ratio of irregular network pixels outside the lesion to the lesion area, termed
densities in Tables 6 and 7, were also used in this study. This shows that more interpretable
and explainable features such as the ones presented here need to be re-examined for skin
lesion diagnosis. Extended lists with the top twenty features based on feature importance
can be found in Tables A2 and A3.

Table 6. The table shows the ten most important features based on the mean accuracy decrease
after feature permutation. The scores are the averaged mean importance scores of all conventional
classifiers without cascade generalization. Note that objects are non-overlapping distinct contours
(blobs) in the irregular network binary mask generated by the segmentation model.

Feature Importance Score

Standard deviation of object’s color in L-plane inside lesion 0.036

Mean of object’s color in L-plane inside lesion 0.026

Standard deviation of object’s color in B-plane inside lesion 0.026

Total number of objects inside lesion 0.021

Mean of skin color in A-plane (excluding both lesion and irregular networks) 0.019

Mean of object’s color in B-plane inside lesion 0.018

Standard deviation of skin color in L-plane (excluding both lesion and irregular networks) 0.016

Maximum width for all objects * 0.014

Standard deviation of skin color in B-plane (excluding both lesion and irregular networks) 0.012

Standard deviation of eccentricity for all objects 0.011

* Feature is not present in Table 7.
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Table 7. Table shows the 10 most important features based on the mean accuracy decrease after feature
permutation. The scores are the averaged mean importance scores for all conventional classifiers
with Cascade Generalization. Note that objects are non-overlapping distinct contours (blobs) in the
irregular network binary mask generated by the segmentation model.

Feature Importance Score

Standard deviation of object’s color in L-plane inside lesion 0.037

Deep Learning (level-0) probability output * 0.030

Mean of skin color in A-plane (excluding both lesion and irregular networks) 0.030

Total number of objects inside lesion 0.021

Total number of objects remaining after applying erosion with circular structuring element of radius 3 * 0.015

Mean of object’s color in L-plane inside lesion 0.014

Standard deviation of skin color in B-plane (excluding both lesion and irregular networks) 0.014

Standard deviation of object’s color in B-plane inside lesion 0.014

Standard deviation of skin color in L-plane (excluding both lesion and irregular networks) 0.013

Mean of object’s color in B-plane inside lesion 0.012

* Features are not present in Table 6.

4. Hardware and Software

All models were trained on an Intel(R) Xeon(R) Silver 4110 CPU (2.10 GHz) with
64 GBs of RAM. We used an NVIDIA Quadro P4000 GPU with an 8 GB RAM for training.
We used the Segmentation models library version 0.3.1 [34] with Pytorch version 1.12.1 [35]
to implement our segmentation models and to calculate our segmentation metrics. Our
classification models are implemented in Pytorch and our conventional classifier models
and all classification metrics are calculated using the Scikit-learn version 1.1.3 [45] package.

5. Discussion

The best diagnostic results for images of melanoma [4,5] have been obtained using
DL applied to whole images. DL results are superior to conventional image process-
ing diagnostic results and can exceed those of domain experts. This whole-image deep
learning approach fails to incorporate domain knowledge—the knowledge specialists
use to diagnose melanoma in the clinic—primarily critical dermoscopic features. These
include network irregularities, dots, globules, structureless areas, granularity, and other
visible clues.

An irregular network is a large-scale feature in one of two ways. First, the network
varies. In other words, it is different in one portion of the lesion than in another. Second, the
network is apparent only in a “zoomed-out” image, for example, in the case of angulated
lines. These lines are wide, often dozens of pixels in width, a feature that may not be
apparent to the convolution kernel, which may be only 3–5 pixels wide. Large-scale
features are the most likely to be missed by deep learning, due to their complex nature and
the variation of the feature over the whole lesion.

The findings of this study show that DL may still be at a stage where domain knowl-
edge supplied by conventional learning is needed for optimum results (Figure 6). The
results presented here show that irregular network features can boost the recall of melanoma
classification by as much as 10% and its accuracy by 2% over DL-only models. We have yet
to reach fusion equilibrium, the point at which training cases supply all of the information
needed for best diagnosis, and domain knowledge may be ignored.

While many machine learning and deep learning approaches have been applied to
medical datasets, the use of the resulting research in clinics is still lagging. Therefore, the
exploration of frameworks [46] for integrating these models to aid clinics is very important.
One reason for this is the black-box nature of deep learning models. We believe our research
will help in the creation of explainable deep learning pipelines and aid their acceptance
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within clinics. Another factor that would contribute to improving data collection and
acceptance would be the development of better human-computer interfaces such as the
one presented in [47] and [48].
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learning with FE (fusion equilibrium) training cases. At some future number of training cases, we
reach a point where the deep learning gap equals the fusion gap. From [49], with permission.

6. Conclusions

In this study, we trained a deep learning model to identify irregular networks using 487
unique examples of lesions annotated with irregular network structures in melanoma. We
compared different deep learning architectures, with all architectures using augmentation.
The architecture with the highest IoU score for irregular network identification was the
U-Net++ architecture.

Features of the identified irregular networks were analyzed using the random forest
classifier, linear SVM, RBF SVM, decision trees, and neural networks. Fusing these features
with the deep learning results for a set of 1000 images of melanomas and benign lesions
showed an improvement in the area under the curve for melanoma identification. At a
probability cutoff of 0.5, 35 more melanomas were found with a fusion of deep learning and
the random forest classifier using the cascade generalization framework. We believe that
better hyperparameter tuning of the conventional models and a wider array of hand-crafted
features may improve the results further. The adoption of deep learning models in the
clinic may be advanced by contextual hand-crafted feature identification, which will also
improve diagnostic results, in agreement with published surveys [50].

Therefore, more studies on fusing dermoscopic feature analytic results with deep
learning results are warranted.
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Appendix A

Table A1. The table shows the metrics 1 for all the encoder and architecture combinations trained for
segmentation in the study. The highest value for each is in bold.

Architecture Encoder Threshold Precision Recall F1-Score Specificity IoU

MA-Net EfficientNet-b2 0.25 0.257 0.629 0.365 0.968 0.223
MA-Net EfficientNet-b2 0.5 0.296 0.568 0.390 0.976 0.242
MA-Net EfficientNet-b2 0.75 0.336 0.501 0.402 0.982 0.251

MA-Net EfficientNet-b3 0.25 0.302 0.494 0.375 0.980 0.230
MA-Net EfficientNet-b3 0.5 0.347 0.428 0.383 0.986 0.237
MA-Net EfficientNet-b3 0.75 0.391 0.364 0.377 0.990 0.232

MA-Net EfficientNet-b4 0.25 0.295 0.593 0.394 0.975 0.245
MA-Net EfficientNet-b4 0.5 0.336 0.534 0.412 0.981 0.260
MA-Net EfficientNet-b4 0.75 0.377 0.470 0.418 0.986 0.264

MA-Net EfficientNet-b5 0.25 0.341 0.518 0.411 0.982 0.259
MA-Net EfficientNet-b5 0.5 0.383 0.461 0.419 0.987 0.265
MA-Net EfficientNet-b5 0.75 0.422 0.402 0.412 0.990 0.259

PA-Net EfficientNet-b2 0.25 0.239 0.690 0.355 0.961 0.216
PA-Net EfficientNet-b2 0.5 0.289 0.603 0.391 0.974 0.243
PA-Net EfficientNet-b2 0.75 0.337 0.505 0.405 0.982 0.254

PA-Net EfficientNet-b3 0.25 0.242 0.587 0.342 0.967 0.207
PA-Net EfficientNet-b3 0.5 0.290 0.501 0.367 0.978 0.225
PA-Net EfficientNet-b3 0.75 0.336 0.414 0.371 0.985 0.227

PA-Net EfficientNet-b4 0.25 0.263 0.631 0.372 0.969 0.228
PA-Net EfficientNet-b4 0.5 0.312 0.549 0.398 0.979 0.248
PA-Net EfficientNet-b4 0.75 0.359 0.461 0.404 0.985 0.253

PA-Net EfficientNet-b5 0.25 0.291 0.589 0.390 0.975 0.242
PA-Net EfficientNet-b5 0.5 0.345 0.501 0.408 0.983 0.257
PA-Net EfficientNet-b5 0.75 0.396 0.409 0.402 0.989 0.252

U-Net EfficientNet-b2 0.25 0.280 0.572 0.376 0.974 0.232
U-Net EfficientNet-b2 0.5 0.325 0.498 0.394 0.982 0.245
U-Net EfficientNet-b2 0.75 0.368 0.422 0.394 0.987 0.245

U-Net EfficientNet-b3 0.25 0.341 0.537 0.417 0.982 0.263
U-Net EfficientNet-b3 0.5 0.385 0.476 0.426 0.987 0.271
U-Net EfficientNet-b3 0.75 0.427 0.415 0.421 0.990 0.267
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Table A1. Cont.

Architecture Encoder Threshold Precision Recall F1-Score Specificity IoU

U-Net EfficientNet-b4 0.25 0.319 0.586 0.413 0.978 0.261
U-Net EfficientNet-b4 0.5 0.363 0.523 0.428 0.984 0.273
U-Net EfficientNet-b4 0.75 0.404 0.458 0.429 0.988 0.273

U-Net EfficientNet-b5 0.25 0.348 0.485 0.405 0.984 0.254
U-Net EfficientNet-b5 0.5 0.394 0.420 0.407 0.989 0.255
U-Net EfficientNet-b5 0.75 0.438 0.356 0.393 0.992 0.244

U-Net++ EfficientNet-b2 0.25 0.282 0.657 0.395 0.970 0.246
U-Net++ EfficientNet-b2 0.5 0.325 0.589 0.419 0.978 0.265
U-Net++ EfficientNet-b2 0.75 0.365 0.517 0.428 0.984 0.272

U-Net++ EfficientNet-b3 0.25 0.321 0.566 0.409 0.979 0.257
U-Net++ EfficientNet-b3 0.5 0.364 0.507 0.423 0.984 0.269
U-Net++ EfficientNet-b3 0.75 0.404 0.447 0.424 0.988 0.269

U-Net++ EfficientNet-b4 0.25 0.315 0.622 0.418 0.976 0.265
U-Net++ EfficientNet-b4 0.5 0.358 0.562 0.438 0.982 0.280
U-Net++ EfficientNet-b4 0.75 0.400 0.499 0.444 0.987 0.285

U-Net++ EfficientNet-b5 0.25 0.347 0.535 0.421 0.982 0.267
U-Net++ EfficientNet-b5 0.5 0.393 0.473 0.429 0.987 0.273
U-Net++ EfficientNet-b5 0.75 0.435 0.410 0.422 0.991 0.268

1 Rounded to three significant digits.
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Figure A1. Comparison of ROC curves for conventional classifiers, DL classifiers, and their respec-
tive ensembles obtained by averaging the output probabilities. (a) ROC curves for conventional 
classifiers applied directly to hand-crafted features, without cascade generalization; (b) ROC curves 
for the deep learning (DL) models only and their ensemble. The area under the curve (AUC) and 
the AUC for a false-positive rate higher than 0.4 are both presented for comparison. All values are 
rounded to three significant digits. 
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Figure A1. Comparison of ROC curves for conventional classifiers, DL classifiers, and their respective
ensembles obtained by averaging the output probabilities. (a) ROC curves for conventional classifiers
applied directly to hand-crafted features, without cascade generalization; (b) ROC curves for the
deep learning (DL) models only and their ensemble. The area under the curve (AUC) and the AUC
for a false-positive rate higher than 0.4 are both presented for comparison. All values are rounded to
three significant digits.
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Figure A1. Comparison of ROC curves for conventional classifiers, DL classifiers, and their respec-
tive ensembles obtained by averaging the output probabilities. (a) ROC curves for conventional 
classifiers applied directly to hand-crafted features, without cascade generalization; (b) ROC curves 
for the deep learning (DL) models only and their ensemble. The area under the curve (AUC) and 
the AUC for a false-positive rate higher than 0.4 are both presented for comparison. All values are 
rounded to three significant digits. 
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Figure A2. Comparison of confusion matrices for conventional classifiers using only hand-crafted
features for classification (without Cascade generalization) on the classification hold-out test set.
(a) Neural network; (b) RBF SVM; (c) Linear SVM; (d) Random Forest; (e) Decision Tree; (f) Ensemble
of conventional models.
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Figure A4. Illustrates a comparison of confusion matrices obtained using cascade generalization, 
utilizing the probability outputs of the EfficientNet-B0 model. (a) Confusion matrix for classification 
using only the EfficientNet-B0 model (DL-only, level-0); (b) Confusion matrix for classification uti-
lizing the EfficientNet-B0 probability outputs and hand-crafted features, obtained through an en-
semble of conventional classifiers (averaging); (c) Confusion matrix for classification using Efficient-
Net-B0 (level-0) probability outputs and hand-crafted features for the best conventional classifier, 
Neural networks. All confusion matrices are generated after applying a threshold of 0.5 to the mod-
els probability outputs to obtain the final predictions. 
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Figure A4. Illustrates a comparison of confusion matrices obtained using cascade generalization,
utilizing the probability outputs of the EfficientNet-B0 model. (a) Confusion matrix for classification
using only the EfficientNet-B0 model (DL-only, level-0); (b) Confusion matrix for classification utiliz-
ing the EfficientNet-B0 probability outputs and hand-crafted features, obtained through an ensemble
of conventional classifiers (averaging); (c) Confusion matrix for classification using EfficientNet-B0
(level-0) probability outputs and hand-crafted features for the best conventional classifier, Neural
networks. All confusion matrices are generated after applying a threshold of 0.5 to the models
probability outputs to obtain the final predictions.
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Figure A5. (a) ROC curves for conventional classifiers (level-1) used with the DL output probabili-
ties from the EfficientNet-B0 (level-0) model and the hand-crafted features (cascade generalization). 
(b) Figure showing ROC curves only for the EfficientNet-B0 (level-0) model, the ensemble of con-
ventional classifiers, and the best conventional level-1 classifier using the EfficientNet-B0 probabil-
ity outputs. The AUC and the AUC for FPR higher than 0.4 are both presented for comparison. All 
values are rounded to three significant digits. 
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Figure A6. Illustrates a comparison of confusion matrices obtained using cascade generalization, 
utilizing the probability outputs of the EfficientNet-B1 model. (a) Confusion matrix for classification 
using only the EfficientNet-B1 model (DL-only, level-0); (b) Confusion matrix for classification uti-
lizing the EfficientNet-B0 probability outputs and hand-crafted features, obtained through an en-
semble of conventional classifiers (averaging); (c) Confusion matrix for classification using Efficient-
Net-B1 (level-0) probability outputs and hand-crafted features for the best conventional classifier, 
random forest. All confusion matrices are generated after applying a threshold of 0.5 to the model’s 
probability outputs to obtain the final predictions. 

Figure A5. (a) ROC curves for conventional classifiers (level-1) used with the DL output probabilities
from the EfficientNet-B0 (level-0) model and the hand-crafted features (cascade generalization).
(b) Figure showing ROC curves only for the EfficientNet-B0 (level-0) model, the ensemble of con-
ventional classifiers, and the best conventional level-1 classifier using the EfficientNet-B0 probability
outputs. The AUC and the AUC for FPR higher than 0.4 are both presented for comparison. All
values are rounded to three significant digits.
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Figure A6. Illustrates a comparison of confusion matrices obtained using cascade generalization, 
utilizing the probability outputs of the EfficientNet-B1 model. (a) Confusion matrix for classification 
using only the EfficientNet-B1 model (DL-only, level-0); (b) Confusion matrix for classification uti-
lizing the EfficientNet-B0 probability outputs and hand-crafted features, obtained through an en-
semble of conventional classifiers (averaging); (c) Confusion matrix for classification using Efficient-
Net-B1 (level-0) probability outputs and hand-crafted features for the best conventional classifier, 
random forest. All confusion matrices are generated after applying a threshold of 0.5 to the model’s 
probability outputs to obtain the final predictions. 

Figure A6. Illustrates a comparison of confusion matrices obtained using cascade generalization,
utilizing the probability outputs of the EfficientNet-B1 model. (a) Confusion matrix for classification
using only the EfficientNet-B1 model (DL-only, level-0); (b) Confusion matrix for classification utiliz-
ing the EfficientNet-B0 probability outputs and hand-crafted features, obtained through an ensemble
of conventional classifiers (averaging); (c) Confusion matrix for classification using EfficientNet-B1
(level-0) probability outputs and hand-crafted features for the best conventional classifier, random
forest. All confusion matrices are generated after applying a threshold of 0.5 to the model’s probability
outputs to obtain the final predictions.
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Figure A7. (a) ROC curves for conventional classifiers (level-1) used with the DL output probabili-
ties from the EfficientNet-B1 (level-0) model and the hand-crafted features (cascade generalization); 
(b) Figure showing ROC curves only for the EfficientNet-B1 (level-0) model, the ensemble of con-
ventional classifiers, and the best conventional level-1 classifier using the EfficientNet-B1 probabil-
ity outputs. The AUC and the AUC for FPR higher than 0.4 are both presented for comparison. All 
values are rounded to three significant digits. 
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Figure A8. Illustrates a comparison of confusion matrices obtained through cascade generalization, 
utilizing the probability outputs of the ResNet50 model. (a) Confusion matrix for classification using 
only the ResNet50 model (DL-only, level-0); (b) Confusion matrix for classification utilizing the Res-
Net50 probability outputs and hand-crafted features, obtained through an ensemble of conventional 
classifiers (averaging); (c) Confusion matrix for classification using the ResNet50 (level-0) probabil-
ity outputs and hand-crafted features for the best conventional classifier, random forest. All confu-
sion matrices are generated after applying a threshold of 0.5 to the model’s probability outputs to 
obtain the final predictions. 

Figure A7. (a) ROC curves for conventional classifiers (level-1) used with the DL output probabilities
from the EfficientNet-B1 (level-0) model and the hand-crafted features (cascade generalization);
(b) Figure showing ROC curves only for the EfficientNet-B1 (level-0) model, the ensemble of con-
ventional classifiers, and the best conventional level-1 classifier using the EfficientNet-B1 probability
outputs. The AUC and the AUC for FPR higher than 0.4 are both presented for comparison. All
values are rounded to three significant digits.
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Figure A7. (a) ROC curves for conventional classifiers (level-1) used with the DL output probabili-
ties from the EfficientNet-B1 (level-0) model and the hand-crafted features (cascade generalization); 
(b) Figure showing ROC curves only for the EfficientNet-B1 (level-0) model, the ensemble of con-
ventional classifiers, and the best conventional level-1 classifier using the EfficientNet-B1 probabil-
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Figure A8. Illustrates a comparison of confusion matrices obtained through cascade generalization, 
utilizing the probability outputs of the ResNet50 model. (a) Confusion matrix for classification using 
only the ResNet50 model (DL-only, level-0); (b) Confusion matrix for classification utilizing the Res-
Net50 probability outputs and hand-crafted features, obtained through an ensemble of conventional 
classifiers (averaging); (c) Confusion matrix for classification using the ResNet50 (level-0) probabil-
ity outputs and hand-crafted features for the best conventional classifier, random forest. All confu-
sion matrices are generated after applying a threshold of 0.5 to the model’s probability outputs to 
obtain the final predictions. 

Figure A8. Illustrates a comparison of confusion matrices obtained through cascade generalization,
utilizing the probability outputs of the ResNet50 model. (a) Confusion matrix for classification
using only the ResNet50 model (DL-only, level-0); (b) Confusion matrix for classification utilizing
the ResNet50 probability outputs and hand-crafted features, obtained through an ensemble of
conventional classifiers (averaging); (c) Confusion matrix for classification using the ResNet50 (level-
0) probability outputs and hand-crafted features for the best conventional classifier, random forest.
All confusion matrices are generated after applying a threshold of 0.5 to the model’s probability
outputs to obtain the final predictions.
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Figure A9. (a) ROC curves for conventional classifiers (level-1) used with the DL output probabili-
ties from the ResNet50 (level-0) model and the hand-crafted features (cascade generalization); (b) 
Figure showing ROC curves only for the ResNet50 (level-0) model, the ensemble of conventional 
classifiers, and the best conventional level-1 classifier using the ResNet50 probability outputs. The 
AUC and the AUC for FPR higher than 0.4 are both presented for comparison. All values are 
rounded to three significant digits. 

Table A2. Table shows the 20 most important features based on the mean accuracy decrease after 
feature permutation. The scores are the averaged mean importance scores of all conventional clas-
sifiers without cascade generalization. Note that objects are non-overlapping distinct contours 
(blobs) in the irregular network binary mask generated by the segmentation model. 

Feature  Importance Score 
Standard deviation of object’s color in L-plane inside lesion 0.036 

Mean of object’s color in L-plane inside lesion 0.026 
Standard deviation of object’s color in B-plane inside lesion 0.026 

Total number of objects inside lesion 0.021 
Mean of skin color in A-plane (excluding both lesion and irregular networks) 0.019 

Mean of object’s color in B-plane inside lesion 0.018 
Standard deviation of skin color in L-plane (excluding both lesion and irregular networks) 0.016 

Maximum width for all objects 0.014 
Standard deviation of skin color in B-plane (excluding both lesion and irregular networks) 0.012 

Standard deviation of eccentricity for all objects 0.011 
Standard deviation of width for all objects 0.010 

Density of objects inside lesion (objects’ area inside lesion/lesion area) 0.010 
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Standard deviation of object’s color in L-plane outside lesion 0.006 
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of radius 8 

0.005 

Mean of skin color in B-plane (excluding both lesion and irregular networks) 0.005 

Figure A9. (a) ROC curves for conventional classifiers (level-1) used with the DL output probabilities
from the ResNet50 (level-0) model and the hand-crafted features (cascade generalization); (b) Figure
showing ROC curves only for the ResNet50 (level-0) model, the ensemble of conventional classifiers,
and the best conventional level-1 classifier using the ResNet50 probability outputs. The AUC and
the AUC for FPR higher than 0.4 are both presented for comparison. All values are rounded to three
significant digits.

Table A2. Table shows the 20 most important features based on the mean accuracy decrease after
feature permutation. The scores are the averaged mean importance scores of all conventional
classifiers without cascade generalization. Note that objects are non-overlapping distinct contours
(blobs) in the irregular network binary mask generated by the segmentation model.

Feature Importance Score

Standard deviation of object’s color in L-plane inside lesion 0.036

Mean of object’s color in L-plane inside lesion 0.026

Standard deviation of object’s color in B-plane inside lesion 0.026

Total number of objects inside lesion 0.021

Mean of skin color in A-plane (excluding both lesion and irregular networks) 0.019

Mean of object’s color in B-plane inside lesion 0.018

Standard deviation of skin color in L-plane (excluding both lesion and irregular networks) 0.016

Maximum width for all objects 0.014

Standard deviation of skin color in B-plane (excluding both lesion and irregular networks) 0.012

Standard deviation of eccentricity for all objects 0.011

Standard deviation of width for all objects 0.010

Density of objects inside lesion (objects’ area inside lesion/lesion area) 0.010

Total number of objects remaining after applying erosion with circular structuring element of radius 7 0.007

Total number of objects remaining after applying erosion with circular structuring element of radius 9 0.006

Standard deviation of object’s color in L-plane outside lesion 0.006

Total number of objects remaining after applying erosion with circular structuring element of radius 5 0.006
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Table A2. Cont.

Feature Importance Score

Total number of objects remaining after applying erosion with circular structuring element of radius 8 0.005

Mean of skin color in B-plane (excluding both lesion and irregular networks) 0.005

Mean of object’s color in A-plane inside lesion 0.004

Total number of objects remaining after applying erosion with circular structuring element of radius 3 0.004

Table A3. Table shows the 20 most important features based on the mean accuracy decrease after
feature permutation. The scores are the averaged mean importance scores for all conventional
classifiers with cascade generalization. Note that objects are non-overlapping distinct contours (blobs)
in the irregular network binary mask generated by the segmentation model.

Feature Importance Score

Standard deviation of object’s color in L-plane inside lesion 0.037

Deep Learning probability output 0.030

Mean of skin color in A-plane (excluding both lesion and irregular networks) 0.030

Total number of objects inside lesion 0.021

Total number of objects remaining after applying erosion with circular structuring element of radius 3 0.015

Mean of object’s color in L-plane inside lesion 0.014

Standard deviation of skin color in B-plane (excluding both lesion and irregular networks) 0.014

Standard deviation of objects color in B-plane inside lesion 0.014

Standard deviation of skin color in L-plane (excluding both lesion and irregular networks) 0.013

Mean of object’s color in B-plane inside lesion 0.012

Total number of objects remaining after applying erosion with circular structuring element of radius 2 0.011

Standard deviation of object’s color in A-plane inside lesion 0.010

Total number of objects remaining after applying erosion with circular structuring element of radius 1 0.010

Density of objects inside lesion (objects’ area inside lesion/lesion area) 0.009

Standard deviation of eccentricity of objects 0.009

Maximum width for all objects 0.009

Mean of object’s color in A-plane inside lesion 0.007

Total mask area after applying erosion with circular structuring element of radius 1 0.006

Total number of objects remaining after applying erosion with circular structuring element of radius 4 0.006

Mean of objects color in L-plane outside lesion 0.006
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