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Simple Summary: There are more chances to successfully treat lung cancer if the disease is detected
early. Screening for lung cancer with low dose computed tomography in people at higher risk is
a powerful tool for early lung cancer detection. However, several factors need to be considered
for the selection of candidates who might benefit most from screening. Then, the process of low
dose computed tomography needs to keep up with technical advances that offer a higher precision
in the detection of potential lung cancer nodules. If nodules are detected, additional data might
help physicians decide whether they are benign or malignant and determine the appropriate further
procedure. In this review, we describe current limitations and advances of these different aspects of
lung cancer screening. Further research is required but the integration of scientific and technological
progress might improve the performance of lung cancer screening generally.

Abstract: As most lung cancer (LC) cases are still detected at advanced and incurable stages, there
are increasing efforts to foster detection at earlier stages by low dose computed tomography (LDCT)
based LC screening. In this scoping review, we describe current advances in candidate selection for
screening (selection phase), technical aspects (screening), and probability evaluation of malignancy
of CT-detected pulmonary nodules (PN management). Literature was non-systematically assessed
and reviewed for suitability by the authors. For the selection phase, we describe current eligibility
criteria for screening, along with their limitations and potential refinements through advanced clinical
scores and biomarker assessments. For LC screening, we discuss how the accuracy of computerized
tomography (CT) scan reading might be augmented by IT tools, helping radiologists to cope with
increasing workloads. For PN management, we evaluate the precision of follow-up scans by semi-
automatic volume measurements of CT-detected PN. Moreover, we present an integrative approach
to evaluate the probability of PN malignancy to enable safe decisions on further management. As a
clear limitation, additional validation studies are required for most innovative diagnostic approaches
presented in this article, but the integration of clinical risk models, current imaging techniques, and
advancing biomarker research has the potential to improve the LC screening performance generally.

Keywords: lung cancer screening; clinical scores; biomarker; computed tomography; pulmonary nodule

1. Introduction

Lung cancer (LC) is the leading cause of cancer related mortality because most patients
are diagnosed at late stages when prognosis is poor. This fact is unsatisfactory, given that
recent LC screening trials have demonstrated that annual low dose computed tomography
(LDCT) screening can reduce LC mortality in high-risk populations such as heavy smok-
ers [1–3]. Despite the positive results of screening trials, nationwide screening programs are
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only implemented in few countries. However, the recruitment and engagement of screen-
ing candidates remains low and unsatisfactory in countries with established screening
programs, such as the United States [4,5].

An important reason for the poor implementation of screening programs might be
found in the imperfect criteria for the selection of LC screening candidates that might
exclude various risk groups. For instance, the National Lung Screening Trial (NLST)
enrollment criteria primarily focus on age and smoking history [6]. In fact, it has been
estimated that applying these criteria would miss more than 50% of incident LC cases [7,8],
among which at least 25% are not due to smoking [9]. The United States Preventive Service
Task Force (USPSTF) is endorsing more inclusive selection criteria, currently set at 20
instead of 30 pack-years and 50 instead of 55 years of age [10]. However, LC high-risk
factors obviously differ between regions, as in the China population, more than 90% of LC
cases were outside the current screening criteria [11].

Other drawbacks of current LC screening strategies are the high rate of false positive
results [1,3,12] and the high prevalence of indeterminate nodules, leading to follow-up
diagnostic procedures that are associated with increased radiation exposure, overdiagno-
sis, and anxiety [13,14]. Increased specificity in LC screening, for example through the
integration of automated volumetric nodule assessment as well as imaging- and blood-
based biomarkers, would improve nodule management. Dedicated IT solutions might
additionally facilitate the identification and management of incidental non-cancerous find-
ings during LDCT, which has been shown to improve patient health by enabling earlier
treatment of undiagnosed cardiovascular or respiratory disease [15–17].

Compared to the NLST criteria, the Lung Report And Data System (Lung-RADS)
classification system for LDCT-based LC screening [18,19] reduces the false positive rate by
both increasing the size threshold of pulmonary nodules (PN) at baseline and requiring
growth for preexisting PN at follow-up scans after 3 or 6 months, thereby influencing
screening sensitivity [20,21]. Several biomarkers and/or radiomics-based risk assessments
have been recently suggested to further support PN interpretation, to determine appropriate
intervals for computerized tomography (CT) follow-up scans, and to support clinical
decisions on further PN management such as biopsy or surgery [13,21–23].

In this scoping review, we discuss current developments regarding the selection
criteria for LC screening (selection phase), the potential improvements of LC screening
through computerized image assessments and nodule interpretation (screening), and the
potential of clinical scores and biomarkers for further risk assessments (management).

2. Aims of This Study and Methods

Given the variety of issues we intended to cover in this scoping review, we decided
to follow a non-systematic approach to identify most recent literature on potential im-
provements of (1) selection criteria for LC screening, (2) nodule characterization during LC
screening, and (3) lung nodule management and risk prediction following LDCT scans. At
first, we collected most recent key original and review articles by searching PubMed and
Google Scholar databases (dates searched ranged from 2011 to 2022) as well as reference
lists of the retrieved articles. The obtained literature was then reviewed by the authors to
identify key findings and categorized into the sections ‘selection phase’, ‘screening’, and
‘management’ according to their general relevance. Search terms queried in title, abstract,
and keywords included “lung cancer screening” or “low dose computed tomography” or
“clinical scores” or “patient selection OR risk stratification” or “risk models” or “biomark-
ers” or “incidental findings” or “(lung OR pulmonary nodule) AND management” or “lung
cancer risk prediction”. Filters and additional search terms such as “ctDNA OR cfDNA” or
“radiomics” were used to narrow search results.

Articles were assessed by all authors to identify LC screening relevant approaches in
or near clinical application. Articles on approaches that are still in a rather experimental
and developmental stage were excluded, unless groundbreaking results were presented.
On this basis, an integrated approach consisting of clinical risk factors and biomarkers to
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improve risk stratification before and after LDCT screening as well as IT tools to increase
the diagnostic and prognostic yield of CT-imaging was developed. The remainder of this
review is divided into the sections (1) selection phase, (2) screening, and (3) management
(Figure 1).
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Figure 1. Three-step strategy to overcome current limitations in lung cancer screening by computed
tomography (CT). Selection: Improved criteria basing on clinical, occupational, and environmental
risk factors as well as biomarkers could broaden the eligible population and increase pre-test proba-
bility (age threshold according to current USPSTF criteria [24]). Screening: Technical progress enables
the automation of nodule identification and reduction of false positives. Management: Novel criteria
to assess the probability of malignancy allow safer decisions on further nodule management and
follow-up screening intervals (pulmonary nodule management is depicted in more detail in Figure 2).
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3. Selection Phase: Criteria for Lung Cancer Screening

The definition of appropriate selection criteria is of paramount importance for any
cancer screening program. Besides well-established criteria which primarily focus on
smoking history and age, more sophisticated selection criteria that include the presence of
specific biomarkers could further improve the efficacy of LC screening (Figure 1).
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3.1. Risk Factors and Risk Models

Simulation models demonstrated that the refinement of eligibility criteria for LC
screening could capture more LC cases not meeting current eligibility criteria. For the
USPSTF 2013 criteria basing on age and smoking history, for example, the reduction of
both the lower age limit from 55 to 50 years and the minimum smoking history from
30 to 20 pack-years increased both the screening eligibility, including that for different
ethnicities and high-risk women, and the number of LC deaths prevented [6,24]. In 2020,
draft recommendations were issued by the USPSTF to screen younger patients with less
smoking history and to include more racial and ethnic minorities [25]; however, Lozier
et al. suggested that social determinants of healthcare need to be additionally considered
to avoid racial and ethnic disparities [26].

Risk models, however, apply different predictors such as additional smoking exposure
variables, education, body mass index, chronic obstructive pulmonary disease (COPD),
history of cancer, and ethnicity. The Prostate, Lung, Colorectal, and Ovarian (PLCO)
Cancer Screening Trial (PLCOM2012), for example, demonstrated a significantly higher
sensitivity, predictive value, and cancer detection rate than the age and smoking history-
based eligibility criteria of the NLST (p = 0.009) or the Nederlands–Leuvens Longkanker
Screenings Onderzoek Trial (NELSON; p = 0.003) [27]. Furthermore, PLCOM2012 was
reported to outperform USPSTF2013 criteria in efficiently selecting individuals for LC
screening [28].

Ethnicity is paramount when dealing with LC epidemiology. Risk models applying
other or additional predictors showed good discriminative power for the selection of
never-smoking females in Asia affected by slow-growing adenocarcinoma [29], which is
of particular importance as about one quarter of LC cases arise in never-smokers [30].
The rising incidence of LC amongst non-smokers can be attributed to environmental and
occupational exposure to various kinds of hazardous substances, such as asbestos, ionizing
radiation, vinyl chloride, outdoor air pollution, second-hand and indoor smoke, arsenic,
beryllium, chromium, and nickel [31,32]. Accordingly, novel risk models such as the
Liverpool lung project risk model [33] comprise the predictors age, sex, smoking status and
duration, asbestos exposure, and non-cancer lung disease.

Obviously, more advanced models applying risk factors beyond smoking and age
demonstrated better effectiveness in the selection of participants for LDCT screening.
Because altered molecular features derived from LC cells and the tumor microenvironment
can be detected and quantified by sensitive technologies during early carcinogenesis,
additional risk stratification by use of biomarkers has been suggested to further improve
the selection of suitable patients for LDCT screening, and a number of biomarkers have
been extensively investigated over the last few years.

3.2. Biomarkers
3.2.1. Protein Panels and Autoantibodies

In a validation study on 63 ever-smoking LC patients and 90 matched controls, a
risk score based on four circulating protein biomarkers (cancer antigen 125 [CA125], car-
cinoembryonic antigen [CEA], cytokeratin-19 fragment [CYFRA 21-1], precursor form of
surfactant protein B [pro-SFTB]) considerably improved the USPSTF eligibility criteria (area
under the curve [AUC] 0.83 [95% confidence interval (CI), 0.76–0.90] vs. AUC 0.73 [95%
CI, 0.64–0.82]; p = 0.003) and 1-year LC prediction [34]. Likewise, the EarlyCDT-Lung test
(EarlyCDT-Lung, Oncimmune Ltd., Nottingham, UK [35]) assesses the presence of seven
cancer associated autoantigens (p53, NY-ESO-1, CAGE, GBU4-5, HuD, MAGE A4, SOX2)
followed by LDCT scanning 6-monthly in case of positive results. This combination showed
high specificity (90.3% [95% CI, 89.5–91.0]) and resulted in a high detection rate of stage
I/II LC cases in adults at increased LC risk, as defined by age, smoking history, and family
history of LC (positive predictive value 1.2% [95% CI, 0.5–2.4]; negative predictive value:
100.0% [95% CI, 99.9–100.0]). These findings demonstrated the value of the EarlyCDT-Lung
test as selection phase biomarker to improve eligibility criteria. Another approach com-
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bined a panel of proteins (CEA, CYFRA 21-1, CA125, hepatocyte growth factor) with the
New York esophageal cancer-1 antibody and demonstrated that the accuracy of age and
smoking history-based selection (AUC 0.68) can be increased by the combination with these
biomarker variables (AUC 0.86; biomarker alone: AUC 0.81 [36]).

3.2.2. Cell-Free DNA and DNA Methylation

The machine learning-based Lung Cancer Likelihood in Plasma (Lung-CLiP) approach
comprises the targeted sequencing of plasma-derived cell-free DNA (cfDNA) and analysis
of single nucleotide variants (SNV) as well as genome-wide copy numbers to provide a
likelihood score for the presence of LC-derived cfDNA in blood samples [37]. At 98% (80%)
specificity, sensitivities of 41% (63%) at stage I, 54% (69%) at stage II, and 67% (75%) at
stage III were observed [37]. Another approach comparing the genome-wide fragmentation
patterns of cfDNA demonstrated high sensitivities for the detection of different cancers
(57% to >99%) at 98% specificity, with an overall AUC of 0.94 [38]. Likewise, PanSeer, a
noninvasive blood test assessing methylation of circulating tumor DNA (ctDNA) detects
cancer in 95% (95% CI, 89–98) of asymptomatic patients who were later diagnosed [39],
and analysis of SHOX2 and PTGER4 methylation in plasma DNA allowed significant
differentiation of LC patients from individuals without malignancy (AUC 0.88; sensitivity
at 90% specificity: 67% [40]).

3.2.3. miRNA

MicroRNAs (miRNA) are noncoding and stable RNA fragments regulating gene
expression post-transcriptionally. A meta-analysis on 65 LC publications (6919 LC patients
and 7064 controls) showed that miRNA derived from circulating tumor cells (CTC) can be
detected with a sensitivity of 0.83 and a specificity of 0.84 (AUC 0.90 [41]). In a recent study,
a 14-miRNA set distinguished early-stage LC patients with symptoms from individuals
without LC, with an accuracy of 95.9% (95% CI, 95.7–96.2), sensitivity of 76.3% (95% CI,
74.5–78.0), and specificity of 97.5% (95% CI, 97.2–97.7 [42]).

3.2.4. Other Biomarkers

There are additional biomarkers under development that are potentially useful for LC
screening. One interesting approach might be the detection of volatile organic compounds
(VOCs) in exhaled breath [43–46]. In a small study on a potential breath test detection
model that was built on exhaled breath samples from 139 LC patients and 289 controls,
the validation set comprising 47 participants revealed a sensitivity of 100%, a specificity of
92.86%, and an accuracy of 95.74% (AUC 0.9586 [45]). Another study demonstrated that the
combination of clinical parameters and exhaled-breath data in an artificial neural network
resulted in good performance (AUC 0.84; 95% CI, 0.79–0.89) and might therefore enhance
risk stratification in LC screening [46].

3.3. Summary Selection Phase

The spectrum ranging from autoantibodies and protein panels to SNV, ctDNA methy-
lation, cfDNA, miRNA, and other potential biomarkers demonstrated promising results in
several studies. However, none of these biomarkers seems sufficiently validated for clinical
routine use, and further large-scale clinical studies in true screening settings are required
to generate proper evidence. Once clinically validated, these biomarkers could play an
important role for a more refined selection of individuals for LC screening.

Lung cancer screening reduces LC-specific and all-cause mortality. However, while
narrow selection criteria basing on age and smoking history miss a significant number of
LC cases, the widening of current selection criteria increases false positive rates. Advanced
models including risk factors beyond smoking and age demonstrated increased effective-
ness. As an important step further, a combination of advanced risk models comprising
clinical, occupational, and environmental factors are awaited along with validated LC
biomarkers to help increasing the pre-test probability and reducing the false positive rate
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in LDCT screening. As high false positive rates might contribute to low participation in
LC screening, an improved risk stratification might even increase the acceptance rate of
screening programs.

4. Screening: Computer-Aided Detection and Radiomics

In LDCT screening, the vast majority of individuals shows PN of any size [47], but
only 3.6% of the detected PN are later diagnosed as LC [1], underlining the importance of
specific PN characterization during LC screening. To support the actual LDCT screening
process, computer-aided detection (CAD) has been increasingly employed for automatic
identification of PN, as a complementary tool to visual reading. The CAD systems not
only provide a second opinion for image interpretation, but also contribute to reduced
false-negative rates [48] and decreased inter-observer variation [49]. In addition, CAD
systems accelerate the screening workflow and support lung nodule management [50–52].

Most importantly, CAD systems combined with deep learning are gaining momen-
tum for automatic stratification of nodule malignancy likelihood [53]. Basically, a CAD
system comprise components for data acquisition and pre-processing, lung segmentation,
PN detection, as well as PN segmentation and characterization [53]. Deep learning algo-
rithms are increasingly employed for lung segmentation, utilizing three-dimensional lung
segmentation improved by the adversarial neural network training [54], as well as PN
detection [55,56]. As PN detection still results in a considerable number of false-positive
candidates, several approaches for PN feature extraction and classification have been ap-
plied for the reduction of false positive rates [57,58]. Despite promising developments,
existing CAD algorithms for LC diagnosis still require further improvements because a
strictly defined set of features differentiating between benign and cancerous PN is still
missing.

Radiomics, as a further development of the CAD approach, is based on the extraction
of a large number of such medical image features that support the identification of cancer
characteristics using data-characterization algorithms. As radiomics is still far from clinical
standardization and use, we present only few studies providing promising results on
malignant-benign differentiation, staging, and PN classification. Kumar et al. [59] reported
an accuracy of 79.06%, a sensitivity of 78.00%, and a specificity of 76.11%. Another radiomic
study by Liu et al. [60] demonstrated an accuracy of 81%, a sensitivity of 76.2%, and a
specificity of 91.7%. In addition, radiomic features have been shown to contribute to
tumor staging [61,62], and radiomic features might aid to improve the classification of
PN into high- and low-risk PN, thereby reducing the rate of indeterminate PN [63]. The
reference standard for PN characterization is currently based on clinical and evolutional
characteristics that have been recently applied in a deep learning approach combining
three-dimensional CT scans, physiological symptoms, and clinical biomarkers, providing
sensitivity and specificity values of 94% and 91%, respectively [64]. A deep learning
algorithm using the patient’s current and prior CT volumes has been demonstrated to
specifically predict LC risk (AUC: 94.4%) [65].

The LC screening programs further offer the opportunity to incidentally identify indi-
viduals with undiagnosed cardiovascular and respiratory disease [66–68]. The NLST data
revealed that emphysema was detected in 44.2% of 25,002 participants who had undergone
LC screening including baseline and follow-up scans, while history of COPD/emphysema
was reported in only 10.6%. Emphysema found by LDCT screening was associated with
a significantly increased respiratory disease mortality hazard ratio (2.27; 95% CI, 1.92–
2.7) [68]. Emphysema increases LC risk, and airflow obstruction has recently been shown
to be an independent risk factor for LC risk at baseline LDCT [69]. In another study,
coronary artery calcification was found in 61.9% of 680 individuals who had undergone
LDCT screening, demonstrating the additional benefit offered by LC screening to detect
cardiovascular disease [67]. Most of reported incidental findings require follow up imag-
ing and further diagnostics including sometimes even invasive procedures to confirm or
rule out underlying diseases, mainly other types of cancer [70,71]. Newly diagnosed non
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lung cancer conditions resulted in management changes like alteration in medications in a
relevant subset of patients [70,71]

5. Management: Pulmonary Nodules and Risk Prediction
5.1. Clinical Scores

After LDCT, the decisive criterion for further PN management is the probability
that the nodule is malignant (Figure 2). High probability of malignancy requires a more
aggressive assessment or surgical resection, whereas intermediate and low probabilities
of malignancy demand further evaluation by tissue biopsy or short- and regular-interval
surveillance, respectively [72]. The importance of accurate probability estimates lies in the
facts that, on the one hand, most incidental or screen-detected PN are benign, and, on the
other hand, mortality dramatically increases with higher tumor stages at diagnosis [73].

Validated probability models combine clinical characteristics with PN imaging features
that have been shown to be independent LC predictors [74–82]. Most models include patient
characteristics such as age, smoking history, prior malignancy, as well as PN characteristics
such as location, edge characteristics, size, and growth [74–76,80], while other models add
the results of fluorodeoxyglucose-positron emission tomographic (FDG-PET) scans [77],
symptoms such as hemoptysis [74,75,81], and the presence of spiculation [76,79–81]. Fair
to good sensitivities and specificities have been reported, with AUC between 0.79 and
0.92. However, a comparison of models estimating the probability of PN malignancy in
defined clinical scenarios demonstrated that the accuracy of these models is highest in
populations similar to those in which they were developed [83]. Models derived from
high-risk populations with a higher prevalence of malignancy tended to overestimate the
probability of malignancy of PN proven to be benign and vice versa. Moreover, most models
were developed based on relatively homogeneous populations, and ethnicity has not been
evaluated as a predictor of malignancy. In some studies, expert physician assessment
performed equal or better than probability models [84–86]. Subsolid PN remain a topic of
scientific debate, as they have a higher risk of malignancy than solid PN but exhibit a more
indolent behavior.

Recent advances in imaging and molecular research have identified an increasing num-
ber of radiomic features as well as biomarkers indicative of malignancy. As described below,
the combination of clinical predictors with radiomic features and molecular biomarkers
may result in accuracies superior to those obtained by clinical models alone (Figure 2).

5.2. Volumetry

Current data suggest that volumetric tumor measurements during LDCT improve the
decision making for individual patients. In the NELSON-trial [2], volume CT screening of
high-risk participants reduced LC mortality after 10 years of follow-up when compared
to no screening (cumulative rate ratio for LC-related death 0.76 [95% CI, 0.61–0.94; p =
0.01]). Importantly, volume CT screening assessing the volume doubling time for the
follow-up of indeterminate PN significantly reduced false positive results and unnecessary
procedures [2,87].

Semi-automatic volume measurement of solid PN detected during LDCT screening
clearly outperformed manual diameter measurements [88,89]. The systematic error oc-
curring during manual diameter measurement exceeded the cut-off values indicative for
nodule growth, potentially resulting in misinterpretation and substantial misclassification.
This effect, in contrast, was almost absent in semi-automated volume measurements, which
is of utmost significance for the follow-up management of patients in LC screening pro-
grams [89]. It is important to note, however, that the appropriate nodule size threshold
for recall at baseline LC screening depends on the nodule volumetry software used [90].
Artificial intelligence as a standalone reader to automatically detect and classify solid PN
reduced the rate of negative misclassifications as well as the radiologists’ workload at LDCT
baseline screening [91]. Automation of volumetric nodule classification might not only con-
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tribute to a better assessment of the dynamics of nodule development (stable vs. growing),
but also reduces the radiologists’ time requirements during follow-up LDCT [88,92].

5.3. Radiomics and Artificial Intelligence Applications

To further improve PN management in the LDCT screening setting, the radiomic
approach contributes to the enhancement of risk prediction models by the assessment of
additional CT image features (Figure 2). A multiparameter model involving nodule size,
CT parameters, and radiomorphologic nodule characteristics has been shown to more accu-
rately discriminate adenocarcinoma from minimally invasive and in situ adenocarcinoma in
lung pure ground-glass nodules [22]. Likewise, the Pan-Canadian Early Detection of Lung
Cancer Study models basing on participants’ characteristics and LDCT imaging parameters
demonstrated very good discrimination in the prevalence screening setting and has the
potential to improve PN management, including decision-making on further procedures
required such as biopsy and short-term follow-up scan [93]. Automated PN detection
on LDCT scans using a convolutional neural network-based prototype demonstrating
high sensitivity and specificity for PN and coronary artery calcium volume improved the
prediction of LC and cardiac events at the 1-year follow-up [16].

Risk prediction has made further progress with the implementation of deep machine
learning. Huang et al. [94] reported on the development of a deep machine learning
algorithm recognizing temporal and spatial changes of PN related and non-PN related
features in CT scans and combining these data with clinical information. The algorithm
demonstrated an excellent discrimination at 1-, 2-, and 3-year follow-up, with AUC values
for LC diagnosis of 0.968 ± 0.013, 0.946 ± 0.013, and 0.899 ± 0.017, respectively. Radiomic
models therefore allow a more accurate classification of high- and low-risk patients than
Lung-RADS [94,95] and nodule volume-doubling time [94]. Deep learning image recon-
struction has been shown to decrease image noise and to improve both PN detection rate
and measurement accuracy on ultra-LDCT images [96]. In current LC screening programs,
the timing of follow-up CT-scans is determined based on mean PN diameter, volume or
density of the largest PN, and the occurrence of new PN. The radiomic and deep machine
learning approach might add even more accuracy for risk prediction and the timing of
follow-up scans (Figure 2).

5.4. Biomarkers

Molecular biomarkers analysis might be a meaningful adjunct approach to current
risk classification by follow-up scans of indeterminate PN. Computerized tomography
usually identifies an excessive number of indeterminate PN, and even though most of these
nodules are benign, many patients undergo unnecessary procedures such as lung biopsy
and overtreatment. A validated biomarker approach might refine current risk classification,
especially if the probability of malignancy is in the intermediate range, thereby limiting the
number of false positives and improving the identification of early-stage LC.

5.4.1. Proteins and Autoantibodies

In a prospective observational trial on 685 patients with PN 8 to 30 mm in diameter,
the relative abundance of two plasma proteins (LG3BP, C163A) as measured by multiple
reaction monitoring mass spectroscopy was integrated in a risk prediction model to distin-
guish benign from malignant PN. With a sensitivity of 97% (95% CI, 82–100), a specificity
of 44% (95% CI, 36–52), and a negative predictive value of 98% (95% CI, 92–100), this
classifier would reduce the procedures performed on benign nodules by 40% [97]. Like-
wise, Trivedi et al. reported on a support vector machine learning algorithm combining
the results of a plasma-based multiplexed protein assay with clinical factors. This model
demonstrated a negative predictive value of 94% (sensitivity 94%) and, therefore, might
serve as a rule-out test for patients with benign disease to avoid unnecessary interven-
tions [97]. The ELISA-based detection of complement C4d in plasma samples improved the
risk classification of indeterminate PN but could not discriminate between asymptomatic
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high-risk individuals with or without early LC [98]. Measurement of complement C4c,
cytokeratin fragment 21-1 (CYFRA 21-1), and C-reactive protein (CRP) then discriminates
between benign and malignant PN specifically (AUC: 0.86; 95% CI, 0.80–0.92; specificity:
92%), and, in combination with clinical factors, might contribute to a reclassification of
intermediate-risk patients with indeterminate PN into patients requiring a more aggres-
sive workup [99]. A four-marker protein panel (pro-SFTPB, CA125, CYFRA 21-1, CEA)
clearly outperformed nodule size-based risk classification by increasing sensitivity at high
specificity. In particular, the performance of the protein panel combined with PN size was
especially relevant for individuals with nodule sizes of less than or equal to 6 mm (AUC:
0.95; 95% CI, 0.85–1.00) [100]. Likewise, a model combining serum biomarkers (ProGRP,
CEA, SCC, CYFRA21-1), clinical information, risk factors, and LDCT results demonstrated
a significantly higher AUC (0.9151 vs 0.8360; p = 0.001) than the American College of Chest
Physicians model, a nodule size-based model [101].

In a prospective registry study, the predictive value of nodule size-based risk assess-
ments could also be increased by measuring autoantibodies to seven tumor-associated
antigens (EarlyCDT-Lung). In case of a positive antibody test, the risk for LC development
increased 2.7-fold for PN smaller than 20 mm in diameter, which would support further
management of relatively small and indeterminate PN and allow early LC detection [102].
In a retrospective assessment on 397 patients with pulmonary lesions and 74 controls, a set
of seven tumor-associated autoantibodies combined with CT could identify malignant PN
less than 8 mm in diameter, with a specificity of 95.8% [103]. Another study applying the
EarlyCDT-Lung test demonstrated a potential shift to localized stage diagnosis in 10.8% of
indeterminate PN leading to more patient lives saved [104].

5.4.2. Cell-Free DNA and DNA methylation

The highly sensitive detection of LC-specific changes of DNA methylation in plasma-
derived cfDNA samples could be demonstrated to identify high-risk patients and to im-
prove early LC diagnosis by differentiating malignant from benign nodules in CT-detected
PN [38,105–108]. In one study, a three-gene combination (CDO1, SOX17, HOXA7) yielded
a specificity and sensitivity of 90% and 71%, respectively, and the combination with clinical
predictors further improved the diagnostic accuracy of the test from AUC 0.88 (95% CI,
0.84–0.93) to AUC 0.94 (95% CI, 0.91–0.96) [105]. In a similar study, two three-gene combi-
nations detected LC-specific DNA methylation in sputum (TAC1, HOXA-7, SOX17) and
plasma (CDO1, TAC1, SOX17), with a diagnostic accuracy of AUC 0.89 (95% CI, 0.80–0.98)
and AUC 0.77 (95% CI, 0.68–0.86), respectively [106]. In particular, the assessment of
plasma cfDNA achieves promising sensitivity in very early-stage LC [108] and allows the
differentiation from tuberculosis [107], both contributing to an improved management
of indeterminate PN. The detection of specific fragmentation patterns of blood-derived
cfDNA combined with machine learning was additionally able to determine the tissue of
origin of cancer, which might be of high relevance to asses if a malignant PN originated
from primary LC or metastasis of other tissues [38].

Likewise, the assessment of blood-derived DNA methylation biomarkers (PTGER4,
RASSF1A, SHOX2) combined with radiological characteristics (PN diameter) demonstrated
a promising predictive performance for malignancy (AUC 0.951) among individuals with
CT-detected PN (nodule size between 11.22 ± 7.56 [benign] and 21.83 ± 10.88 [malig-
nant]) [109]. The analysis of RUNX3 and RASSF1A promoter methylation on biopsy and
serum-derived samples might be another interesting approach to distinguish between
benign and malignant PN, as solitary PN ≤10 mm in size were included in this study [110].
In addition to DNA methylation analysis, cfDNA obviously offers additional examination
possibilities such as the detection of driver mutations and whole exome sequencing [111],
underlining the diagnostic capability of cfDNA to discriminate malignant from benign
nodules.
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5.4.3. miRNA

Recent studies demonstrated that the combination of CT data with the results of
miRNA analysis could improve LC diagnosis and management [112–114]. In one study, a
panel of five miRNA exhibited low sensitivity for the detection of different LC pathologies
(overall 34.0%) in 369 individuals with PN detected by CT. However, combining miRNA
test positivity with CT imaging reduced the false positive rate for nodules and glass ground
nodules from 33.1% to 3.2% [112]. Likewise, the combination of two miRNA biomarkers
with nodule diameter on CT images improved LC diagnosis among indeterminate PN,
thereby helping to avoid unnecessary biopsies, follow-up CT, and anxiety of patients [114].
Furthermore, the use of miRNA was prospectively investigated for the allocation of patients
to specific LDCT screening intervals. Pastorino et al. [113] showed in the BioMILD trial
that miRNA profiling at the time of baseline LDCT-scan improves the individual risk
prediction, especially in individuals with baseline indeterminate or positive LDCT results,
thereby providing the opportunity both to guide subsequent diagnostic procedures and
to personalize LDCT screening intervals. Participants with negative miRNA signature
classifier and negative LDCT, representing 64.7% of a population selected by age (50–75
years) and smoking history (≥30 pack-years), were assigned to LDCT screening every 3
years, resulting in a LC incidence as low as 0.8% at 4 years [113].

Several models combining the expression of two to three miRNA specimens with CT
imaging features [115,116] and, additionally, protein antigens [117] demonstrated moderate
discriminatory accuracy to predict malignant nodules. Due to the retrospective study de-
sign and limited samples size, these models, despite promising results, might be considered
as being in a rather developmental state. Kossenkov et al. [118], however, reported on the
development of a PN classifier basing on 41 RNA biomarkers that outperformed clinical
algorithms in discriminating malignant from benign PN (6–20 mm) and could therefore
contribute to an improved decision making in the workup for indeterminate PN.

5.4.4. Circulating Tumor Cells

As circulating tumor cells (CTCs) are tumor cells shedding from either primary tumors
or its metastases, CTC detection by the noninvasive liquid biopsy approach has shown
promises in cancer diagnosis, prognosis, and prediction [119]. Several CTC detection ap-
proaches utilize the folate receptor (FR) for CTC labeling because FR is highly upregulated
in non-small cell LC, and only a few FR expressing cells are present in the peripheral blood,
including CTC and a rare subtype of monocytes [120].

Xue et al. [121] demonstrated the clinical relevance of the detection of FR-positive
CTC as a companion assay for LC screening, suitable for early diagnosis of patients with
CT-detected small PN. In their study on 72 LC patients and 26 controls, the assay achieved
AUC, sensitivity, and specificity of 0.8063 (95% CI, 0.6769–0.9356), 80.00%, and 75.00%,
respectively, if nodule size was equal to or below 30 mm. This finding suggests considerable
discriminatory potential of this approach for small indeterminate PN identified by LDCT.

Moreover, FR-positive CTC count combined with the maximum tumor diameter was
shown to differentiate non-invasive from invasive cancers (sensitivity 63.6%–81.8%; speci-
ficity of 71.4%–89.7%) in 382 patients with suspicious PN on CT [122]. As PN malignancy
obviously correlates with CTC levels in the peripheral blood [123–126], this approach might
be a valuable tool to inform nodule management after LDCT scans. Importantly, most
studies demonstrated that models combining CTC levels with additional biomarkers or
nodule characteristics perform better than single parameter models [122,123,126].

5.4.5. Metabolites

Metabolic processes including fat-, protein-, and sugar metabolism are altered during
tumorigenesis, a fact that is mirrored by several molecular features detectable in biofluids
such as serum [127–129], urine [128], and saliva [130]. A number of recent experimental
studies reported on metabolic signatures that separates LC cases from healthy controls
and therefore offer potential clinical applications. In a pilot study on 31 LC patients and
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92 matched healthy controls, a metabolic signature of nine metabolites identified by gas
chromatography coupled to mass spectrometry (GC/MS) allowed to discriminate cancer
and healthy samples with 100% sensitivity and 95% specificity (AUC 0.99 [127]). In a single
cohort of 35 LC patients, 48 metabolic changes could be identified by nuclear magnetic reso-
nance and mass spectrometry in urine and blood samples obtained before and after surgical
tumor resection [128]. Laser desorption/ionization (LDI) mass spectrometry-based liquid
biopsy on serum samples of 233 healthy controls and 950 patients with different cancers,
combined with machine learning for high-throughput analysis, identified 10 discriminative
features for each cancer (AUC 0.922 for non–small-cell LC [NSCLC]; [129]). Likewise, a
multiple logistic regression model derived from the profiles of 10 salivary metabolites
identified in 41 LC patients and 21 patients with benign nodules could clearly discrimi-
nate LC from benign lesions (AUC 0.729 [130]). These results might require appropriate
validation in clinical trials, but metabolite profiling might support PN management after
indeterminate CT findings.

5.5. Summary Management

Radiomics as well as liquid biopsy biomarkers such as cfDNA, ctDNA, miRNA,
exosomes, and CTC have shown promise to differentiate malignant from benign PN
for early diagnosis, risk evaluation, and decision on tailored diagnostic and therapeutic
procedures (Figure 2). As non-invasive or nearly non-invasive approaches, radiomics as
well as biomarkers are applicable in patients not eligible for tissue biopsy and allow serial
measurements, thereby avoiding sampling bias. However, large clinical studies are still
required to assess the clinical utility of most assays [131–134]. In this regard, a recent review
reported on well-validated liquid biopsy biomarkers and proposed an interesting strategy
combining LDCT scans and biomarkers for early LC characterization [135].

6. Discussion

In this scoping review, we describe a potential three-step strategy to overcome current
limitations in LC screening (Figure 1). First, our approach proposes improved selection
criteria and strategies for LC screening programs both to broaden the eligible population
and to increase the pre-test probability to guide selection. Second, technical progress may
advance the actual LDCT screening process to a new level by the automation of nodule
identification and reduction of false positives. Moreover, state-of-the-art LC screening
offers additional diagnostic opportunities such as the incidental identification of patients
with undiagnosed cardiovascular and respiratory disease. Third, elaborated criteria to
evaluate the probability of PN malignancy would allow to make safer decisions on further
PN management, including personalized screening intervals, tissue biopsy, and surgical
resection.

Such a strategy obviously needs to be based on proper validation studies providing
sufficient evidence for each element. There may be plenty of evidence demonstrating the ef-
ficacy of single elements such as risk scores for the selection of LC screening candidates [10,
27,33], volumetric tumor measurements during LDCT [2,87], and clinical scores evaluat-
ing the probability of malignancy of LDCT-detected PN [74–82]. However, the strength
of evidence varies widely among studies on biomarker development and performance,
ranging from small retrospective studies to large prospective trials [2,35,39,101,113,136].
For most diagnostic approaches discussed in this article, additional evidence needs to
be developed by validation studies to transfer promising approaches from basic research
into clinical application. As pointed out before, many risk scores and probability models
are not globally applicable because risk factors differ among populations [26,29,30,83].
The same is probably true for many biomarker assessments as gene expression patterns
differ among ethnic groups [137,138]. These facts must be considered in future validation
studies. Aside from the challenges mentioned above, access to new biomarkers or imaging
technologies might not be given for many health service providers. Even more, combining
new technologies and biomarkers will increase the cost per patient screened which might
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not be sustainable in many healthcare systems. Clearly, these factors must be considered
as limitations for the implementation of advances that could potentially lead to improved
delivery of lung cancer screening.

The following limitations in our review should be kept in mind when interpreting our
findings. First, this review was not performed systematically, may not be comprehensive,
and as such might be subject to selection bias. Second, the strength of evidence provided
by the studies presented in this review varies due to study designs. Therefore, a direct
comparison of diagnostic tools and prognostic models and, in particular, the selection
of most promising approaches would be challenging if not impossible. However, our
main intention was to raise awareness by presenting the current research on LC screening,
promoting both further research and technological progress.

7. Conclusions

To conclude, this review aimed at providing a holistic view of how the entirety of LC
screening related aspects might be advanced in the near future. An advanced selection
approach incorporating additional risk factors and biomarkers might improve the selection
of candidates eligible for subsequent LDCT screening. At screening, image reading effi-
cacy and accuracy might be augmented by IT tools, helping radiologists to cope with the
growing workload resulting from LC screening programs. At the post-CT management,
semi-automatic volume measurements potentially increase the precision and predictive
value of follow-up PN imaging, and an integrative approach involving clinical param-
eters, radiomics, and biomarkers might optimize the characterization and management
of CT-detected PN. Further large-scale validation studies are obviously required, but the
integration of the scientific and technological progress into LDCT-based LC screening
programs has the potential to clearly improve the performance of LC screening generally.
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