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Simple Summary: Nasopharyngeal carcinoma (NPC) is extremely frequent in several regions of the
world, particularly Southern China (known as the Cantonese cancer). Previous studies were often
limited to small cohorts, and systematic comparison with other cancer types has not been explored. In
this study, we collected the largest NPC cohort (n = 431) and provided the first integrative analysis of
NPC genomes. We identified many novel drivers and mutational signatures in NPC. By comparing
NPC with other cancer types, we discovered many unique processes driving a viral-positive cancer type.

Abstract: As one of few viral-positive cancers, nasopharyngeal carcinoma (NPC) is extremely rare
across the world but very frequent in several regions of the world, including Southern China
(known as the Cantonese cancer). Even though several genomic studies have been conducted
for NPC, their sample sizes are relatively small and systematic comparison with other cancer
types has not been explored. In this study, we collected four-hundred-thirty-one samples from six
previous studies and provided the first integrative analysis of NPC genomes. Combining several
statistical methods for detecting driver genes, we identified 25 novel drivers for NPC, including
ATG14 and NLRC5. Many of these novel drivers are enriched in several important pathways, such
as autophagy and immunity. By comparing NPC with many other cancer types, we found NPC
is a unique cancer type in which a high proportion of patients (45.2%) do not have any known
driver mutations (termed as “missing driver events”) but have a preponderance of deletion events,
including chromosome 3p deletion. Through signature analysis, we identified many known and
novel signatures, including single-base signatures (n = 12), double-base signatures (n = 1), indel
signatures (n = 9) and copy number signatures (n = 8). Many of these new signatures are involved
in DNA repair and have unknown etiology and genome instability, implying an unprecedented
dynamic mutational process possibly driven by complex interactions between viral and host
genomes. By combining clinical, molecular and intra-tumor heterogeneity features, we constructed
the first integrative survival model for NPC, providing a strong basis for patient prognosis and
stratification. Taken together, we have performed one of the first integrative analyses of NPC
genomes and brought unique genomic insights into tumorigenesis of a viral-driven cancer.

Keywords: NPC; integrative analysis; driver genes; copy number variations; mutational signatures;
genome instability
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1. Introduction

As a rare form of head and neck cancer, nasopharyngeal carcinoma (NPC) has an
incidence of <1 per 100,000 per year in most parts of the world, but its incidence can be
>100-fold higher in South China (especially in Cantonese), Southeast Asia, North Africa
as well as arctic regions (e.g., in Inuit) [1]. Many risk factors, including host genetics [2],
Epstein–Barr virus (EBV) infection [3] and smoking and dietary preference (e.g., salted
fish) [4], are often associated with incidence of NPC. Understanding the genetic basis of
NPC and complex interactions with these risk factors can provide an important basis for
prevention and treatment of NPC.

As a rare form of cancer, NPC was not included in The Cancer Genome Atlas (TCGA)
and International Cancer Genome Consortium (ICGC), but its genomic landscape has
been characterized by several studies from individual research groups [5–10]. In general,
NPC is a tumor type with relatively low mutation burden driven by mutational pro-
cesses, including DNA repair and APOBEC signatures [11,12]. Functionally important
pathways, such as NF-κB, chromatin remodeling and ERBB-PI3K, are frequently mutated
in NPC [8,11,13]. Despite rapid progress in the field, several important gaps remain to
be filled. First, the cohort sizes for genomic studies are relatively small (often n < 100).
For example, despite a handful of significant driver genes, there are a large proportion
of patients with no driver mutations (30–60% depending on the study) [5], indicating
insufficient statistical power in identifying driver genes in earlier studies. Second, the
genomic and statistical tools employed to analyze NPC genomes are becoming outdated
and the original findings (e.g., mutational signatures) are becoming incompatible with
the latest developments (e.g., COSMIC 3.0) [14]. Last, as a rare cancer type outside
large consortiums, the genomic landscape of NPC genomes has not been systematically
compared with other cancer types. As one of very few viral-positive cancers, pan cancer
comparison can yield unique genomic insights into the tumorigenesis of NPC.

In this study, we first curated from the literature six whole-exome sequencing
datasets [5–10]. By integrating all the exomes (n = 431), we reprocessed the raw se-
quencing data through a unified pipeline and systematically dissected the genomic
landscape of NPC. Using state-of-the-art methods, we characterized driver genes, copy
number alterations and mutational signatures in NPC. Using multiple genomic features
extracted from different genomic layers, including tumor heterogeneity metrics, we
constructed an integrative survival model for NPC. We have performed one of the
first integrative analyses of NPC genomes and established an important foundation for
precision medicine in NPC.

2. Materials and Methods
2.1. Data Integration

We collected tumor-normal paired samples’ raw FASTQ sequencing data from six
previous studies: (1) Sequence Read Archive (SRA) database (accession No. SRP035573),
which included 56 paired nasopharyngeal carcinoma samples [7]; (2) SRA database (acces-
sion No. SRA288429), which included 51 paired samples [6]; (3) dbGAP-NHGRI (Study
ID: 20055, Nasopharynx Cancer Whole-Exome Sequencing), which included 102 paired
samples [8]; (4) dataset from Sun Yat-Sen University Cancer Center, Guangzhou, China [10],
which included 59 paired samples; (5) dataset from Sun Yat-Sen University Cancer Center,
Guangzhou, China [9], which included 75 paired samples; (6) SRA database of NCBI under
accession number PRJNA716262 [5], which included 88 paired samples.

2.2. Whole-Exome Sequencing (WES) Data Analysis

With the raw FASTQ dataset, we first cut adapter and filtered low-quality reads
using fastp (V0.21.0) [15] and then we aligned reads to human genome build 38 (Hg38)
using Burrows–Wheeler Alignment tool (BWA, v0.7.17) [16], Genome Analysis ToolKit
(GATK, v4.1.3.0) [17] was used for marking duplicates and base quality recalibration. We
used Mutect2 [18] to call somatic mutations and filtered somatic mutations using GATK.
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Funcotator from GATK was used to annotate mutations. Somatic copy number variation
and tumor purity were inferred using Sequenza (v3.0.0) [19].

We further filtered low-quality data based on: (1) the mean sequencing depth of one
paired normal and tumor should be both no less than 20; (2) the tumor mutation burden
(TMB) should not be lower than 0.3 per Mb; (3) to avoid tumor-normal mismatch, the
proportion of somatic mutations in dbSNP database should be less than 0.8. After filtering,
363 paired samples were maintained from the 431 samples for further analysis.

2.3. Identification of Driver Genes and Timing of Somatic Mutations

To identify driver genes, we used five different methods: MutsigCV (v1.1.4) [20],
dNdScv (v0.0.1) [21], CBaSE (v1.1) [22], CHASMplus (v1.0.0) [23] and MutPanning (v2.0) [24].
We used different filtering criteria for different methods. For MutdigCV, dNdScv, CBaSE
and MutPanning, we extracted genes with adjusted p-value less than 0.1. For CHASM-
plus, we retained the genes with mean CHASMplus score > 0.6 and corrected p-value
less than 0.01. In saturation analysis, we only used MutsigCV to find driver genes.

We calculated cancer cell fraction (CCF) of all mutations in the tumor according to purity
and copy number using the method provided in the R package EstimateClonality (v1.0) [25].
Mutant allele frequencies and copy number alterations can be obtained by mutect2 and
sequenza, respectively. We subsequently divided the mutation into early and late mutations
based on the binomial test implemented in the package to determine whether the mutation
of a gene is more likely to occur at an early or late stage of tumorigenesis.

GISTIC2 algorithm was used to calculate significantly mutated CNVs at arm and focal
levels [26]. To examine the effect of different sample sizes on the significance of CNVs,
we randomly selected 100 samples to find significant CNVs with GISTIC2 and compared
them with the results from the entire dataset. In order to test co-occurrence and mutual
exclusiveness of driver events, we used presence-and-absence information of different
genes/pathways, and Fisher exact test was employed to identify significant relationship
between different pairs of genes/pathways.

2.4. Signature Analysis

SigProfiler [27] was used to discover mutational signatures. First, SigProfilerMatrix-
Generator [28] (v1.2.1) was used to create a mutation matrix for single nucleotide variations,
double nucleotide variations and INDELs; only variants in exome regions were consid-
ered. Then, we used SigProfilerExtractor (v1.1.4) to perform signature detection. De novo
signatures were first discovered using an unsupervised method and were subsequently
decomposed into COSMIC signatures (v3.3) [14,27,29]. A de novo signature with poor
similarity to known signatures will be categorized as a new signature.

2.5. Clonal Deconvolution

We used PyClone (v0.13.1) [30] to perform clonal deconvolution. Shannon index
(SI) [31] was calculated based on clonal structure inferred from PyClone. SI = −∑n

i=1 piln pi,
where n denotes total number of clones and pi denotes proportion of clone i. MATH
score [32] was calculated based on the original study, MATH = MAD(VAF)

Median(VAF) × 100. Propor-
tion of late-stage mutations (pLM) was calculated based on proportion of late mutations
inferred from EstimateClonality [25].

2.6. Integrate Survival Analysis

A list of 21 features, including clinical features, ITH features and molecular features,
were first curated. We selected driver genes presented in over 15 patients in the subset
of patients with survival information (n = 232). We filtered copy number variations
presented in at least 60% of patients. To describe the relationship between different
variables and patient survival, we used a univariate Cox model to calculate hazard ratio
and significance (i.e., p-value). To find out the importance of different factors, we used a
multivariable Cox model, and the proportion of the Wald statistic for each feature was
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used to represent the importance of each variable. We used the cph function in the rms R
package to fit the Cox models.

To test the correlation between different variables, we used different methods for
different types of paired samples. For two categorical variables, we used the Fisher test.
For two continuous variables, we used Student’s t-test. For one categorical variable and
one continuous variable, we used Kruskal–Wallis test.

The c index was calculated to represent the prediction accuracy of different features. To
calculate the c index, 80% of the samples were randomly selected and used as the training
dataset and the remaining 20% samples were used as the test dataset, and 100 repeats were
applied to calculate the c index value.

3. Results
3.1. Compiling the Largest Cohort of NPC Genomes

Even though several studies have been conducted to survey the genomic landscape
of NPC [5–10], their sample sizes are relatively small. In order to integrate all available
NPC genomes, we collected raw sequencing data from the six largest exome sequencing
studies from Guangzhou (n = 75 and 59, respectively) [9,10], Macau (n = 88) [5], Hong
Kong (n = 51) [6], Singapore (n = 56) [7] as well as a combined patient cohort from Hong
Kong and Pennsylvania (n = 102) [8] (Tables 1 and S2 and Supplementary Figure S1a). In
total, 431 paired tumor-normal samples were collected for the integrative analysis. By
processing the raw sequencing data using the same analysis pipeline and subsequently
filtering away low-quality samples (e.g., low-purity samples, Methods), we maintained
363 high-quality NPC exomes for subsequent integrative analysis.

Table 1. Clinical table for our cohort.

Group Percentage (Value)

Observations
363

Stage
I 2.8% (10)
II 8.5% (31)
III 33% (121)
IV 19% (69)

missing 36% (132)

Age
Mean (SD) 50 (12)

valid (missing) 232 (131)

Gender
Female 15% (54)
Male 49% (178)

missing 36% (131)

Smoking
No 28% (103)
Yes 29% (105)

missing 43% (155)

Using Mutect2 [18], we called somatic mutations across all 363 patients, yielding
64,003 somatic nucleotide variants (SNVs) with 23,787 missense mutations,
2703 insertions, 2463 deletions, 1729 nonsense mutations and 47 pre-stop mutations
(Supplementary Figure S1b). The median TMB for NPC is found to be 1.80 per megabase,
an intermediate value compared to many other cancer types in the TCGA cohort
(Supplementary Figure S1c).
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3.2. Integrative Analysis Uncovered Many Novel Driver Genes for NPC

Even though there have been many studies investigating driver genes for NPC [5–10],
statistical power of these studies is often limited (due to small sample sizes), and only
frequently mutated genes were often reported. In order to take advantage of the large
sample size in this study, we integrated multiple statistical methods for identifying
driver genes. In particular, we employed MutsigCV [20] (based on somatic mutation
frequencies), dNdScv [21] (based on ratio of non-synonymous to synonymous mutations),
CBaSE [22] (based on Bayesian estimation of mutation rates for different mutation
types), CHASMplus [23] (a machine learning method taking into account cancer-specific
mutational effect) and MutPanning [24] (considering nucleotide context around driver
mutations). In total, 38 driver genes were found combining all five methods (Figure 1,
Methods). Classical driver genes including TP53 (11.3%), CYLD (8.8%) and NFKBIA (8%)
are the most frequent driver genes in NPC. In order to understand the novelty of these
driver genes, we first curated from the literature a list of known driver genes. From four
major studies reporting driver genes with explicit statistical evidence (Supplementary
Table S1), we curated a list of 145 candidate driver genes (Figure 2a). These driver
genes are distributed in several known pathways for NPC, such as cell cycle and growth,
NF-κB, chromatin remodeling and organization, PI3K-Akt signaling pathway, autophagy
as well as immune-related pathways. In addition to literature reported NPC drivers, we
also overlapped the list of driver genes with the Cancer Gene Census (CGC), which is a
pan cancer driver gene list curated by the research community [33].
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Figure 1. Driver landscape of the NPC cohort. Oncoprint plot of the driver landscape across the
patients. The top panel shows the tumor mutation burden (TMB) of the patients. The patient cohort
was plotted below the TMB panel. Driver frequencies are shown on the (left). Drivers’ status
(whether it is reported in the literature (“reported”) or newly identified but within CGC (“novel
within CGC”) or brand new), proportion of time being early or late mutations and statistical methods
with significant results as driver genes were plotted on the (right) [5–10].
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zation), FBXW7 (4.1%, autophagy pathway) and PIK3CA (3.3%, PI3K-Akt signaling path-
way). In addition to the reported driver genes, 12 driver genes not previously reported in 

Figure 2. Driver properties and pan cancer comparison. (a) Venn diagram between drivers identified
in this study (“this study”) from the literature (“reported”) as well as in Cancer Gene Census (CGC).
(b) dN/dS values based on missense (x-axis) and truncating (y-axis) mutations. Reported drivers
are those drivers overlapping between our study and reported driver genes (a). (c) Correlation
between different driver genes (red indicates co-occurrence, blue indicates mutual exclusiveness
and * indicates p-value < 0.05); the color corresponds to the strength of the correlation (based on
p-value). Inset figure plotted the correlation between drivers at the pathway level. (d) Timing of
driver mutations in different pathways. Y-axis plotted the odds ratios of early/late mutations in
different pathway genes (as compared to the genomic background). (e) The relationship between
sample size and number of identified driver genes (i.e., saturation plot). (f) The relationship between
median TMB and number of identified drivers across the TCGA cohort. NPC was labelled as the red
dot. Different tumor types from the TCGA were downsampled to the same size of 100 patients for a
fair comparison (Methods). (g) The relationship between median TMB and the proportion of tumors
without driver genes across the TCGA cohort. NPC was labelled as the red dot.
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Out of the 38 genes, 13 genes, including classical driver genes, such as TP53 and
NFKBIA, overlap with the reported driver list (Figures 2a and S1d). These 13 genes
included many important drivers, such as BAP1 (5%, in cell cycle and growth pathway),
TRAF3 (5.8%, NF-kappa B signaling pathway), ARID1A (3%, Chromatin remodeling and
organization), FBXW7 (4.1%, autophagy pathway) and PIK3CA (3.3%, PI3K-Akt signaling
pathway). In addition to the reported driver genes, 12 driver genes not previously reported
in NPC were indicated as driver genes in the CGC. They included important driver genes
such as KMT2D (8.5%), TGFBR2 (2.5%), SMAD4 (0.6%) and STK11 (1.4%). It is worth
pointing out that, even though many of these drivers can be found within frequent mutated
gene lists, their statistical evidence was lacking previously. It is interesting to observe that
all 12 drivers except ARHGAP5 (2.2%) belong to known pathways for NPC (Supplementary
Figure S1e), and we noticed that autophagy- and immune-related pathways are particularly
enriched for novel drivers, suggesting that larger cohort sizes from integrative analysis
empowered higher statistical power in detecting rare drivers in known pathways for NPC.

In addition to known driver genes (n = 13) and novel drivers within CGC (n = 12),
there are 13 new drivers not reported before for NPC or other cancer types (Figure 2a).
For example, ATG14 (2.5%) plays important roles in promoting membrane tethering and
fusion of autophagosomes and endolysosomes [34], and downregulation of ATG14 can
make it sensitized to cisplatin-induced apoptosis in ovarian cancer [35]. TRAF2 (2.2%) is
also considered as a proto-oncogene because of its ability to activate NF-κB pathway in
epithelial cancers [36]. It is noteworthy that a large proportion of these driver genes (6/13)
are not in known pathways for NPC and warrant future study (Supplementary Figure S1e).
Using the ratio of non-synonymous to synonymous mutations (dN/dS value) for missense
and truncating mutations, we found that many of the driver genes, including CBFB and
ATG14, are potential tumor suppressor genes with high truncating mutations (Figure 2b).
Interestingly, when we tested co-occurrence and mutual exclusiveness between driver
mutations, we found that, even though there are many pairs of co-occurring drivers with
nominal significance, including TP53 and KMT2D (Figure 2c), surprisingly, there are no
pairs of drivers with a mutually exclusive relationship, and this is also true at the pathway
level (Figure 2c inset). These observations suggest that driver events tend to act concertedly
driving tumorigenesis of NPC. One striking observation we found is that NF-κB pathway,
the most frequently mutated pathway in NPC, tends to act more solely compared to other
pathways, suggesting strength of NF-κB pathways for tumorigenesis of NPC.

In order to understand timing of these driver events, we estimated clonality of driver
mutations and assigned clonal mutations as early events and subclonal mutations as late
events (Methods). Interestingly we found that mutations in TP53, BAP1, FGFR3 and
TGFBR2 tend to be early, while mutations in C2orf78 and ITGA10 tend to be late (Figure 1,
Methods). When we analyzed the timing of mutations at the pathway level, we found that
drivers in cell cycle and growth pathways tend to be very early, while novel genes not
belonging to pathways (i.e., others) as well as chromatin organization pathways tend to be
late (Figure 2d). These observations suggest that there are still many rare driver mutations
driving tumor progression (i.e., being late) that remain to be discovered for NPC.

3.3. “Missing Driver Events” in NPC

With a large number of NPC genomes collected in our study, we wondered whether
the increased statistical power would enable identifying most of the driver genes for
NPC [37]. By downsampling the total dataset to different subsets, we re-performed the
driver identification analysis and found that there is a linear relationship between sample
size and number of identified driver genes (Figure 2e). Breaking down the driver genes by
their frequencies, we found that common driver genes with a frequency 5% or higher have
all been discovered and reach saturation at sample sizes around 250. For rarer driver genes,
driver genes are still rapidly increasing and are far from saturation (Figure 2e). Future
studies with larger sample sizes will likely identify more rare drivers for NPC.
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Even though the large sample size endowed us with higher statistical power in de-
tecting driver genes, we still observed a large proportion of patients (164/363, 45.2%) with
no driver mutations (Figure 1), a phenomenon we termed “missing driver events (MDE)”.
One may hypothesize that MDE might be because the number of driver genes identified
in NPC is rather low. When plotting number of identified driver genes as a function of
sample size across all cancer types, we found that number of driver genes identified in
NPC is comparable to other cancer types (Supplementary Figure S1d). Therefore, it is not
the number of driver genes that is responsible for the MDE in NPC. In addition to the
number of driver genes, low mutation burden might lead to lower driver events in NPC.
When we compared the proportion of tumors without driver genes across cancer types
by controlling for sample size (i.e., downsample the TCGA cohort to the same number of
patients, Methods), we found that NPC had a typical number of driver genes identified at
its corresponding level of TMB (Figure 2f). However, the proportion of tumors without
driver genes is significantly higher in NPC (Figure 2g). Taken together, we found that
NPC is a cancer type with strong “missing driver events”, possibly driven by unique
evolutionary origin (e.g., EBV infection; see Discussion).

3.4. Larger Sample Size Empowers Copy Number Identification

In addition to mutational events, copy number variations are the other major molecular
events driving cancer progression. By combining all the samples, we found that deletions
in chromosome 3p, 9p, 14q, 16q and amplifications of 3q, 8q, 12p and 12q were the most
significant CNV events in NPC (Figure 3a) [5]. Leveraging the large sample size from the
combined cohort, we used GISTIC algorithm to identify putative driver CNVs across the
NPC genome [26]. The increased sample size allowed us to identify more significant focal
events than previous individual studies (Figure 3a,b). For example, compared to a random
sampled subset (n = 100), the statistical significance is much stronger in the combined
cohort and more focal events (e.g., amplifications in 2q35 or deletions in 1p36.21) were
found in the combined cohort (Figure 3b).

One striking observation identified in CNV analysis is the high frequency of chromo-
some 3p deletion (80.4%). As NPC genomes tend to have “missing driver events” in point
mutations, we wondered whether tumorigenesis in NPC might be compensated by having
more frequent CNV events. By combining NPC genomes with all the tumor types from
the TCGA, NPC genomes do have more deletions than amplifications, even though the
overall amount of CNV events in NPC is not very high compared to other cancer types
(Figure 3c). When breaking down frequencies of individual arm events across the TCGA
cohort, we found that deletions in chromosome 3p and 14q are indeed extremely frequent
in NPC compared to arm levels events observed across cancer types in the TCGA cohort
(Figure 3d). In sum, integrative analysis across multiple cohorts empowers copy number
identification and revealed a unique landscape of genome instability in NPC.

3.5. Novel Mutational Signatures across the NPC Cohort

As a rare form of cancer driven by viral infection, NPC has several unique muta-
tional signatures. In addition to canonical age-related signatures (e.g., SBS1 and SBS5),
APOBEC- (SBS2 and SBS13), DNA-repair- (SBS6/15/20/16) and tobacco-related sig-
natures (SBS4 and SBS29) were previously found in NPC [5]. With advancements in
signature analysis, new algorithms and signature database (COSMIC 2.0 to 3.0) have
been developed, leading to new signatures and terminologies in the signature profile.
More importantly, in addition to signatures defined at the single-base level, mutational
signatures including double-base substitutions (DBS), indel (ID) [14] as well as copy
number signatures (CNV) [29] have been recently developed but are unknown for NPC.
Using the latest computational methods [27] together with the largest NPC cohort, we
aimed to fully characterize the mutational process in NPC.
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cohort (all) and randomly subsampled 100 patients (“Randomly selected 100”). Amplifications were
plotted on the top; deletions were shown in the bottom. (c) Proportion of amplified genomic regions
vs. proportion of deleted genomic regions across the TCGA and NPC cohort was plotted. Each dot
represents a tumor type. (d) For each chromosomal arm, the proportion of patients with amplification
(x-axis) vs. proportion of patients with deletion (y-axis) were plotted for all the TCGA and NPC
cohorts. Each dot represents a chromosomal arm in a specific tumor type. NPC was shown in red.
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Using sigProfiler [27], we found that the overall mutational profile at the single-base
level is dominated by C > T substitution (Figure 4a) [8,11], and sigProfiler first identified
five de novo signatures and subsequently projected them to sixteen known mutational
signatures in the COSMIC database (v3.3). We found that signatures related to aging
(SBS1 and SBS5), APOBEC (SBS2 and SBS13), tobacco (SBS4 and SBS29) and DNA mis-
match repair (SBS3 and SBS15) were the leading mutational signatures in NPC [11,12]
(Figures 4b, S2a and S3a). In addition to previously reported signatures, we also identi-
fied several new signatures, such as SBS7a (UV exposure), SBS10b (Polymerase epsilon),
SBS22 (aristolochic acid exposure) and SBS87 (Thiporuine chemotherapy treatment)
(Figure 4b). Even though the prevalence of these signatures is much rarer across NPC
patients (Figures 4b, S2a and S3a), they often contributed appreciable frequencies when
present in the sample.
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Figure 4. Mutational signatures across the NPC cohort. (a) The overall mutational landscape at the
single-base level for the NPC cohort. (b) Contributions of different SBS signatures in the NPC cohort.
(c) The overall indel landscape in the NPC cohort. (d) Contributions of different indel signatures in
the NPC cohort. (e) The overall CNV landscape for the NPC cohort. (f) Contributions of different
CNV signatures in the NPC cohort. (g) Correlation plot for different signatures. Red indicates positive
correlation and blue indicates negative correlation. Line widths mark the significance of the mutual
correlation. (h) Contribution of DNA repair signatures vs. other signatures.
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In addition to SBS signatures, we also performed doublet base substitute (DBS)
analysis and found that AT > NN and TG > NN substitutions are very frequent in NPC
(Supplementary Figure S3b). Signature analysis identified only one de novo signature.
Even though several known DBS signatures, such as DBS2 (smoking signature), DBS5
(chemotherapy) and DBS11 (APOBEC), are weakly correlated with the de novo signature,
their correlations are not high (i.e., cosine distance < 0.8). This implies that this de
novo signature might be a new signature not present in the database (Supplementary
Figure S3b). In addition to SBS and DBS signatures, we found NPC somatic indels are
dominated by 1bp insertion of cytosine (Figure 4c). The overall landscape of indel
signature can be deconvoluted to six known and two new indel signatures, including
ID2 (slippage during DNA replication of the template DNA strand), ID4 (unknown
etiology), ID6 (defective homologous recombination-based DNA damage repair), ID7
(defective DNA mismatch repair), ID8 (DNA double strand breaks by non-homologous
DNA end-joining mechanisms) and ID14 (unknown etiology) (Figures 4d, S2b and S3c).
In addition to the known indel signatures, two other new signatures, ID83B and ID83D,
are also presented in 171 and 106 patients (Supplementary Figures S2b, S3c and S4a).
Taken together, we identified many new signatures related to DNA repair and unknown
etiology in tumorigenesis of NPC.

From signatures based on point mutations and indels, we observed several impor-
tant processes related to DNA repair and genome instability. One recent progression in
dissecting mutational processes in cancer involves copy number signatures [29]. Copy
number signatures describe distribution of CNV sizes and genomic context in which CNVs
arise. Several important CNV signatures have been identified across cancer types. Using
SigProfilerMatrixGenerator [28], we found that copy number landscape of NPC is domi-
nated by short fragments in the background of diploid genomes (Figure 4e). Based on the
overall landscape, we deconvolved copy number landscape into seven known signatures,
including CN1 (Diploidy), CN2 (Tetraploidy), CN16 (chromosomal LOH, chromosomal
instability and 1x whole genome duplication), CN17 (tandem duplication and HRD) as well
as CN18, CN19 and CN20 with unknown etiology (Figures 4f, S2c and S3d). Interestingly,
we also identified a novel copy number signature designated as CNV48B (Supplementary
Figure S4b). CNV48B is dominated by short genomic fragments in diploid state and is
highly prevalent in genomes with high CNV segments (Figures 4f, S2c and S3d).

Through systematic analysis of mutational signatures across SBS, DBS, indel as well
as copy number levels, we have identified many previously known and several novel
signatures. Many of the signatures converge to similar biological processes, such as DNA
repair, APOBEC and genome instability. In order to systematically explore the relationship
among these signatures, we plotted the correlation network between multiple signatures
and found that APOBEC and DNA repair are two major processes driving positive correla-
tion between multiple signatures (Figure 4g,h). We noticed that several indel signatures
are correlated with CNV signatures, including the two novel indel signatures (ID83B and
ID83D), even though CNV signatures in general had weak correlations with other signa-
tures. Interestingly, ID83B is correlated with SBS29 (tobacco chewing), suggesting that
ID83B might be related to tobacco exposure. In addition to positive correlations, most of
the negative correlations are within signature types (e.g., within SBS). Interestingly, the
novel CNV signature CNV48B does not co-occur with any other mutational processes but
is negatively correlated with CN1 (Diploidy). Taken together, we unraveled a dynamic
landscape of mutational processes driving the tumorigenesis of NPC.

3.6. An Integrative Survival Model for NPC

Through several genomic analyses for NPC, several prognostic factors have been
identified. For example, patients with NFKB mutations are known to have poor sur-
vival [13]. However, no systematic studies have been conducted to construct an inte-
grative survival model for NPC. In addition, since intra-tumor heterogeneity (ITH) has
increasingly been recognized as an important factor driving patient clinical outcomes
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but has not been systematically explored for NPC, we constructed three ITH metrics:
(1) percentage of late mutation (pLM), calculated as a fraction of subclonal mutations in
a given sample; (2) mutant-allele tumor heterogeneity (MATH) score, which measures
distribution of variant allele frequencies across all sites; (3) Shannon’s index, based on
subclonal proportions (Methods).

In order to construct an integrative survival model, we first curated a list of potential
prognostic factors (n = 21), including clinical features (e.g., stage), molecular features
(e.g., driver mutations) and ITH features. The molecular features include relatively common
driver genes and copy number variations with appreciable frequencies (Methods). Many of
these features provide strong stratifying information (Figure 5a–d). In order to understand
the relationship between these features, we first plotted the correlation network between
all the features (Figure 5e). We found that many of these variables are correlated with each
other, particularly surrounding genome instability (GII) and TMB. Using a multivariate
Cox model, we combined all the variables into an integrated survival model and ranked the
importance of all the variables (Figure 5f). Surprisingly, clinical stage contributes weakly
to the survival model, but several important metrics, such as TMB, NFKBIA mutation
and Shannon index, are among the strongest predictors of patient survival, suggesting
importance of molecular profiling in NPC (Figure 5f). When we combined variables from
clinical, molecular as well as ITH levels, we found that the combined model had much
more prognostic power than models based on a single layer of variables (Figure 5g). Taken
together, we have constructed one of the first integrative survival models for NPC and
provided an important basis for precision medicine in NPC.
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Figure 5. Integrative survival model. (a–d) The exemplar variables that can stratify patient survival
from clinical (age), molecular (TMB), driver (NFKBIA), tumor heterogeneity (ITH). (e) The correlation
network plot for the features across clinical, molecular as well as tumor heterogeneity (ITH) layers.
Line widths marked the significance of the correlation. The dot sizes represented the hazard ratio in
the univariate Cox model and margins around the symbols labeled the significance. (f) Importance of
different features across the clinical, molecular as well as ITH features. (g) The predictive accuracy
(c-index) of individual models consisting of different features. **/**** labeled statistical differences at
p-values of 0.01 and 0.0001.
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4. Discussion

Using the largest integrative dataset for NPC (n = 431), we have systematically ex-
plored the genomic landscape of this rare cancer type. Using several state-of-the-art
statistical methods for detecting driver genes, we identified 25 novel drivers for NPC,
including KMT2D and ATG14. A pan cancer comparison across tumor types revealed a
“missing driving event” phenomenon where a high proportion of patients (45.2%) are found
to have no known driver mutations. Through signature analysis, we systematically charac-
terized mutational signatures across single-base signatures (n = 12), double-base signatures
(n = 1), indel signatures (n = 9) and CNV signatures (n = 8). In addition to several known
mutational processes, including APOBEC and DNA repair, we also identified mutational
signatures related to UV, tobacco, aristolochic acid exposure and several novel mutational
signatures with unknown etiology, revealing an unprecedent dynamic mutational process
driving the tumorigenesis of NPC. By combining clinical, molecular as well as intra-tumor
heterogeneity features, we constructed the first integrative survival model for NPC. Taken
together, we have performed one of the first integrative analyses of NPC genomes and
provided an important foundation for precision medicine in NPC.

Through multi-layer analysis of mutational signatures ranging from single-base,
double-base, indel as well as copy number alterations, we discovered a large collection
of mutational processes driving tumorigenesis of NPC. Several de novo signatures found
in this study are new and have not been found in other cancer types, worth further in-
vestigating together with other cancer types. One striking observation is that there are
many mutational processes related to DNA repair and genome instability that are strongly
associated with NPC. Previous studies have found complex interactions between the EBV
and host genome [38]. For example, interactions between viral and host genome can lead
to hypermethylation of a multitude of cellular tumor suppressor gene loci and of viral
genomes [39,40]. Moreover, EBV can also integrate to a host genome, strongly perturbing
the local regulatory landscape of a genome [41]. We hypothesized that these mutational
processes might be related to complex interactions between the host and viral genomes,
worth investigating with a multi-modal omic dataset.

As a viral-positive cancer, integrative analysis unraveled several unique processes
first discovered in NPC. First, “missing driver events” are quite exceptional across can-
cer types (Figures 1 and 2g). Together with high prevalence of deletion events (e.g.,
chromosome 3p deletion, Figure 3a) as well as a large collection of novel mutational
signatures related to DNA repair and genome instability, we hypothesized that viral
infection and oncogenes in viral genomes might provide infected nasal epithelial cells
strong “self-propelling” capabilities without accumulating driver mutations. Subsequent
complex interactions between viral and host genomes might lead to frequent chromo-
somal CNV events (e.g., chromosome 3p deletions) and a suite of mutational processes
driving initiation and progression of NPC. Thus, these observations from “missing driver
events”, frequent chromosomal deletions and several mutational signatures might be
the “collective molecular phenotypes” of a viral-positive tumor such as NPC. It will be
interesting to compare NPC genomes with other EBV-positive cancer types, understand-
ing the effect of viral infection driving tumorigenesis. Second, in many cancer types, the
clinical stage of a tumor is often of great significance for patient prognosis and treatment.
Surprisingly, the clinical stage was not so strong for patient prognosis in NPC. As the
clinical information available in the combined cohort is rather incomplete and patchy,
“losing statistical power” in these variables might not be so robust and is worth vali-
dating in a future study. On the contrary, molecular features such as TMB and NFKBIA
were found to be more powerful in predicting patient prognosis than the clinical stage,
suggesting the importance of molecular characterization of NPC. In addition, previous
studies found that EBV infection and immune infiltration can also play important roles
in patient prognosis for NPC [10,42]. These observations suggest great potential further
improving clinical staging of NPC through molecular characterization of the tumor and
its microenvironment in the near future [43,44].
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Even though we collected the largest genomic cohort and conducted a comprehensive
integrative analysis of NPC genomes, there are still several limitations worth improving
in future studies. First, the clinical data analyzed in this dataset are rather preliminary
(Supplementary Table S2). As a viral-positive cancer, both phenotypes associated with the
cancer and virus can be informative in patient prognosis [3,45]. Collecting comprehensive
clinical information can be quite important for survival analysis. Second, even though
we identified several important driver genes, their functional roles are still unknown.
For example, even though ATG14 was found to have high levels of truncating mutations
(Figure 2b), suggesting its potential role as a tumor suppressor, knocking-down experiments
found that suppressing ATG14 does not always promote tumor growth [46]. In addition,
genes such as NLRC5 can have complex functions in many processes, including cell
migration [47]. Finally, further comparison with other cancer types, in particular other
viral-positive cancer types, can yield unique insights into tumorigenesis of NPC. For
example, even though NPC was found to have a relatively low mutation burden, its level
of heterogeneity was found to be rather high (Supplementary Figure S5). Understanding
the complex interplay between virus and cancer will be an interesting topic in the future.

5. Conclusions

Using one of the largest cohorts for NPC, we have identified many novel drivers,
mutational signatures unique to NPC. By combining features across clinical, molecular
as well as intra-tumor heterogeneity levels, we constructed one of the first integrative
survival models for NPC. By comparing NPC genomes with other cancer types in the
TCGA, we identified many genomic processes unique to NPC. Taken together, integrative
analysis of NPC genomes discovered many unique phenomena in a viral-positive tumor
and unraveled unprecedently dynamic processes driving the evolution of NPC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15041243/s1, Figure S1: The genomic landscape of NPC.
Figure S2. Signature contributions across patients. Figure S3. The contribution of different signatures
across the cohort. Figure S4. Novel signatures discovered in the NPC cohort. Figure S5. The boxplot
of MATH score for the NPC as well as the TCGA cohort. Table S1: Reported drivers with explicit
statistical evidence; Table S2: Clinical information of the cohort.
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