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Simple Summary: CD3 complex provides the first signal sensed by the TCR of the lymphocyte
to trigger its activation. Thus, it becomes a very attractive receptor to determine the fate of the
immune response in different contexts from tolerance induction to immune activation. We discuss
CD3-TCR complex assembly and the current and emerging approaches to harvest CD3 activity
for immunotherapy.

Abstract: Harnessing the immune system to fight cancer has become a reality with the clinical success
of immune-checkpoint blockade (ICB) antibodies against PD(L)-1 and CTLA-4. However, not all
cancer patients respond to ICB. Thus, there is a need to modulate the immune system through
alternative strategies for improving clinical responses to ICB. The CD3-T cell receptor (TCR) is the
canonical receptor complex on T cells. It provides the “first signal” that initiates T cell activation and
determines the specificity of the immune response. The TCR confers the binding specificity whilst
the CD3 subunits facilitate signal transduction necessary for T cell activation. While the mechanisms
through which antigen sensing and signal transduction occur in the CD3–TCR complex are still
under debate, recent revelations regarding the intricate 3D structure of the CD3–TCR complex might
open the possibility of modulating its activity by designing targeted drugs and tools, including
aptamers. In this review, we summarize the basis of CD3–TCR complex assembly and survey the
clinical and preclinical therapeutic tools available to modulate CD3–TCR function for potentiating
cancer immunotherapy.

Keywords: CD3; TCR; T cell engager; cancer immunotherapy; T cell modulation; antibodies;
aptamers

1. Mobilizing the Immune Response in Context of Different
Immunotherapeutic Strategies

One of the most successful breakthroughs in the fight against cancer has emerged in
the past few decades with the advent of cancer immunotherapy [1,2]. Cancer vaccines,
immune checkpoint blockade, and adoptive cell transfer therapies have revolutionized
the treatment paradigm and standard of care protocols for treating cancers in the past
few years [2]. They have shown tremendous success in the clinic, improving survival
and quality of life for patients that would otherwise reach end of care with conventional
therapies [2].

However, several challenges still need to be overcome to optimize cancer immunother-
apy. The high tumor heterogeneity and intrinsic genetic and epigenetic variability of cancer
make immunotherapy responses hard to predict and nonhomogenous [3]. Only a subset
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of patients responds to current immunotherapy approaches, and sometimes “secondary
immune escape” occurs, causing relapse in patients who are currently in remission after
successful initial cancer immunotherapy treatments [4].

Identification of tumor-immune molecular drivers might open the possibility of explor-
ing alternative therapeutic strategies to enhance clinical response rates in cancer patients.
Among the multiple factors that could determine the fate of the immune response in the
context of cancer is the source and quality of tumor antigens [5].

Tumor antigenicity is a random process restricted by the frequency and type of tumor
mutation in the cancerous lesion, and it is actively reshaped by immunoediting forces that
restrict the expression of the most potent tumor antigens [6]. Generally, most tumors display
limited tumor antigenicity. Therefore, it is essential to develop therapeutic approaches to
bypass this lack of tumor antigenicity and increase “visibility” to the antitumor immune
response [5]. Tuning the TCR/CD3 interaction, known as the first type of signal needed for
T cell activation, is a strategic approach that may be used to achieve this goal.

2. The T Cell Receptor: Intercepting Signals for T Cell Activation
2.1. Structure of the TCR/CD3 Complex

Incumbent to the function of T cells is the T cell antigen receptor complex or the
TCR, a multimeric surface receptor that receives, integrates, and transduces the major
histocompatibility complex (MHC)-restricted peptide antigen-based signals that are needed
for activation of a T cell [7]. The TCR is made up of the α and β TCR chains that recognize
the peptide–MHC complex. The CD3 signaling complex proteins are made up of δ-ε and γ-ε
heterodimers that contain extracellular and intracellular domains, and a ζ- ζ homodimer
that has a very short extracellular domain and a long intracellular domain. In an α-β
T cell, the TCR is composed of a 1:1:1:1 ratio TCRαβ:CD3γε:CD3δε:CD3ζζ subunits [7–9].
Early mutagenesis and immunoprecipitation studies have provided us with knowledge
of the precise stoichiometric composition of the TCR subunits [8] using digitonin-lysed
T cell products or by artificially constructing mock T cells by transfection with the various
CD3 subunits. It was not until 2019 that the extracellular and transmembrane structure
of the human TCR/CD3 in its expressed unligated state was resolved using cryoelectron
microscopy techniques [7]. Recently, the cryoEM resolved structure of a peptide–MHC
(pMHC)-CD3–TCR complex was reported, showing, in line with previous findings, no
major adjustments in the TCRαβ domain, but neither in the CD3 extracellular domains
upon pMHC ligation [7,10].

2.1.1. TCR Chains

The highly variable TCR α β heterodimer ligates with cognate pMHC (Figure 1). It
intercepts the antigenic signal of activation but cannot initiate T cell signaling by itself
because of the short cytoplasmic tails of each of the two chains. These short tails are devoid
of immunoreceptor tyrosine-based activation motifs (ITAMs) whose phosphorylation by
Src family kinases such as LCK and FYN triggers T cell activation [11].

TCR α and TCR β chains are glycoproteins consisting of two immunoglobulin domains
each and are linked covalently by a disulfide bond. The evolutionary conserved acidic,
negatively charged, amino acid residues in their transmembrane domains form ionic
interactions with basic (positively charged) residues located in the transmembrane domains
of the CD3 subunits [7,8]. The α chain shares homology with the light chain of an antibody,
and the β chain with the heavy chain [12]. Each subunit consists of a constant region
(proximal to the membrane) and a variable region (distal to the membrane) [7,12]. TCR α
and TCR β genes are randomly assembled from highly diverse V, D (only TCRβ), and J gene
segments and the constant gene segment via a RAG1/2 recombinases-dependent process.

The V regions of each of the chains encode two of the three complementarity-
determining regions (CDRs), whereas the third and most variable CDR is formed by
random joining of the V (D) and J segments, with removal and nontemplated addition
of nucleotides increasing diversity even further, thereby allowing for diverse antigen
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recognition by TCRs [13]. These hypervariable CDR loops bind to the MHC complexes
presenting processed antigenic peptides (usually an 8 to 10 for MHC class I molecules and
peptides of up to 20 aa for MHC class II molecules), and provide each TCR with its unique
specificity, making each T cell different from its counterpart [13]. Thus, the immune system
assembles a large, formidable army consisting of millions of T cells, each with a unique
TCR, capable of recognizing and responding to millions of antigens specific to a wide range
of pathogens as well as neoplastic tumor antigens [14,15].

2.1.2. CD3 Subunits

The relay of signals received by the TCR chains into the cytoplasm is essential for
T cell activation. As the TCR α and β chains lack known intracellular signaling motifs,
the transduction of activation signals to second messengers and intracellular transcription
factors is coordinated by the intracellular signaling competent partners of the TCR: the
CD3 protein complex (Figure 1) [7].

CD3 is a multimeric protein complex comprising three different subunits: CD3δε,
CD3γε, and CD3ζζ dimers. Homologous CD3δε and CD3γε are heterodimers with single
extracellular immunoglobulin domains that interact with the TCR α and β chains and
have relatively short intracellular signaling domains. CD3γε and CD3δε dimers are similar
to the CD79αβ subunits of the B cell receptor (BCR), which serve as auxiliary signaling
components of the BCR [16].

The ζζ homodimer has a negligibly short ectodomain but an elaborate cytoplasmic
domain that is essential for T cell signaling and activation. Unlike the TCR α and β chains
that are highly diverse and vary among T cells, the CD3 subunits are invariant elements,
shared among all α-β T Cells [17].

The various CD3 subunits and their respective stoichiometries in human and murine
T cells were identified through immunoprecipitation studies conducted in the 1990s [18–21].
Several of these fundamental findings still define current knowledge about the CD3/TCR:
(1) the CD3 subunit is essential for T cell activation [22,23]; (2) the CD3/TCR complex
works as one complete functional unit [7]; (3) each TCR/CD3 complex consists of a fixed
stoichiometry of subunits and is suborganized as pairs of dimers—CD3δε, CD3γε, CD3ζζ,
and TCR αβ chains—in a 1:1:1:1 ratio [8]; and (4) expression of all the CD3 subunits is
required for optimal CD3/TCR signaling involved in T cell activation and ontogeny [24].

Each TCR contains two ε chains, one in each of the heterodimeric CD3δε and CD3γε
subunits (Figure 1). The CD3ε chaperones the assembly and folding of all other CD3 subunit
proteins, and thus, is essential for CD3/TCR expression [25–27]. Furthermore, CD3ε has
a pivotal role in T cell activation, since it contains a cryptic proline rich sequence that is
exposed on the cytoplasmic tail of the ε chain [28–32]. This conformational change has
been shown to be necessary for further downstream signaling leading to T cell activation.
This sequence has also been suggested to also play a role in amplifying T cell responses of
low affinity T cell cognates [33]. It has also been implicated in initiating the recruitment of
LCK that drives the ITAM phosphorylation cascade [34,35].

The δ and γ chains are highly homologous and perhaps arose from gene duplica-
tion [36]. Both γ and δ chains pair with ε chains, whose sequence is more conserved [13].
Some studies show that the γ and δ chains compete for binding with the ε chain and their
homology allows them to pair interchangeably with the TCR chains for assembly [19].
Nevertheless, it is possible that δ and γ CD3 chains play slightly different roles in how they
interact with the various subunits of the TCR and perhaps even in how they transmit T cell
activation signals [9].

Transmembrane regions of all the CD3 subunits and TCR chains are in close association
with each other through complementary electrostatic interactions between oppositely
charged amino acid residues [8] (Figure 1). The TCR α associates with the heterodimeric
CD3 δ-ε subunit whilst the TCR β chain associates with the CD3 γ-ε chains [8,22]. The ζ-ζ
homodimer associates with the TCR α chain. Each of the CD3 subunits has acidic residues
that are complementary and opposite in charge to the basic residues found in TCR α and β
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chains. This complementary electrostatic organization keeps the transmembrane coils of
each of the TCR/CD3 subunits enrobed into each other, tethering the TCR/CD3 complex
firmly into the cell membrane, and allowing it to move within the lipid bilayer as a single,
independent functional unit [7,11] (Figure 1).

In α-β T cells, all the subunits of the TCR/CD3 complex are necessary and required
for detection of the TCR complex on the cell surface by antibodies [37]. Several studies
have shown that mutations or absence of even one of the CD3 proteins or TCR chains leads
to levels of cell surface expression that are not detectable by conventional antibodies [24].
CD3/TCR subunits that are unable to pair with their complementary subunits might
get retained in the ER, while incompletely assembled CD3/TCR pseudocomplexes stay
sequestered in the ER and are translocated to the cytoplasm where they are targeted for
lysosomal degradation [38]. The requirements for TCR expression were also confirmed
by several transfection-based studies that tried to reconstitute an artificial TCR/CD3
complex in a mock T cell system in vitro. CD3 and TCR chains were introduced in varying
permutations into host COS cells, but surface expression of the native conformation of the
CD3/TCR complex was detected only when all of the four subunits were present in the
cell [39,40]. This was also demonstrated in dog-pancreas-microsome-based mock T cell
assemblies [39].

The ε chain and ζ chains are especially important in chaperoning and instructing the
assembly and folding of the CD3 protein complexes [41]. CD3ε seems to have a dominant
negative effect for TCR/CD3 expression, most likely because it pairs with both γ and δ
chains to form CD3γ-ε and CD3δ-ε, whose expressions are necessary for TCR expression
and thymocyte development. Their presence is required for the proper folding of the rest
of the CD3 subunits [27]. CD3ε−/− mice show complete lack of mature thymocytes and
not just a reduced number of T cells as in the case of γ, δ, or ζ deficiency. This effect can be
rescued by the reintroduction of the CD3ε transgene. The ζ chain is important for the last
stage of assembly. It is the last component that joins the assembly line and is involved in
confirming the quaternary structure and surface expression of the TCR [26]. A ζ deficient
T cell line fails to express TCR/CD3 on its surface, but the reintroduction of the ζ transgene
rescues TCR expression [42].

Whether these CD3 subunits are also present in a similar manner in the γδTCR of γ-δ
T cells is yet to be confirmed. In γ-δ T cells, some reports have suggested that the CD3δε
subunit is absent, and the TCR chains are flanked by two CD3γε subunits instead [22,43].
Other studies have supported this finding where a genetic deficiency in γ chain expression
prevented the formation of γ-δ T cells, whilst a δ chain deficit did not have any effect on
γ-δ T cell development [44,45].

Further insights into the role of the CD3 complex are also demonstrated by the study
of immunodeficiencies in humans and mice [41,45,46]. CD3 deficiencies present as different
gradations of Severe Combined Immunodeficiency Disease (SCID) [47,48]. SCID is associ-
ated with T lymphocytopenia that involves a low number or no detectable mature T cells
in patients. These T cells may be functionally defective in vitro with hampered T cell acti-
vation and mitogenesis. ε, ζ, and δ deficiencies are particularly life-threatening and lethal,
whilst a γ deficiency seems to be less severe, with some reported partial SCID phenotypes
that allowed patients to survive into adulthood. The milder immune insufficiency caused
by the γ chain defect suggests a possible hierarchical δ > γ relationship in the development
and maturation of T lymphocytes in humans. Whether these differences in thymocyte
development and maturation also extend to their roles in T cell activation and ITAM based
signaling, and eventually antitumor immune responses, is yet to ascertained.

2.2. Signaling Motifs in the CD3 Chains Protein Complex

Another primary and essential function of the CD3 complex involves signal trans-
duction via their cytoplasmic tails which contain ITAMs. ITAMs consist of highly con-
served consensus amino acidic sequences arranged in the following motifs: YXXL/I X6-8
YXXL/I [11]. Tyrosine residues located in ITAMs are preferentially phosphorylated by
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Src protein tyrosine kinase family members such as LCK and FYN and serve as docking
sites for other tyrosine kinases such as ZAP70 that continue the signaling cascade [9]. This
pathway eventually leads to the production of second messengers (Ca2+ and IP3) and Ras
activation, which induces the activation of transcription factors such as NF-κB, NFAT, and
AP-1, the characteristic signature of an activated T cell (Figure 1).

The γ, ε, and δ chains have one ITAM each, whilst the ζ chain has three ITAMs.
As a result, each α-β T cell has a total of 10 ITAMs per TCR, 2 each on the CD3δ-ε and
CD3γ-ε subunits, and 6 shared between the two ζ chains [10] (Figure 1). What is the purpose
of having so many ITAMs in a single TCR? Two models have been proposed to explain this:
“redundancy of signaling” and “differential signaling” [23,49]. The redundancy of signaling
model suggests that engagement of all ITAMs is not required for T cell activation [23].
Activation of a T cell is determined by engagement of a specific, yet unknown, number of
ITAMs (but not all 10 ITAMs) found distributed across all the CD3 subunits. Thus, ITAMs
are present in excess numbers to safeguard against the nonactivation of T cells in case the
threshold engagement needed for T cell activation is not reached. The differential signaling
model proposes that ITAMs in CD3-γ, -δ, -ε, and -ζ chains have distinct functions and
control differential activation, proliferation, and effector functions. This model allows for
the description of CD3 signaling as a tunable, customizable, and versatile paradigm, where
the desired T cell function can be executed by targeting desired ITAMs.

2.3. TCR Triggering

The process in which the TCR/CD3 proteins work together to receive, interpret, and
initiate the process of T cell activation is known as T cell triggering [9]. It involves me-
chanical reception of cognate antigen by the extracellular TCR and subsequent intracellular
changes in the CD3 complex and is a prerequisite for T cell activation and the generation of
T cell mediated adaptive immunity [9]. The TCR’s organization as an oligomeric, multi-
subunit protein complex makes its triggering and sustained signaling a very precise and
fine-tuned process that is spatially, temporally, and mechanically regulated and modu-
lated [9,50–56]. Triggering the TCR is not just dependent on mere interaction of agonistic
pMHC or ligand with the TCR, but it is also incumbent upon how, when, and in what
context the presentation of the stimulus takes place.

Several models have been proposed to describe TCR triggering—the process of how
ligand binding results in an increase in ITAM phosphorylation that allows for subsequent
TCR activation. These models may also provide explanations for the exquisite speci-
ficity and sensitivity that the TCR exhibits. The main models of TCR triggering are: the
Conformational Change model that proposes allosteric regulation of the TCR/CD3 com-
plex [50]; the Kinetic Segregation Model that depends on macromolecular clustering of the
TCR for activation [55]; and the Mechanosenor model that implicates the application of
anisotropic—direction dependent—force for T cell triggering [51]. Probably all of them are
involved to a certain extent in the TCR triggering [57], making TCR engagement and T cell
activation a dynamic, multifactorial process.

TCR triggering eventually leads to ITAM phosphorylation, recruitment of ZAP-70,
LAT and consequent calcium flux, and downstream activation of transcription factors such
as NF-κβ, NFAT, and AP-1 that is characteristic of an activated T cell [58]. Ligand binding
seems to induce a conformational change in the cytoplasmic domains of the TCR/CD3
complex that induces release of the cytoplasmic tails of the CD3ε and ζ sequestered by
ligation of its basic rich sequences (BRS) to acidic lipids and cholesterol present in the
inner leaflet of the plasma membrane [50,56]. Upon release from the plasma membrane,
CD3ε can expose its PRS, a proline rich sequence that ligates with the SH-3.1 domain of
the NCK adaptor protein [56]. This exposure of the CD3ε PRS is a preactivation state that
is the necessary and essential for the phosphorylation of the ITAM tails of CD3ζ as well
as CD3ε. A mere 5% of CD3ε species that cannot adopt this conformation can abrogate
TCR signaling, making this a functionally dominant pre-requisite for T cell triggering and
suggesting cooperative mechanisms of signaling between TCRs [50,56].
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Figure 1. TCR structure and T cell activation pathway. The TCRαβ recognizes the pMHC complex on
the antigen-presenting cell at the immunological synapse. The transduction of the signal is mediated
by the ITAM domains located in the CD3 intracellular domains, which are phosphorylated by Src
family kinases. The signaling axis comprises numerous factors, such as Zap70 and PLC. The cascade
ends up with the production of second messengers (Ca2+, diacylglycerol (DAG), and IP3) and the
activation of Ras. These mediators lead to the upregulation of gene transcription by NF-κB, AP-1,
and NFAT, triggering the activation of the T cell.

In addition to resolving the intrinsic composition of the TCR as described above,
structural organization or clustering models of the TCR—where TCRs are hypothesized to
be arranged as either dimers and/or oligomers (instead of monomers)—have also been
described. Several of these models were developed for explaining the mechanism of action
underlying TCR triggering, which can also be described as a function of clustering and
association between TCRs on the surface of the T cell.

Initial studies with soluble ligands clearly showed that monovalent ligands, CD3
antibody-derived F(ab) fragments, or soluble pMHC complexes were unable to stimulate
T cells, whereas the same agents, either as a F(ab)2 complete antibody, or di- or multimeric
pMHC complexes were able to do so [59,60], indicating the need of physically crosslinking
multiple TCRs to induce T cell activation. When bound to a solid surface, monovalent
reagents were able to stimulate T cells, likely by forming multivalent arrays on the solid
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substrate. This conditional activation capacity of monomeric TCR binders is exploited in
various antitumor immuno-therapies (see below).

3. Strategies to Modulate T Cell Responses Targeting CD3
3.1. CD3 Agonistic Therapies to Rescue Function of T Cells

Several strategies have been developed over the years to rescue and boost T cell
effector function in the immunotherapeutic treatment of cancerous diseases. Some strategies
reinvigorate immunity indirectly by reprogramming the immunosuppressive elements in
the tumor microenvironment (TME). Some targets aim to restore metabolic and nutrient
balance [61]. HIF1-α inhibitors reduce hypoxia [62]; CD39, CD73, and adenosine receptor
blockade prevents adenosine-mediated immunosuppression [63]; and glucose decoys
such as 2-deoxyglucose (2-DG) [61] and glucose transport inhibitors [64] restore metabolic
and nutrient availability for T cells by preventing excessive glycolysis in the TME. Other
drugs block the function of negative immune regulators: anti-CTLA4, anti-PD1/PDL1,
anti-TGF-β, or anti-CD47 blocking agents might enhance T cell infiltration in the TME [65].

One of the interventions that may rescue dysfunctional T cells in an immunosuppres-
sive TME consists of providing T cell-activating stimuli in the form of TCR/CD3 agonists.
The CD3 protein complex is the signaling subunit of the T cell, and thus, special attention
has been paid to developing strategies that could rescue T cell function via targeting the
axis where the first signal of T cell activation takes place through the CD3/TCR engage-
ment. These interventions modify function and/or provide stimulatory signals directly
to the T cells to rescue their activation potential, effector function, as well as memory
formation ability.

The CD3 subunits are highly desirable targets for cancer immunotherapy due to
several advantages that it may afford. The CD3 complex is a favorable target because
of its nature as the signaling-machinery-orchestrating subunit of the T cell receptor. Its
function, thus, makes it a target accessible for signal modulation and redirection. The CD3
subunits are the nonvariant subunits of the T cell receptor complex and are present on
all T cells—both CD4+ and CD8+ T cells and α-β and γ-δ T cells—making them an easily
accessible, pan-T cell, off the shelf, universal target. The multimeric nature of the CD3
complex—6 chains of 3 different types of CD3 proteins, 10 ITAMs of 6 different types as
well as their modular arrangement as hetero and homodimers—provides a high degree
of modularity and several foci of therapeutic intervention where the CD3 agonistic signal
can be fine-tuned and customized to exhibit a wide range and scope of regulatory and
modulatory effects on the T cell activation axis. Furthermore, targeting the CD3 subunits
may provide the advantage of activating the T cell without depending on the context
of MHC restriction. Still, not many drugs—immunotherapy or otherwise—have been
developed targeting the CD3 subunits; it is a gap in therapy and an unmet medical need
that we are yet to explore and to fill. Some of these CD3 modulators, and their pre-clinical
and clinical use, have been summarized in Table 1.

Several mechanisms to potentiate T cell activation have been described in the literature.
Monoclonal antibodies (mAb) agonistic to the CD3 and TCR subunits, bispecific antibodies
and T cell engagers (BiTEs), and modified CD3 antibody fragments directly target and
ligate T cells to provide agonistic signals. Adoptive T cell therapies, including CAR T cell
therapies and TCR-T cell therapies outsource the T cell activation and expansion process to
an ex vivo setting through the isolation of patient-derived or allogeneic T cells followed
by ex vivo modification, activation, expansion, and subsequent reinfusion into patients.
Other strategies use APC biomimetics to expand T cells ex vivo before adoptive transfer,
expanding artificially the number and quality of activated tumor reactive T cells that are
available in vivo. In this review, we will focus on those strategies that directly target
the CD3/TCR complex in situ—namely, CD3 specific antibodies, their variants, and CD3
aptamers (Table 1).
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Table 1. Selected summary of preclinical and clinical uses of CD3 modulators.

Name Type of T
Cell Modulator Target In Vitro Effect In Vivo Effect

OKT3 Anti-CD3 antibody Human

Induces activation,
proliferation, and

cytolytic activity of
T cells in vitro [66]

Used to prevent acute rejection in
transplants, for the treatment of

autoimmune disorders [64,65], and for
depleting CD3+ lymphoblastic

leukemia populations in vivo [66].
Furthermore, variants of OKT3 are
also used to expand T cell adoptive
therapy populations ex vivo [67,68].

145-2C11 Anti-CD3 antibody Mouse Agonistic activity
in vitro [69]

Induces immune tolerance in vivo and
tolerance towards syngeneic

pancreatic islet grafts in preclinical
models of diabetes [69]

G4.18 Anti-CD3 antibody Mouse
Nonmitogenic,
nonactivating
in vitro [70]

Induces immunotolerance in vivo in
preclinical animal models of Multiple

Sclerosis (MS) [70,71]

Teplizumab Anti-CD3 antibody Human NA
Delays onset, reduces activity of
autoreactive T cells, and induces

T regulatory cells [72–76]

Otelixizumab Anti-CD3 antibody Human NA
Used in the treatment of type 1

diabetes—improves preservation of
the β cells mass in the pancreas [77]

Visilizumab Anti-CD3 antibody Human NA
Used in the treatment of severe

corticosteroid-refractory
ulcerative colitis [78]

Blinatumomab CD19-directed CD3
T-cell engager Human NA Used in the treatment of acute

lymphocytic leukemia [79,80]

Tebentafusp

gp100 peptide-HLA-
A*02:01 directed T
cell receptor (TCR)
CD3 T cell engager

(immune mobilizing
monoclonal T-cell
receptors against

cancer (ImmTAC))

Human NA
Used in the treatment of uveal

melanoma and malignant
melanoma [81,82]

CD3-specific
DNA Aptamer

generated
via LIGS

human CD3ε
complex on
Jurkat cells

Human

Robust binding to human
T cells and induction of
CD69, a T cell activation

marker [83]

NA

CD3-specific
RNA aptamer

Recombinant human
CD3ε/γ and

CD3ε/δ subunits
Human

Binding to T cells. They
do not show the ability to

activate the T cells [84]
NA

3.2. Anti-CD3 mAbs

In vitro studies performed in the 1980s using anti-CD3 mAbs showed that stimulat-
ing human T cells with the anti-CD3 antibodies can have distinctly different outcomes
depending upon the mode of stimulation. When presented as immobilized on microbeads,
anti-CD3 antibodies induced robust proliferation and activation of T cells, exhibiting a mito-
genic effect. On the other hand, under proliferation-inducing conditions, if CD3 antibodies
were cross-linked in solution, and presented in their soluble form to T cells, a weaker
and even abortive signaling response was generated [85,86]. Thus, these complex T cell
activation dynamics were the acting principles used in designing in vivo preclinical studies
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using the anti-CD3 antibodies that formed the stepping stones to developing the CD3
antibody-based clinical therapies used today.

Further studies in the 1980s using murine anti-CD3 mAbs showed initial efficacy in
reducing tumor growth in vivo; paving the way for human CD3 mAb-based therapies [87].
Muromonab, or OKT3 [88], a mAb targeting the human CD3, was discovered in the
late 1970s [89], and was touted to be the magic bullet that cures cancer due to its ability
to provide agonistic signals to the T cells in an antigen independent, MHC restriction-
independent manner. Even though the antibody was highly mitogenic, with a robust ability
to induce activation, proliferation, and cytolytic activity of T cells in vitro, the in vivo
translation of antibody treatment for cancer immunotherapy was unsuccessful [89]. OKT3
administration in patients induced intense cytokine storm associated with the release of
TNF-α and IFN-γ, monocyte activation, and complement cascade. Patients receiving OKT3
suffered from fever, chills, severe fatigue, nausea, and other adverse side effects associated
with early T cell activation followed by a stage of anergy or apoptosis Haga poptosis.
Although withdrawn from use in 2010, Muromonab, due to its T cell activity curbing
properties, was previously widely used as a therapy for treating acute cellular rejection
after solid organ transplantation since its approval in 1985 [90].

With the development of the mouse anti-CD3 mAb 145-2C11 [69], the therapeutic
potential and mechanism of action of CD3 murine agonist antibodies could be further
tested in animal models. The use of mouse anti-CD3 mAb surprisingly exerts a potent
effect in counteracting autoimmunity in vivo, despite its agonistic activity in vitro. The
administration of the antibody in nonobese diabetic mice (NOD) over a period of 5 days
induced antigen specific, long-lasting remission of the disease, without affecting the re-
sponse against allografts. The treatment also prevented the generation of an immune
response towards syngeneic pancreatic islet grafts, showing that tolerance can be induced
by modulating CD3 activation [91]. These preliminary results initiated further studies using
the same antibody for tolerance induction in other autoimmune diseases and autoimmune
mediated pathologies.

Anti-CD3 antibodies were also tested in experimental autoimmune encephalomyelitis
(EAE) animal models of Multiple Sclerosis (MS). In the Lewis rat EAE model, it was
observed that therapy with a nonmitogenic, nonactivating anti-CD3 mAb (G4.18) can
reverse established EAE in mice [70]. When tested in the PLP139–151 EAE model in
SJL/J mice, results were similar: the anti-CD3 antibody was able to reduce the symptoms
of the disease, inducing lower central nervous system (CNS) inflammation associated
with decreased Ag-specific T cell proliferation [71]. The G4.18 anti-CD3 Ab leads to
the induction of immunotolerance by promoting apoptosis of reactive effector T cells
and by hampering T cell trafficking [71]. Additional autoimmune animal models were
used to test anti–CD3 treatment efficacy, such as the 2,4,6-Trinitrophenyl-Keyhole Limpet
Hemocyanin (TNP-KLH)-induced colitis model of inflammatory bowel disease (IBD) [92]
and the collagen-induced arthritis model of rheumatoid arthritis [93].

The use of anti-CD3 antibodies also gained popularity for use in transplantation. There
are several papers demonstrating the efficacy of several CD3 antibodies, in addition to
Muromonab as mentioned above, in the induction of tolerance to allografts [94–96].

Most of the information that we have related to the induction of tolerance with anti-
CD3 antibodies has been from studies conducted using NOD mice that spontaneously
develop autoimmune diabetes. Teplizumab (a Fc-receptor-nonbinding humanized mAb
specific for CD3) induces human gut-tropic regulatory cells in NOD-humanized mice as
well as in patients with type I diabetes. This suggests that the tolerogenic effect of CD3
antibodies is not dependent on Fc engagement (no antibody-dependent cellular cytotox-
icity (ADCC) or complement-dependent cytotoxicity (CDC) is triggered) and probably
is modulated by a strong TCR/CD3 signal in the absence of costimulation leading to
T cell anergy or apoptosis [72]. Some of these CD3 antibodies also seem to induce the
expansion of regulatory T cells (immunosuppressive T cells that orchestrated peripheric
tolerance) [75,76].
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Diabetic patients treated intravenously with Teplizumab improved insulin production
and metabolic control in clinical trials [73]. Furthermore, Teplizumab has just been FDA
approved for its use in delaying the onset of diabetes [74].

In another phase II/III study using the anti-CD3 antibody otelixizumab in type 1 dia-
betes, more of the patients’ pancreatic β cells were preserved upon treatment, especially for
recently diagnosed patients [77]. In patients with severe corticosteroid-refractory ulcerative
colitis, the anti-CD3 antibody Visilizumab was proven to be an effective and safe treatment
option [78]. Unfortunately, in posterior studies, Visilizumab induced secondary side effects
such as cytokine release syndrome and increased the rate of infections in patients, and
as a consequence, the clinical development of Visilizumab was ceased.

In a quest to improve immune tolerance and reduce side effects, the use of OKT3
via oral administration was explored. Preclinical studies showed promising results, and
a pilot clinical trial with 15 patients demonstrated that this therapeutic plan was safe
and efficacious, inducing improved tolerance associated with higher TGF-β and IL-10
production by dendritic cells whilst reducing Th1 and Th17 based T cell responses [97].
Efficacy and safety of oral CD3 administration was also corroborated in another phase II
study involving patients with inflammatory hepatic diseases: chronic hepatitis C infection
(HCV) and nonalcoholic steatohepatitis (NASH) [98,99].

Today, CD3-specific agonistic antibodies, despite their proposed and untapped po-
tential in the field of cancer immunotherapy, are mainly used as immunosuppressive
drugs to prevent acute rejection in transplants, and for the treatment of autoimmune disor-
ders [64,65], as well as for selective depletion of CD3+ lymphoblastic leukemia populations
in vivo [66]. In the field of cancer immunotherapy, the use of CD3 antibodies is limited
to the use of variants of the anti-CD3 antibody OKT3 for ex vivo expansion of T cells for
adoptive T cell therapy [67,68].

3.3. The Importance of Providing CD3-Mediated Signaling In Situ: Bi-Specific T-Cell
Engagers (BiTEs)

The agonistic potential of CD3 mAbs in the context of cancer immunotherapy could
only be harnessed in the past few years, with the advent of bispecific antibody plat-
forms [100,101]. Bispecific antibodies include many different types of constructs, with
bispecific T cell engagers (BiTEs) as their most successful class [102]. BiTEs are made
up of two scFvs—fusion proteins of the antigen-binding, variable domains of the heavy
and light chains. BiTEs bring together two ScFvs—one specific for CD3, and the other
for a tumor-associated antigen, fused together in a single bivalent construct [103–106].
BiTEs’ mechanism of action focuses on redirecting and guiding T cell effector function in
an antitumor manner increasing the number of CD3 engagers in the tumor cell proximity.
These synthetic bispecific mAbs simultaneously bind to T cells as well as tumor cells and
redirect the cytolytic and effector activity of a primed and activated T cells towards targeting
malignant cancer cells, thereby, potentiating the antitumor immune response [103–106].

BiTEs catalyze T cell activation only when they are tethered onto tumor cells using
their tumor-binding arm due to the monovalency of the TCR binding arm and their soluble
nature. Thus, they are able to precisely focalize their T cell activating power. Tumor cells
coated with a certain density of BiTEs facilitate multivalent engagement of the TCR/CD3
complex and can promote activation of the T cell through TCR clusterization, bypassing
the need of MHC-restricted activation of the T cell, and thus, representing a therapy that,
in principle, is applicable in the same format to many patients. The optimized design of
BiTEs renders the CD3 agonistic activity only in the tumor site, improving the antitumor
efficacy and reducing the side effects of a systemic agonistic T cell activation [103–106].

ScFvs or single chain variable fragments are fusion proteins consisting of the heavy
chain and the variable chain of the antigen binding arm of an antibody. CD3 ScFvs as
well as ScFvs specific for several tumor-associated cell surface antigens such as CD19,
CD20, CD33, B-cell maturation antigen (BCMA), CD123, and CD38, as well as for tumor
antigens identified in hematological malignancies [100,103], have been generated for clinical
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application [100,103]. Using this arsenal, several bispecific BiTEs have been generated. Of
particular interest is Blinatumomab, a CD19-directed CD3 T-cell engager [79,80] that was
approved by the FDA in 2014 for the treatment of acute lymphocytic leukemia and consists
of two scFvs, one engaging the CD3ε on the T cells, and the other engaging CD19 on B cells.
Other BiTEs in clinical trials for the treatment of solid neoplasms target carcinoembryonic
antigen (CEA) for nonsmall-cell lung carcinoma (NSCLC), Delta-like Ligand 3 (DLL3)
for small cell lung cancer, epidermal growth factor receptor variant iii (EGFRviii) for
glioblastoma, epithelial cell adhesion molecule (EpCAM) for NSCLC, human epidermal
growth factor receptor 2 (HER-2) for breast cancer, Mucin 16 (MUC16) for ovarian cancer,
prostate-specific membrane antigen (PSMA) for prostate cancers, and the somatostatin
receptor (SSTR2) for neuroendocrine tumors, among others [101,103]. Thus, BiTEs provide
off-the-shelf T cell agonism in a tumor-specific manner in vivo.

In a similar manner, another type of T cell-directed therapy called immune mobilizing
monoclonal T-cell receptors against cancer (ImmTAC) are also gaining popularity in the
clinic. Tebentafusp is a novel, bispecific fusion between a gp100 peptide-HLA-A*02:01 spe-
cific TCRαβ domain and a CD3 ScFv currently in use for the treatment of uveal melanoma
and malignant melanoma [81,82]. Tebentafusp was approved by the FDA in 2022, is the
first-in-class of TCR-ScFv fusion proteins that concomitantly bind CD3 on T cells alongside
tumor antigens using affinity-enhanced engineered TCRs to potentiate antitumor immune
responses. The binding of the TCR arm to HLA-A*02:01-positive uveal melanoma cells and
CD3 scFvs provides CD3 agonism, activating polyclonal T cells resulting in the release of
inflammatory cytokines and cytolytic proteins and the subsequent clearance of tumor cells.
In a randomized phase III clinical trial, previously untreated patients receiving Tebentfusp
showed improved overall survival and progression-free survival when compared to ther-
apy with single-agent pembrolizumab, ipilimumab, or dacarbazine, showing its efficacy in
the treatment of (HLA)-A*02:01-positive metastatic uveal melanoma patients.

Other antibody-based therapeutics have also shown the ability to activate T cells and
protect from tumor progression in murine melanoma models. A Fab-fragment generated
from a murine CD3 antibody was shown to copotentiate TCR/CD3 signaling in response
to weak pMHC antigens. Cross reactivity of this Fab-fragment to human CD3 as well as its
clinical translation potential is yet to be studied [31,107].

3.4. Aptamers as a Novel Class of CD3 Modulators

Even though cancer immunotherapy has gained success through the various T cell
therapies described above, there is still a need for an economical, mass producible, off-the-
shelf, reversible, non-cell-based, pan-cancer CD3 agonistic cancer immunotherapy platform
that can serve to enhance and restore T cell-mediated antitumor activity. Aptamers may be
one of the candidates with the potential to fill this gap.

Aptamers are DNA- or RNA-based synthetic oligonucleotide drugs [108]. They are
single-stranded species that adopt complex three-dimensional conformations that allow
them to bind and interact with a wide variety of targets with high affinity and specificity.
Hence, they behave like “chemical antibodies” with versatile applications and may be used
to bind, block, activate, or modulate the activity of any chosen target [108].

Given their biochemical structure, they are amenable to modifications that allow for:
protection from nuclease degradation; modular scaffolding and oligomerization with var-
ious cargos, including protein, miRNAs, siRNAs, and other aptamers; and tagging with
fluorescent dyes, drugs, toxins, and haptens without losing binding efficiency [109–112].
Furthermore, aptamer binding efficiency can be increased through the inclusion of novel
bases in the aptamer library; excising nonbinding motifs in aptamers via truncation;
and by bringing together several binding motifs in one aptamer to augment bind-
ing affinity [112,113]. Compared to antibodies, they are small in size, lowly antigenic
in vivo since they are not protein-based products and have limited half-life and circu-
lation time in vivo [109,112,114–116]. They can be neutralized to reverse their in vivo
effects with a universal antidote or with the help of an oligonucleotide complementary
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to the aptamer sequence [109,112,114–116]. They can be chemically synthesized in large
quantities via good manufacturing practice (GMP) grade mass production at a relatively
low cost and lyophilized for long-term storage [109,112,114–116]. Aptamers’ pharma-
cokinetic/pharmacodynamics profile—low immunogenicity, in vivo reversibility, and
lack of sustained persistence—might help to prevent off-target effects [109,112,114–116].
Combined with their potential for economical mass manufacturing, aptamers might be
ideal for clinical translation and maybe the next therapeutic class of drugs to treat dis-
eases [109,112,114–116]. This provides aptamers with customizable, versatile, and translat-
able modality for in vitro as well as in vivo therapies.

Aptamers are selected through the systematic evolution of ligands using EXponen-
tial enrichment (SELEX), which is a structured process of pruning randomness [115,117].
During SELEX, a combinatorial library of millions and millions of unique oligonucleotide
strands are sequentially and recursively exposed to the target of choice in iterative rounds
of binding. These systematic binding screens organically and serendipitously select dis-
crete, unique species—potential aptamer candidates—that are the best binders with robust
affinity and exquisite specificity to the desired target.

Aptamer selection is not biased by the antigenicity of certain epitopes contained
within the target protein, as happens in the case of selecting antibodies. Many mono-
clonal antibodies generated against the same protein might be favored to recognize similar
overlapping immunodominant epitopes. For example, many CD3 agonistic antibodies
that have been generated recognize the CD3ε chain, perhaps attributed to antigenic bias.
In contrast, because of their unique biochemical properties, anti-CD3 aptamers might show
a higher range of potential interaction sites with the target proteins and exert a wide variety
of allosteric, agonistic, or antagonistic activity on the CD3 complex, providing us with
a versatile arsenal of applications for cancer immunotherapy.

A few aptamers have been described to recognize human/murine T cells. A 2020
study described a DNA aptamer selected against the human CD3ε complex on Jurkat
cells using a variant of SELEX called ligand-guided selection (LIGS) [83]. Eluted LIGS
libraries obtained through Illumina high-throughput DNA sequencing were analyzed to
resolve five DNA aptamers with apparent affinities in the low nM range against human
CD3ε. The specificity of the aptamers was validated utilizing multiple strategies, including
competitive binding analysis and by binding assays using a CD3 double-knockout Jurkat
cell line generated via CRISPR/Cas9, and showed that all five candidate aptamers bound to
the same CD3-spcific binding site. Thus, LIGS is a universal platform to identify multiple,
highly specific aptamers toward multicomponent receptor proteins in their native state
without changing the cell-surface landscape [83]. This aptamer was truncated and dimer-
ized upon which it showed robust binding to human T cells and exerted agonistic activity
on the T Cells, inducing expression of CD69, a T cell activation marker in vitro [118].

A 2021 patent describes RNA aptamers selected against recombinant CD3ε/γ and
CD3ε/δ proteins, followed by several rounds of selection with human CD3+ Jurkat cells [84].
These aptamers showed binding to T cells and were used in vitro to isolate and enrich
T cell populations, but no data on their ability to activate T cells has been provided [84].

An interesting observation to note with the development of human CD3 aptamers is
the consistent use of the ever-popular Jurkat cell line in the aptamer selection and char-
acterization process. Even though the Jurkat cell line has been well-characterized and is
still widely used in research, it is nevertheless, in its essence, a “model” of human immor-
talized T cell and, thus, may not completely reflect the intricate and complex dynamics
that underlie T cell activation in vivo. Such bias may be overcome by promoting the use
of primary peripheral T cells along with endogenous TCR-antigen recall models during
aptamer selection. Nevertheless, in vitro studies and humanized mouse model studies
have provided us with a few aptamers that have the potential to be CD3 modulators.

Several other T cell immunomodulatory aptamers strategies have been described
previously [108,119], including targeting the costimulatory receptors such as 4-1BB, CD28,
CD40, ICOS, and OX-40. Bispecific aptamers for targeting T cell activation in situ have also
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been implemented in several studies [108,119]. Thus, it is feasible also to generate BiTE-like
aptamers with bispecific capacity to bind CD3 and a tumor receptor, thus delivering CD3
aptamer engagers to tumor cells.

3.5. Targeting CD3 Complex with Small Molecules to Modulate T Cell Activation

Even though the TCR/CD3 complex has been identified as a valuable target in the
toolbox used to modulate immune responses, there are only a few small molecules in
clinical development to target the function of this receptor.

One of the first-in-class TCR inhibitors was developed by the Alarcon group [120].
This molecule was designed via virtual screening and combinatorial chemistry. It was
aimed to inhibit the interaction between the TCR/CD3 complex and the noncatalytic region
of tyrosine kinase (NCK). TCR–pMHC binding induces a conformational change that
exposes CD3ε cytoplasmic proline rich sequence (PRS) domains where NCK and LCK
induce ITAM phosphorylation leading to T cell activation [121]. The blockade of NCK with
the small molecule AX-024 modulates T cell activity by inhibiting ITAM phosphorylation
and, thereby, preventing T cell activation. This drug is currently being explored for its use
in autoinflammatory diseases such as psoriasis and asthma [120].

There are a few other candidate drugs that could be explored to improve CD3 signaling
by modulating tyrosine phosphatase activity. LCK is an essential Src kinase that initiates
the T cell phosphorylation of the CD3 ITAM, and its activity is tightly regulated by cycles
of phosphorylation and dephosphorylation. Phosphorylation of LCK at Y505 keeps the
kinase inactive while phosphorylation of Y394 is characteristic of an active kinase. CD45
is probably one of the main phosphatases involved in this process as it can eliminate the
phosphate groups from both tyrosines with different efficacies, thus the CD45 expression
levels conditions the extent of T cell activation [122]. Moderate expression of CD45 exerts
a positive effect on T cell activation by eliminating the phosphate group from Y505. Con-
versely, a high expression of CD45 on the surface of the T cell leads to further phosphatase
activity, removing the more protected phosphate group from Y394. In addition to CD45,
there are other phosphatases, such as SHP1, PTPN2, or PTPN22, among others, whose role
cannot be underestimated in determining the fate of T lymphocyte activation upon TCR
engagement [122]. Many of these phosphatases have become interesting druggable targets
in cancer immunotherapy.

Another option is to intervene in a negative feedback loop that restricts the T cell
activation further downstream of the CD3 signaling pathway. Diacylglycerol (DAG) is
a second messenger whose phosphorylation is essential for triggering AP-1, NF-κB, and
NFAT, the three canonical transcription factors involved in T cell activation. A panel of
drugs aimed at modulating the activity of the diacylglycerol (DAG) kinases (DGKs) are
in evaluation to improve the T cell activation, with promising preclinical results reported
for Ritanserin, a potent serotonin 2A receptor antagonist, and for R59949, which amplified
TCR signaling by specific inhibition of DGKα; thereby, amplifying the TCR signaling [123].

However, some of these small molecule drugs might exert other undesirable side
effects as many of these targets are not exclusively expressed in T cells. However, targeted
inhibition of any of these possible modulators using a delivery vehicle such as an antibody
or an aptamer to achieve the strategic modulation of the pathway only in the T lymphocytes
could optimize the therapeutic window [108].

3.6. Conclusions

The TCR/CD3 complex determines the specificity of the immune response and is the
first signal needed to trigger T cell activation. The development of new approaches to
modulate the activity of this complex is very attractive for immunotherapy. Most of the
current studies are based on antibodies and chimeric bispecific proteins, but there are also
other therapeutic platforms to be explored that could bring new advances in the field such as
aptamers, oligonucleotide base ligands that can be used to target new modulatory epitopes
in the TCR/CD3 complex, to generate new bispecific molecules, or as delivery agents to
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target other CD3 immunomodulatory drugs to T cells. The recent advent of CD3-targeted
therapies has opened the door to improving the therapeutic outcome of immunological
disorders, as highlighted in this review, in the fields of cancers and autoimmunity.
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Abbreviation
% Percentage
◦C Degrees Celsius
< Less than
> Greater than
145-2C11 Mouse ati-CD3 antibody
2-DG 2-Deoxy-D-glucose; glucose analog
3D three dimensional
4-1BB Costimulatory Receptor
α alpha
β beta
δ delta
ε epsilon
γ gamma
ζ zeta
αβ alpha-beta TCR chains
γδ gamma-delta TCR chains
δε delta-epsilon CD3 subunit
γε gamma-epsilon CD3 subunit
ζζ zeta-zeta CD3 subunit
ADCC Antibody-dependent cellular cytotoxicity
AP-1 Activator protein; key transcription factor involved in T cell activation
APC Antigen Presenting Cell
aPD-1 Anti- PD-1 antibody; immune checkpoint blockade
aPDL-1 Anti- PD-L1 antibody; immune checkpoint blockade
AX-024 T cell inhibitor
BCMA B-cell maturation antigen; Tumor associated antigen in hematological
BCR B Cell Receptor, expressed on B cells
BiTE Bispecific T Cell Engager; CD3Ab-TAA bispecific antibody
BRS Basic-Rich Stretch; signaling motif in CD3/TCR subunits
Ca2+ Calcium ions; released upon T cell activation
CAR T cells Chimeric Antigen Receptor T cells; Modified T Cell based

cancer immunotherapy
CD123 Tumor associated antigen in hematological cancers
CD19 Tumor associated antigen in hematological cancers
CD20 Tumor associated antigen in hematological cancers
CD27 Tumor associated antigen in hematological cancers
CD28 Costimulatory Receptor
CD3 Cd3 signalling subunit of the CD3-TCR complex on T cells
CD3+ CD3 expressing
CD33 Tumor associated antigen in hematological cancers
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CD38 Tumor associated antigen in hematological cancers
CD39 Enzyme that converts ATP to ADP; ATP/adenosine pathway
CD3ε−/− CD3 knock out
CD3-TCR CD3-T Cell Receptor complex expressed on T Cells, composed of

1:1:1:1 ratio TCRαβ:CD3γε:CD3δε:CD3ζζ subunits
CD3δ CD3 delta
CD3ε CD3 epsilon
CD3γ CD3 gamma
CD3ζ CD3 zeta
CD3γε Gamma-Epsilon heterodimeric subunit of the TCR/CD3 receptor complex
CD3δε Delta-Epsilon heterodimeric subunit of the TCR/CD3 receptor complex
CD3ζζ Zeta-Zeta homodimeric subunit of the TCR/CD3 receptor complex
CD4+ CD4+ Helper T cell
CD40 Costimulatory Receptor
CD43 Protein tyrosine phosphatase that favors dephosphrylation of ITAMs
CD45 Protein tyrosine phosphatase that favors dephosphrylation of ITAMs
CD47 “Don’t eat me” signal expressed on tumor cells to prevent

phagocytosis by macrophages
CD69 Early T cell activation marker
CD73 Enzyme that converts AMP to Adenosine; ATP/adenosine pathway
CD79αβ Signalling subunit of the B Cell Receptor
CD8+ CD8+ Cytotoxic T cell
CDC complement-dependent cytotoxicity
CDRs Complementarity-determining regions on T cells; involved in pMHC binding
CEA Carcinoembryonic antigen; a type of tumor associated antigen
CNS Central Nervous System
CRISPR/Cas9 clustered regularly interspaced short palindromic repeats/CRISPR-associated

protein 9; genomic engineering technique
CTLA-4 Negative regulator of the immune response; Exhaustion marker on T cells
DAG Diacylglycerol kinase involved in T cell activation signaling
DGKα Diacylglycerol Kinase Alpha
DLL3 Delta-like ligand 3; tumor associated antigen in neuroendocrine tumors
DNA Deoxyribonucleic acid; Double stranded nucleic acid composed of the

bases A, T, G and C
EAE Experimental autoimmune encephalomyelitis
EGFRviii Epidermal growth factor receptor variant III; tumor associated antigen

in glioblastoma
EM Electron Microscopy
EpCAM Epithelial Cell Adhesion Molecule; tumor associated antigen
Fab Antigen-binding fragment on antibody
Fc Fragment crystallizable; Antigen non-binding fragment on antibody
FDA U.S. Food and Drug Administration
FYN src superfamily protein tyrosine kinases involved in ITAM phosphorylation
G4.18 Anti-CD3 antibody
GMP Good manufacturing practice; production quality regulations for

clinical products and therapies
gp100 Cognate peptide for PMEL T cells
HCV Hepatitis C Virus
HER-2 Human epidermal growth factor receptor 2; tumor associated antigen

in breast cancers
HIF1-α Hypoxia-inducible factor 1-alpha; key transcription factor that drive shypoxia
HLA Human leukocyte antigens
IBD inflammatory bowel disease
ICB Immune Checkpoint Blocakde
ICOS Inducible T-cell COStimulator; Costimulatory Receptor
IFN-γ Interferon Gamma; T cell activation cytokine
IL-10 Interleukin-10; anti-inflammatory cytokine
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ImmTAC Immune mobilizing monoclonal T-cell receptors against cancer
IP3 Inositol trisphosphate
ITAM Immunoreceptor tyrosine-based activation motif; involved in activation

of T cells
lL-2 Iinterleukin-2; T cell activation cytokine
LCK src superfamily protein tyrosine kinases involved in ITAM phosphorylation
LIGS Ligand-Guided Selection; a type of modified SELEX
mAb Monoclonal antibody
MHC Major Histocompatibility Complex; proteins involved in self-discrimination
miRNAs microRNA; non-coding ssRNA molecule
MS Multiple Sclerosis
MUC16 Mucin 16; tumor associated antigen
NASH nonalcoholic steatohepatitis
NCK Non-catalytic region of tyrosine kinase; second messenger in T cell signalling
NFAT Nuclear factor of activated T-cells; key transcription factor

involved in T cell activation
NF-κB Nuclear Factor kappa-light-chain-enhancer of activated B cells;

key transcription factor involved in T cell activation
nM Nanomolar
NOD Nucleotide oligomerization domain
NSCLC Non-small-cell lung carcinoma
OKT3 Human Anti-CD3 antibody
OX-40 Costimulatory Receptor
PD-1 Programmed cell death protein 1; negative regulator of the immune

response; Exhaustion marker on T cells
PDL-1 Programmed death-ligand 1; negative regulator of the immune response
PLC Phospholipase C; second messenger in T cell activation signaling
PLP139–151 EAE PLP139–151 peptide-induced Experimental autoimmune encephalomyelitis
pMHC Peptide-Major Histocompatibility Complex; cognate ligand for the

T cell Receptor
PRS Proline-Rich Stretch; signaling motif in CD3/TCR subunits
PSMA Prostate-Specific Membrane Antigen; tumor associated

antigen in prostate cancer
pSMAC Peripheral supramolecular activation complex; macromolecular

structure of TCRs in activated T cells
PTPN2 Protein tyrosine phosphatase non-receptor type 2
PTPN22 Protein tyrosine phosphatase non-receptor type 22
RAG1/2 Recombination-activating gene 1/2
Ras Rat sarcoma virus protein; small GTPase
RNA Riboxynucleic Acid; single stranded oligonucleotide containing the bases

Adenine, Guanine, Uracil and Cytosine
scFvs Single Chain Variable Fragment; fusion protein of heavy and variable

chains of the antigen binding arm of an antibody
SCID Severe combined immunodeficiency
SELEX Systematic Evolution of Ligands by Exponential Evolution; the

process through which aptamers are identified
SH.3 Src Homology 3 (SH3) domains; signaling motif present in

protein tyrosine kinases
SHP1 Src homology region 2 domain-containing phosphatase-1
siRNAs Small interfering RNA; non-coding RNA used to silence genes
SJL/J Swiss Jim Lambert EAE mice
Src src superfamily protein tyrosine kinases involved in ITAM phosphorylation
SSTR2 Somatostatin receptor 2; Tumor associated antigen in pancreatic cancer
TCR T Cell Receptor; expressed on T cells
TCR-CD3 CD3-T Cell Receptor complex expressed on T Cells, composed of 1:1:1:1

ratio TCRαβ:CD3γε:CD3δε:CD3ζζ subunits
TCR α-β alpha beta T Cell
TCR-scFv fusion protein containing a TCR and a single chain variable fragment
TCRα alpha chain of the TCR
TCRβ beta chain of the TCR
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