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Simple Summary: Lymphatic vessels are low-pressure, blind-ended tubular structures essential
in maintaining tissue fluid homeostasis, immune cell transport, and lipid transport. More and
more evidence showed that lymphangiogenesis might be closely related to the development of
many diseases, and the intervention of lymphangiogenesis may be a new direction of disease
treatment. This review aims to discuss the molecular mechanisms of lymphangiogenesis, the effect
of lymphangiogenesis on tumor immune tolerance, the emerging role of meningeal lymphatics and
cardiac lymphatics, and the promising applications of lymphangiogenesis in immunotherapy and
bioengineering materials.

Abstract: The lymphatic system is a channel for fluid transport and cell migration, but it has always
been controversial in promoting and suppressing cancer. VEGFC/VEGFR3 signaling has long been
recognized as a major molecular driver of lymphangiogenesis. However, many studies have shown
that the neural network of lymphatic signaling is complex. Lymphatic vessels have been found to
play an essential role in the immune regulation of tumor metastasis and cardiac repair. This review
describes the effects of lipid metabolism, extracellular vesicles, and flow shear forces on lymphan-
giogenesis. Moreover, the pro-tumor immune tolerance function of lymphatic vessels is discussed,
and the tasks of meningeal lymphatic vessels and cardiac lymphatic vessels in diseases are further
discussed. Finally, the value of conversion therapy targeting the lymphatic system is introduced from
the perspective of immunotherapy and pro-lymphatic biomaterials for lymphangiogenesis.

Keywords: lymphangiogenesis; immune tolerance; immunotherapy; meningeal lymphatic vessels;
tumor metastasis; myocardial infarction

1. Introduction

The lymphatic system is a blind-ended vasculature network consisting of capillary
lymphatic vessels, collecting lymphatic vessels, and secondary lymphatic organs such as
lymph nodes (LNs). The lymphatic system plays an essential role in tissue fluid homeostasis,
lipid absorption, immune surveillance, and transport of immune cells [1]. Lymphatic
capillaries are composed of oak-leaf-like lymphatic endothelial cells (LECs). Adjacent
LECs are loosely connected in a button-like manner, through which interstitial fluid and
macromolecules can pass. These LECs express the chemokine CCL21 to guide the migration
of dendritic cells (DCs) and other CCR7+ cells to them. LECs of the collecting lymphatic
vessels are smooth and elongated and form tight, continuous chain connections. These
LECs are covered with muscle cells that produce contractions to aid lymph flow [2]. In
addition, they contain lymphatic valves that maintain unidirectional flow. The morphology
of LECs in LNs is different. The LECs in the outer wall of the subcapsular sinus are similar
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to those in the lymphatic vessels and are closely organized to form a physiological barrier.
On the contrary, LECs in the inner wall of the subcapsular sinus, cortex, and medulla are
more like LECs of the primary lymphatic vessels, allowing immune cells to migrate through
the endothelium between the lymphatic lumen and the LN parenchyma [3].

Recent single-cell sequencing of human LNs has revealed different subtypes of lym-
phatic endothelial cells with various functions, such as DC and lymphocyte recruitment,
maintenance of T cell survival, antigen archiving [4], antigen presentation, and immune
tolerance [5,6]. The functional diversity of LECs allows them to be either beneficial or
harmful in the course of the disease. It can provide a pathway for antitumor immune cells
to inhibit tumor progression, but more studies claim that tumor-associated lymphangio-
genesis is associated with poor patient outcomes. Recent studies have shown that LECs
in melanoma mainly inhibit antitumor immunity and promote immune tolerance and
escape [7], but they can enhance the immunotherapeutic effect of melanoma [8]. The discov-
ery of meningeal lymphatic vessels (MLVs) in recent years has shattered the perception that
the central nervous system (CNS) is an immunologically privileged region [9]. Promoting
MLV production can trigger antitumor-immune effects in brain tumors [10]. This seems
to be a different outcome from melanoma but could also enhance immune/radiotherapy
effects [11,12]. In addition, several studies have demonstrated in experimental models that
promoting cardiac lymphangiogenesis after myocardial infarction (MI) reduces cardiac in-
flammation and fibrosis, thereby promoting cardiac functional recovery [13]. In conclusion,
these studies suggest that lymphangiogenesis intervention may be a new strategy for the
treatment of the disease (Figure 1). This review summarizes recent advances in lymphan-
giogenesis, including new findings on the signaling mechanism of lymphangiogenesis,
the contribution of lymphangiogenesis to immune tolerance, the relationship between
lymphangiogenesis and tumor metastasis, and its role in different diseases.
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2. Lymphangiogenesis Signals

The lymphatic system plays a vital role in both physiological and pathological con-
ditions. Exploring the molecular signaling mechanism of lymphangiogenesis may shed
new light on the pathogenesis and prognosis of diseases. VEGFC/VEGFR3 and Prospero
homeobox 1 (PROX1) are recognized as classical signals of lymphangiogenesis. Recent
studies have found that these signals are related to lipid metabolism. Macrophages, extra-
cellular vesicles (EVs), and mechanical signals are essential transducers of LEC proliferation.
Multiple studies have focused on different aspects of the lymphangiogenic mechanism and
may provide new therapeutic insights.

2.1. Classical Lymphangiogenesis-Related Signals

The vascular endothelial growth factor family (VEGF), which includes VEGFA, VEGFB,
VEGFC, VEGFD, and placental growth factor (PLGF), can produce different functions by
binding to other cell-surface tyrosine kinase receptors, including VEGFR1, VEGFR2, and
VEGFR3. The binding effect of VEGFC and VEGFD with VEGFR3 is the main driving
force of lymphangiogenesis [14]. The binding of VEGFA to VEGFR2 also promotes hu-
man lymphangiogenesis [15]. In addition, VEGFR2 can perform different functions by
combining various molecules into different dimers, among which the dimers formed by
the combination of VEGFR2 and VEGFR3 promote the migration and lymphangiogenesis
of LECs [16,17]. When VEGFR2 is absent, lymphatic vessels are also observed to be dys-
plastic but still functional [15]. In summary, VEGFR3 is a primary affecting receptor for
lymphangiogenesis, and VEGFR2 slightly affects lymphangiogenesis.

The process of lymphangiogenesis is divided mainly into four processes: prolifer-
ation, germination, migration, and the formation of vascular structures. In the central
vein, the expression of the transcription factor PROX1 mediated by SOX18 and COUP-TFII
in embryonic venous endothelial cells led to the formation of LEC progenitor cells [18].
Specifically, PROX1 activates VEGFR3 expression, and VEGFC-mediated activation of
VEGFR3 signaling, in turn, maintains PROX1 expression [2]. At the same time, the mat-
uration of pro-VEGFC in the embryonic stage depends on the participation of Adamts3
and CCBE1 [19]. In the adult stage, Adamts2/Adamts14 takes over from Adamts3 to
process and activate pro-VEGFC into mature VEGFC [20]. Wong et al. found [21] that LEC
development requires epigenetic regulation of fatty acid β-oxidation and lymphopoietic
factors. A fatty acid β-oxidation rate-controlling enzyme (CpT1A) can be upregulated by
PROX1 to promote fatty acid β-oxidation (FAO). FAO provides acetyl CoA (AcCoA) for
histone acetic acid, which can be used by histone acetyltransferase p300 to acetylate histone
H3K9ac at PROX1, thereby promoting VEGFR3 expression and ultimately promoting LEC
proliferation and migration. Another source of AcCoA for this process is the regulation
of autophagy by LECs. Autophagy in LECs is conducive to developing lipid droplets
(LD), providing free fatty acids to mitochondria to promote FAO, which complements
AcCoA [22]. Koltowska et al. discovered [23] Ddx21, a target molecule downstream of
VEGFC/VEGFR3 signaling, which can regulate ribosome production, maintain the p53-
dependent cell cycle of endothelial cells, and promote developmental lymphangiogenesis.
LEC progenitor cells generally begin to bud after expressing PROX1 signals. They then
express LEC differentiation markers such as podoplanin (GP38), and they gradually be-
come arborized and lumenization. When fluid flow signals are detected, lymphatic valves
develop and maintain unidirectional flow. The current understanding of the metabolic
mechanisms is just beginning, and lipid metabolism has recently been found essential for
regulating LEC differentiation (Figure 2). Adjusting dietary fatty acid intake may be an
exciting area of research to regulate lymphatic vessel growth.
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Figure 2. Relationship between VEGFC- and PROX1-related signaling pathways and lipid
metabolism. SOX18 and COUP-TFII promote PROX1 transcription and the differentiation of embry-
onic venous endothelial cells into LECs. Fatty acids enter LECs and aggregate into lipid droplets that
are then transported to mitochondria by autophagy to provide the free fatty acids required for FAO.
AcCoA is produced by fatty acid oxidation, and acetyltransferase p300 acetylates histone H3K9ac of
PROX1 to promote VEGFR3 expression. Prox1 promotes CpT1A-dependent fatty acid β-oxidation
to further increase AcCoA production. In addition to interacting with PROX1, VEGFC/VEGFR3
signaling can also regulate the expression of ribosomal RNA through Ddx21 and inhibit the positive
regulation of the cell cycle by p53, thus promoting the proliferation of LECs. Endogenous pro-VEGFC
must be cleaved by CCBE1/Adamts3 and Adamts14/Adamts2 to become mature VEGFC, which can
bind to VEGFR3 and regulate PROX1 expression.

2.2. Macrophage-Associated Lymphangiogenesis Signals

Macrophages are one of the critical sources of VEGFC/VEGFD/VEGFR3. In the model
of inflammation induced by lipopolysaccharide (LPS) in Gram-negative bacteria [24], LECs
recruit macrophages to remodel lymphatic vessels by producing chemokines through
LPS–Toll-like receptor 4 (TLR4)–NFKB signaling. The TLR4 signaling of macrophages
enhances the expression of VEGFC and VEGFD to promote lymphangiogenesis. The P13K-
Akt signal activated by the VEGFR3/VEGFC signal from macrophages promotes SOCS1
expression to inhibit the TLR4-NFkB signal, and it attenuates the release of inflammatory
factors, thereby reducing the inflammatory response [25]. LECs and macrophages highly
express VEGFC/VEGFD/VEGFR3 in the perfusion model of liver ischemia. VEGFR3, on
the one hand, promotes lymphatic dilation around the portal vein to increase drainage;
on the other hand, it can, in turn, drive macrophages to the repair phenotype [26]. In the
myocardial infarction (MI) model, CD11b+ [27] and CD36+ [13] macrophages also express
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VEGFC to promote cardiac lymphangiogenesis and protect cardiac function. There is
high expression of the podoplanin (PDPN) subtype in macrophages. Glycosylated PDPN
combined with Galectin 8 (GAL8) can activate integrin-β1 and promote LEC adhesion
and lymphangiogenesis, and this macrophage is closely related to lymphatic infiltration
and lymphatic metastasis in breast cancer [28]. For other immune cells, Tregs can improve
lymphedema and lymphatic drainage function in mouse models and may have a regulatory
effect on lymphatic vessels [29]. However, Th2 and its secreted cytokines inhibit LECs-
related transcription factors and LEC tubule formation [30]. In conclusion, macrophages
are essential cells in tumor angiogenesis, and there is increasing evidence that they are also
critical players in lymphangiogenesis [31]. The intervention of macrophage polarization at
molecular and cellular levels to regulate tumor lymphangiogenesis opens a new horizon
for the personalized treatment of cancer.

2.3. Other Lymphangiogenic Molecules

Recent studies have found that inactivating mutations in Angiopoietins 2 (Ang2)
and Tie are associated with developmental disorders and loss of function in the human
lymphatic system [32]. Korhonen et al. described [33] a novel mechanism by which
Ang2/Tie activates the P13K/AKT pathway to inhibit Foxo1 and its downstream target
genes in Ang2-related lymphangiogenesis. Akwii et al. found [34] that Ang2 can bypass
Tie and use integrin-β1 to activate the downstream RhoA–formin axis to promote LEC
migration and lymphangiogenesis.

The TGF-β pathway can also maintain the structure of lymphatic vessels and lym-
phatic homeostasis [35]. Zhu et al. demonstrated that TGFβR1 could mediate the lym-
phangiogenesis of bladder cancer through VEGFD signaling [36]. Lin et al. suggested [37]
that TGFBIp could induce corneal lymphangiogenesis through the integrin–α5β1/FAK
pathway. Pak’s in vivo and in vitro studies confirmed that TGF-β1 could promote the acti-
vation of VEGFC by Smad pathways in gastric cancer to promote lymphangiogenesis [38].
However, studies have shown [39–41] that TGF-β1 signaling can worsen lymphedema
by impairing lymphangiogenesis during wound repair. Baik et al. confirmed [41] that
TGF-β1 did not directly inhibit LEC but increased the infiltration of fibroblasts and Th1
cells and finally increased the hardness of the extracellular matrix (ECM), which inhibited
the assembly of the lymphatic pipe network. These findings open up new ideas for the
treatment of lymphedema.

Ephrin is another crucial molecular mechanism of lymphangiogenesis. Ephrin-b2,
an Eph receptor tyrosine kinase transmembrane ligand, promotes vascular endothelial
sprouting and angiogenesis and has extensive effects on cytoskeletal activity, cell adhesion,
intercellular junctions, cell movement, and cell morphology [42]. Wang et al. found [43]
that Ephrin-B2 promotes the internalization of VEGFR3 to enhance VEGFC/VEGFR3
signaling and is a vital regulator of this pathway. Blocking Ephrin-B2 dramatically reduced
lymphangiogenesis and inhibited tumor growth in a mouse model [44]. Other studies
have reported that EphrinB2–EphB4 signaling promotes the formation and maintenance of
funnel valves in corneal lymphatic capillaries [45].

miRNAs are non-coding RNAs fewer than 200 nucleotides in length that bind to mRNA
to inhibit transcription or translation [46]. They can be encased in EVs and play an important
role in intercellular communication [47]. Recently, many miRNAs have been found [48] to
regulate lymphangiogenesis. miRNAs mainly achieve this function by regulating mRNA
that drive lymphangiogenesis [48–50], such as VEGFC/VEGFR3, PROX1, FOXO1, etc., while
they are also regulated by upper long non-coding RNAs [36]. Thus, miRNA regulation of
lymphangiogenesis is multidimensional and needs further exploration.

Exploring the molecular mechanisms and signaling pathways that regulate lymphan-
giogenesis is still ongoing (Table 1). With further research in this field, new findings
may provide a reliable reference for diagnosis, treatment, and prognosis assessment of
lymphangial-related diseases.
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Table 1. Examples of molecules and signaling pathways that promote lymphangiogenesis.

The Pathways of Lymphangiogenesis Reference

VEGFC or VEGFD/VEGFR3 [14]

VEGFA/VEGF2 [15]

VEGFR2–VEGFR3 dimer [16,17]

SOX18 and COUP-TFII/PROX1 [18]

Adamts3 and CCBE1/pro-VEGFC/mature VEGFC [19]

Adamts2/Adamts14/pro-VEGFC/mature VEGFC [20]

PROX1/FAO/VEGFR3 [21]

VEGFR3/Ddx21/p53 [23]

LEC autophagy/LD/FAO/PROX1/VEGFR3 [22]

LPS/TLR4/VEGFRC and VEGFD [24]

PDPN/GAL8/integrin-β1 [28]

Ang 2/Tie/PI 3 K/VEGFR3 [33]

Ang2/integrin-β1/RhoA [34]

circEHBP 1/TGF-β/SMAD 3/VEGFD [36]

TGFBIp/integrin-α5β1/FAK [37]

TGF-β1/Smad/VEGFC [38]

Ephrin-B2/VEGFR3 [43,44]

2.4. Effect of EVs on Lymphangiogenesis

EVs are bilayer lipid particles released by eukaryotic cells that carry bioactive molecules
and play an important role in cell-to-cell communication. Several studies have confirmed
that EVs containing tumor-released lymphangiogenic factors are essential mechanisms of tu-
mor lymphangiogenesis. Chen et al. found [51] that EV-transported ELNAT1 could mediate
the SUMO-dependent UBC9/SOX18 signaling axis and further promote lymphangiogene-
sis in bladder cancer cells. Exosomes from bladder cancer cells can also carry LNMAT2,
thus promoting LECs to express PROX1 to drive lymphangiogenesis [52]. The loss of
DUSP2 in pancreatic ductal adenocarcinoma (PDAC) promotes the processing of VEGFC,
which is subsequently transported by EVs to the tumor microenvironment (TME), leading
to lymphangiogenesis [53]. EVs secreted by PDAC cells with KRAS mutation can carry
SUMOylated hnRNPA1 into LECs and upregulate the expression of PROX1 to promote
lymphangiogenesis [54]. Endometriotic cells also promote lymphangiogenesis and immune
cell infiltration by secreting EVs carrying VEGFC, thereby exacerbating inflammation [55].
Melanoma-derived extracellular vesicles carry NGFR into LECs and LN macrophages,
activate NF-kB/VEGFR3 signaling in LECs, and promote LEC proliferation [56].

In conclusion, EVs are essential mediators of tumor progression, which target lym-
phangiogenesis and may also be involved in tumor lymphatic metastasis. Table 2 reviews
studies in which lymphangiogenic factors carried by EVs promote lymphangiogenesis. In
the future, more evidence is needed to demonstrate the role of EVs in promoting tumor
lymphatic metastasis.

Table 2. Examples of molecules carried by EVs that promote lymphangiogenesis in various diseases.

Year/Authors Disease The Molecules of EVs Contain Effector Target Molecule Reference

2021/García et al. Melanom NGFR NF-kB/VEGFR3 [56]

2020/Li et al. Endometriosis VEGFC VEGFR3 [55]
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Table 2. Cont.

Year/Authors Disease The Molecules of EVs Contain Effector Target Molecule Reference

2020/Wang et al. PDAC VEGFC VEGFR3 [53]

2021/Luo et al. KRAS mutant PDAC hnRNPA1 PROX1 [57]

2021/Chen et al. BCa lncRNA ELNAT1 SOX18 [51]

2020/Chen et al. BCa lncRNA LNMAT2 PROX1 [52]

2019/Zhou et al. CSCC miR-221-3p Inhibit 9VASH1 [58]

2019/Yang et al. HCC miR-296 EAG1/VEGFA [47]

2019/Wang et al. OSCC Laminin-γ2 Integrin-α3 [59]

PDAC: pancreatic ductal adenocarcinoma; BCa: bladder cancer; CSCC: cervical squamous cell carcinoma; HCC:
hepatocellular carcinoma; OSCC: oral squamous cell carcinoma.

2.5. Mechanical Signals Regulate Lymphatic Vessels and Lymphatic Valves

The microenvironment of LECs regulated by mechanical signals plays an essential role
in shaping lymphatic physiology, especially in driving the generation of lymphatic valves to
ensure one-way drainage of lymphatic fluid. Transcription factors such as FOXC2, GATA2,
Orai1, Piezo1, and the Wnt signaling pathway can drive lymphatic valve development
in response to oscillatory shear stress (OSS) (Figure 3). The disturbance of fluid flow can
cause LEC proliferation and cell death [60], and the same phenomenon is also observed in
vascular endothelial cells [61]. Resistance to this mechanical force is essential for developing
the lymphatic system.

FOXC2 is a critical transcription factor that stabilizes and maintains the function of
collecting lymphatic vessels. FOXC2 is highly expressed in collecting lymphatic vessels,
especially endothelial cells, from lymphatic valves [60]. After sensing mechanical signals,
FOXC2 mediates valvular lymphatic formation via Cx37–Cn/NFATc1 signaling [62]. It can
block the proliferative effect of Hippo/YAP1/TAZ signals collected from lymphatic vessels,
ensure the quiescence of LECs, and increase the anti-disturbance of LECs by maintaining
the intercellular connections and the cytoskeleton under the induced liquid shear force [60].
Loss of FOXC2 causes morphological changes in lymphatic valves, leading to severe
functional impairment [60]. Hernandez et al. found [63] that FOXP2, a downstream
target molecule of FOXC2, is highly expressed in collecting lymphatic vessels. It can
not only participate in the indirect activation of valve generation by the FOXC2/NFATc1
pathway but can also directly activate valve generation by FOXC2 regulation. Yang et al.
demonstrated [64] that after sensing mechanical signals, VE-cadherin can regulate β-
catenin and AKT signaling in the nucleus, activate PROX1 and FOXC2 expression to
promote lymphoid valve development, and also maintain valve function by blocking TAZ
signaling [65].

GATA2, a member of the zinc finger family of transcription factors, was initially found
to be highly expressed in lymphatic valves, and it is also a critical molecule that mediates
the development of lymphoid valve development [66]. Subsequent studies showed [67]
that GATA2 could cooperate with Lmo2 to regulate NRP2 transcription, thereby regulating
VEGF-mediated lymphangiogenesis. Betterman et al. identified [68] FAT4, a downstream
effector target of GATA2, which, upon receiving mechanical fluid signals, drives LECs to
polarize towards a phenotype of cell rearrangement and cell migration that favors valve
formation [69]; at the same time, FAT4, Adamts3, and CCBE1 function in the same signaling
pathway to promote VEGFC processing and maturation. Recent studies have also found
that GATA2 transcription is regulated by the hardness of the ECM at which LECs are
located [70].
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Figure 3. Molecular mechanism of the effect of mechanical signals on LECs. Transcription factors
GATA2, FOXC2, and FOXO1 are important target molecules in LECs regulated by mechanical
signaling. In response to OSS signaling, VE-cadherin can bind to β-catenin to drive FOXC2 and
PROX1 transcription and can phosphorylate VEGFR3 to activate the P13/AKT pathway. AKT
phosphorylation can inhibit the transcription of FOXO1 and induce the expression of FOXC2. FOXO1
inhibits the activity of FOXC2 and Cx37 by regulating PRDM1 and inhibits valvular lymphatic
production. FOXC2 inhibits the Hippo pathway and downstream YAP1/TAZ to aid in the quiescence
and survival of LECs. In addition, FOXC2 cooperates with PROX1 and FOXP2 to regulate Cx37 and
Cn/NFATc1 to control LEC cytoskeleton remodeling and cell alignment in response to OSS. OSS and
soft ECM stiffness can activate transcription of GATA2. GATA2 mediates LEC migration and polarity
via FAT4 on the one hand and migration and survival via NRP2/VEGFR3 on the other.

FOXO1 is a negative regulator of vascular development [71]. The phosphorylation of
AKT induced by sensing the bidirectional flow shear force can inactivate FOXO1, down-
regulate the transcription factor PRDM1, relieve the transcriptional inhibition of Cx37 and
FOXC2, and induce valvular formation [72].

Mutations in PIEZO1, a fluid-flow mechanical signal receptor for cationic calcium
channels, cause systemic lymphatic dysplasia. It can activate another calcium channel
(Orai1) to promote calcium influx. Then calmodulin (CaM) binds to PROX1/Klf2 to form a
transcriptional complex, which binds to the promoters of DTX1 and DTX3L to initiate their
transcription. Finally, DTX1 and DTX3L block the Notch pathway to promote lymphatic
sprouting. However, how Piezo1 regulates Orai1 is still unknown because both PIEZO1
and PIEZO1 are membrane channel proteins. Choi et al. speculated that the mechanism
might be physical [73].

The Wnt/β-catenin pathway is also a key regulator of lymphatic and valve develop-
ment, and it has recently been reported [74,75] to sense OSS signaling to regulate FOXC2,
GATA2, and PROX1 activation. Integrin is a transmembrane receptor essential for intracel-
lular and extracellular signaling, and integrin-β1 is involved mainly in the development
and generation of lymphatic vessels. Integrin-β1 is a target molecule that senses the
mechanical signal of lymphatic expansion caused by LEC stretching due to interstitial
fluid accumulation, which increases VEGFR3 phosphorylation and promotes LEC pro-
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liferation [76]. Urner et al. elucidated [77] a novel mechanism by which ILK negatively
regulates integrin-β1/VEGFR3 signaling and prevents lymphatic overgrowth, whereas
mechanical stretching signaling can block ILK function. Podoplanin expressed by TAM and
GAL8 secreted by LECs can activate integrin-β1 in a glycosylated manner and promote
the infiltration of LECs [28]. In vitro, LEC tubule formation experiments of HA hydrogels
confirmed that LECs sense matrix hardness through YAP/TAZ mechanoreceptors and that
the soft matrix promotes the expression of VEGFC/VEGFR3 and MMP14 to promote LEC
migration and LEC tubule formation [78].

Shear force and matrix stiffness appear to be the primary mechanical signals whose
abnormal conduction leads to lymphatic and lymphatic valve dysfunction, and they are an
important cause of lymphedema. Intervention in these mechanical signals may be more
promising than massage and compression bandages for lymphedema.

3. Modulating the Effect of Lymphatic Vessels on Tumor Immunity

Lymphatic vessels play an important role in immune regulation by coordinating
the transport of antigens and immune cells from peripheral tissues to the collection of
lymphatic vessels and LNs. LECs can regulate immune cell migration and immune effects
through various secreted factors, the most famous of which is the lipid sphingosine one
phosphate (S1P). The lymphatic system responds to tumor antigens or exogenous antigens
to activate adaptive immunity and has an immune tolerance mechanism to help immune
escape. Currently, an increasing number of studies are focusing on the effect of tumor
immune tolerance on the lymphatic system.

3.1. S1P

S1P is a G-protein-coupled receptor, mainly derived from LECs in the lymphatic
system, that controls the migration of immune cells from S1P-low to S1P-high environ-
ments [79]. Mature T cells in the thymus also need the help of the S1PR1 signal to leave
the thymus [80] and then sense the S1P signal gradient through S1PR1 and S1PR4 to cross
the LECs. Moreover, T cells also need LECs to express S1PR2 [81]. However, autophagy in
LECs can reduce S1P production, inhibit T cell migration, reduce T-cell-associated autoim-
munity [82], and enhance naive T cells’ survival and mitochondrial function [83]. Baeyens
et al. found [84] that inflammatory monocytes could supply S1P in LNs through CD69, and
a high level of S1P would prolong the residence time of T cells in LNs. Loss of S1P leads
to accumulation and ectopia of natural killer (NK) cells, resulting in reduced efficiency
against Salmonella [85]. S1P regulates endothelial cell spread, maturation, stability, and
barrier integrity [86]. Since S1P can regulate lymphatic permeability, it may play a role in a
lymphatic invasion during tumor lymphatic metastasis [87].

3.2. Mechanisms of Immune Tolerance in the Lymphatic System

Increasing evidence supports the immunosuppressive role of lymphatic vessels, which
can reduce inflammation and promote tumor immune escape, especially in melanoma models.

Cutaneous malignant melanoma is one of the most aggressive malignant tumors.
It progresses rapidly and readily metastasizes through the lymphatic system [88]. The
density of lymphatic vessels in human melanoma has been reported to be closely correlated
with T cell infiltration and immunosuppressive molecules such as nitric oxide synthase
(iNOS) and 2, 3-dioxygenase (IDO) expression, suggesting that melanoma-associated
lymphatic vessels activate both antitumor and antitumor immune effects [89]. Although
enhanced tumor-associated lymphangiogenesis may increase the presentation of tumor
antigens to the specific immune system, it appears deleterious in melanoma. Several
studies have confirmed that the net benefit of VEGFC release from melanoma cells and
tumor-associated macrophages (TAM) to induce lymphangiogenesis is to promote LN
metastasis of melanoma [90–93], which is considered a marker of a poor prognosis of
melanoma [94–97].
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In the murine B16 melanoma model, VEGFC was shown to contribute to tumor
immune tolerance by promoting naive T cell loss in sentinel LNs and cross-presenting tumor
antigens by LECs, leading to CD8+ T cell dysfunction and apoptosis [7]. Activation of CD8+

T cells requires the presentation of tumor-associated antigen (TAA) by antigen-presenting
cells (APC) carrying major histocompatibility class I complexes (MHC-I) [98]. Similarly,
LECs can perform APC presentations by cross-presenting TAA. This cross-presentation
effect is similar to that of liver sinusoidal endothelial cells (LSEC), which are the first cells
to respond to food antigens. Their cross-presentation helps the immune system to absolve
these foreign antigens, facilitating protein processing in the liver [99,100]. LECs with high
expression of MHC-I and PD-L1 cross-presented activated CD8+ T cells, which carried
more PD-1, CTLA4, and CD80 than activated DCs. These CD8+ T cells secrete only small
amounts of IFN-γ and IL-2 and express low activation markers such as CD25, CD44, and
CD69. These cells are depleted and dysfunctional early on and cannot be reversed by
IL-2 [101]. Similarly, in the B16 mouse melanoma model, IFN-γ promoted the expression
of MHC-II in LECs. MHC-II+ LECs presented TAA, which increased the number of Treg
cells and decreased the number of effector T cells. The number of Treg cells was positively
correlated with the density of lymphatic vessels [102]. LECs, fibroblastic reticular cells
(FRCs), and blood endothelial cells (BECs) belong to the lymph node stromal cells (LNSCs)
subgroup. The expression of LNSCs is only partially regulated by IFN-γ and depends
on EVs secreted by DCs. Moreover, acquired pMHC-II can promote the dysfunction and
apoptosis of CD4+ T cells after the presentation to these cells [103]. In conclusion, although
LECs can present TAA in the melanoma model, the activation effect is quite different from
that of “professional APCs,” and it is always immunosuppressive.

LECs express various peripheral tissue antigens (PTAs), which present melanocyte-
specific protein tyrosine kinases to CD8+ T cells, resulting in the loss of CD8+ T cells [104].
At the same time, LECs can deliver these PTAs to DCs to induce tolerance of CD4+ T
cells, and MHC-II molecules in LECs can mediate tolerance of CD8+ T cells through LAG-
3 [105]. Contact between DCs and LECs induces ICAM-1-mediated contact inhibition,
which inhibits the maturation of DCs and the ability to stimulate T cell proliferation [106].

IFN-γ signaling in lymphatic vessels is also one of the crucial mechanisms of immune
suppression and immune escape, which can promote the expression of PD-L1 in LECs
through the JAK/STAT pathway to inhibit T cell accumulation [107]. Encapsulated miR-
1468-5p in cervical cancer exosomes can also target the JAK/STAT3 pathway activated by
HMBOX1 in LECs, promoting lymphangiogenesis, high expression of lymphatic PD-L1,
and destroying T cell immunity [108]. In colorectal cancer, the VEGFC/VEGFR3 pathway
induces the proliferation of LECs and recruitment of macrophages, but VEGFR3 induces the
polarization of TAM to the M2 type, which, together with LECs, inhibits the proliferation
of CD4+ T cells and CD8+ T cells [109].

In conclusion, LEC-mediated immune tolerance is mainly through the following
mechanisms: 1. inhibition of DC maturation, 2. secretion of immunosuppressive factors
(IDO, iNOS, and TGFβ signaling molecules), 3. expression of immune checkpoints (PD-L1,
CTLA4, LAG-3, etc.), 4. downregulation of T cell costimulatory molecules such as CD28,
CD27, 4-1BB, and OX40 and inhibition of T cell function by inhibiting IL-2 [110], and 5.
carrying MHC-I/II or presenting PTA antigens (Figure 4).
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Figure 4. Mechanisms of immune tolerance mediated by the lymphatic system. IFN-γ signaling
promotes the expression of MHC-I molecules and PD-L1 by LECs, which present immune checkpoints
such as CTLA-4, PD-1, and CD80 expressed by CD8+ T cells activated by foreign antigens. These
CD8+ T cells undergo apoptosis. LECs expressing PTA also result in the loss of CD8+ T cells. LECs
secrete immunosuppressive molecules such as TGF-β, IDO, and INOS to inhibit CD8+ T cells and
DCs. LECs can inhibit DC maturation. Presentation of antigens by LECs expressing MHC-II activates
Treg cells and inhibits effector T cells. The expression of VEGFR3 by macrophages and VEGFC can
promote the polarization of macrophages to the M2 type, and M2-type macrophages can inhibit the
proliferation of effector T cells. LNSCs obtain pMHC-II from DCs to inhibit CD4+ T function.

4. The Relationship between Lymphatic Vessels and Tumor Metastasis

Metastasis is the leading cause of cancer-related death, and the relationship between
lymphatic vessels and tumor progression has been the subject of much research. Early theo-
ries only supported lymphangiogenesis as the biological pathway of tumor metastasis [111].
However, later evidence showed that tumor lymphangiogenesis is an immunosuppressive
effect [112], promoting tumor lymphatic colonization and providing a suitable microenvi-
ronment for distant metastases.

4.1. Relationship between Lymphatic Vessels and Lymphatic Metastasis of Tumors

Many cancers, such as melanoma, breast, cervical, and gastric cancer, can metastasize
through the lymphatic system. Due to the bidirectional immunomodulatory function of
tumor-associated lymphatic vessels, its correlation with lymphatic metastasis has always
been controversial [112,113]. As described above, the immunosuppressive/tolerant mi-
croenvironment facilitated by LECs makes tumor-associated lymphatics a pathway for
tumor cells to colonize LNs rather than a transport pathway for leukocytes. With the
progression of the tumor, lymphangiogenesis is gradually increased, which, coupled with
the remodeling and dilation of the collecting lymphatic vessels, increases the flow velocity
of the vessels and dramatically increases the drainage and transportation capacity of the
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lymphatic vessels [114]. In addition, lymphatic vessels express large amounts of CCL21,
which provides migration guidance for tumor cells expressing the CCL21 receptor CCR7
and drives tumor cells to migrate into the lymphatic system [115]. Cancer stem cells are a
class of tumor cells with self-renewal and differentiation abilities associated with relapse,
metastasis, and drug resistance [116]. The recently discovered lymphatic stem cell niche
provides a protective resting environment for tumor stem cells, which persist in LNs even
after resection of the primary tumor [117,118]. The accumulation of evidence supports
the idea that lymphatic vessels contribute to tumor metastasis. Mouse melanoma models
lacking lymphatic vessels at all also lack antitumor immune responses.

Interestingly, lung metastasis is reduced in this setting. In the initial stage of the tumor,
the lymphatic system may show more of an antitumor effect than pro-tumor effect and
only begin to show a full pro-tumor effect when the tumor progresses to a particular stage.
Precise temporal and spatial control of lymphangiogenesis, rather than blindly blocking
lymphangiogenesis, may be an effective strategy to prevent lymphatic metastasis of tumors.

4.2. Relationship between Lymphatic Vessels and Distant Tumor Metastases

Although most tumors with distant metastases are preceded by LN invasion, the
relationship between trans-lymphatic and distant metastasis has been controversial [119].
There are two hypotheses about the relationship between the lymphatic system and distant
metastases. One hypothesis thought that tumors colonizing LNs would shift to a pheno-
type favoring distant metastasis and then spread to other organs. Another hypothesis is
that lymphatic metastasis is not associated with distant metastases. The density of lung
metastases is associated with a poor prognosis in patients with melanoma. In a mouse
model, overexpression of VEGFC in the lung promoted lymphatic infiltration and lung
metastasis of melanoma, with more metastasis to other distant organs [120]. Naxerova et al.
analyzed [121] 213 biopsy samples from 17 colorectal cancer patients and found that 65% of
lymphatic and distant metastases had tumor cells of different subtypes, and the remaining
35% had common subtypes. In a study of 1934 patients with melanoma, the presence or
absence of sentinel LN dissection did not improve survival [122]. The loss of the LEC barrier
switch S1P/SPNS2 resulted in circulating lymphocytopenia, accumulation of effector T and
NK cells in the lung, and reduced melanoma metastasis [123].

Several recent studies support the idea that the lymphatic system drives distant metas-
tases. The traditional view is that metastatic tumor cells enter the lymphatic system and
eventually migrate from the thoracic duct to the subclavian vein and systemic circula-
tion [124]. Brown et al. found [125] that collecting lymphatic vessels can transport tumor
cells to the floor of the subcapsular sinus of the LN, where tumor cells enter the LN stroma
and then enter blood circulation through high endothelial venules. Therefore, the high
endothelial venules (HEVs) of LNs are the outlet for murine breast cancer cells to enter
systemic circulation before lung colonization, which is more efficient than direct lung
metastases of primary tumors, indicating that lymphatic vascular channels are at least part
of the route of tumor cell metastasis. Invasion of tumor cells appears to be enhanced after
entering the lymphatic system [125]. This phenomenon has also been demonstrated in
mouse models of squamous cell carcinoma and melanoma [126]. This increased invasive-
ness may be related to the immune tolerance effects induced by LN colonization of tumor
cells, which were subsequently discovered by Reticker et al. [119]. They believed that after
tumor cells colonized LNs, MHC-I expression was upregulated to avoid NK cell killing,
and PD-L1 was upregulated to inhibit T cell function in response to IFN signals and to
induce Treg differentiation, thus establishing a tolerant microenvironment and facilitating
distant metastasis of this type of tumor cell [119].

In conclusion, distant metastatic tumor cells and lymphatic metastatic tumor cells may
not be identical isoforms. At least the lymphatic system provides a partial outlet for the
distant metastasis of tumor cells, and lymphatic-system-mediated immunosuppression also
provides a metastatic microenvironment for the distant metastasis of tumor cells. Therefore,
the lymphatic system may predict distant metastasis and be a therapeutic target for cancer.
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5. The Role of the Lymphatic System in CNS Diseases

In the past, lymphatic drainage of the brain was thought to require the transport
of lymphocytes and cerebrospinal fluid to cervical LNs employing the crib’s lamina and
nasal mucosa [127]. However, it used to be considered an immunologically privileged
site because the brain is rich in microglia, lacks other immune cells, and has no lymphatic
system like peripheral tissue [128]. This immunity privilege means that tumors can grow
unchecked [129], and there is no immune rejection of grafts [130]. Medawar [130] believes
this immune privilege stems from a lack of the blood-brain barrier and lymphatic drainage
system. More and more studies have disproved the theory of the immune privileged
zone in the CNS because the CNS immune system, although different from the peripheral
immune system, also has functional lymphatic vessels [131].

In 2012, Illiff discovered [132] the glymphatic system, an AQP4-dependent cere-
brospinal fluid and interstitial fluid exchange system that is functionally homologous
to the peripheral lymphatic system that can remove peripheral waste products from nerve
cells. Mascagni and his colleagues discovered the presence of lymphatic vessels in the
meninges as early as 1787. Recent studies have also shown that the MLVs located in
the dorsal and sub-basal part of the skull are critical pathways for the central nervous
system to exocytose macromolecules and transport immune cells to the cervical lymph
node (CLN) [9,133,134]. Similarly, human-like MLVs have been found in the CNS of ze-
brafish, which is sensitive to VEGFC signaling and could be used as a novel model to study
MLVs [135].

The lymphatic system may be a double-edged sword for the CNS, as it plays a vital role
in immune cell trafficking, antigen presentation, induction of antitumor immune responses,
fluid drainage, and increased immunotherapy sensitivity while exacerbating pathological
neuroinflammatory processes. High expression of VEGFC and PROX1 always predicts poor
prognosis in peripheral organ tumors. However, their tumor-associated lymphangiogenesis
downregulates the invasiveness of pediatric medulloblastoma (MB) [136] and increases
the immune surveillance of glioma [10]. Ahn et al. found [134] that aging is related
to the decline of MLV function. The dysfunction of MLVs and the glymphatic system
can lead to amyloid deposition, impaired learning, and cognitive dysfunction in young
adult mice. Enhancing MLV function in elderly mice can improve their cognitive function.
Therefore, impaired MLV function may be one of the causes of cognitive dysfunction and
Alzheimer’s disease (AD) in aged mice [137]. Chen et al. described [138] the mechanism
of red blood cell drainage from MLVs to the CLN after subarachnoid hemorrhage (SAH).
Inhibition of MLV production aggravated the neurological symptoms of SAH, indicating
that MLVs may be an essential way to remove red blood cells from SAH. In experimental
intracerebral hemorrhage (ICH) models, late ICH shows enhanced MLV production, and
inhibition of MLV production reduces hematoma clearance. In contrast, increased MLV
production can help clear the hematoma, improve behavioral symptoms, and reduce brain
residual red blood cells, iron deposition, neuronal necrosis, and astrocyte activation [139].
Late hepatic encephalopathy (HE) is a severe neurological complication in patients with
cirrhosis. Hsu and colleagues observed that increased MLV production promoted MLV
drainage in HE, reduced NF-kB signal transduction and microglial phagocytosis, improved
neuroinflammation in the brain, and alleviated motor dysfunction in HE model rats [140].

After the stroke, the VEGFC/VEGFR3 signal-dependent proliferation of LECs occurs
in CLN, and LECs, in turn, drive the activation of pro-inflammatory macrophages, thus
increasing neuroinflammatory-related brain injury. Inhibiting the VEGFC/VEGFR3 path-
way or CLN resection can alleviate this brain injury [141]. The proliferation of lymphatic
vessels near the cribriform plate during autoimmune encephalomyelitis (EAE) helps drain
cerebrospinal fluid, cells, and antigens, leading to DC migration and T cell proliferation,
thereby exacerbating neuroinflammation. However, EAE does not induce MLVs de novo,
indicating that the lymphatic vessels of the CNS are functionally heterogeneous [142]. Hsu
and colleagues [143] performed single-cell RNA sequencing of MLVs near the lamina crib
ride during neuroinflammation and found upregulation of antigen-presenting genes. This
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lymphatic vessel is rich in CD11C+ and CD4+ T cells for antigen presentation, thus forming
an immunomodulatory niche, which may be one of the reasons why MLVs exacerbate
neuroinflammation. In conclusion, in-depth insights into the anatomy and function of the
lymphatic system of the CNS suggest that MLVs may be a novel therapeutic target for CNS
diseases such as brain tumors, ICH, and neuroinflammation.

6. The Role of Cardiac Lymphatics

The mammalian heart also has an extensive network of lymphatic capillaries. The
puritan collecting lymphatic vessels drain lymphatic fluid to the periaortic and paratracheal
mediastinal lymph nodes (MLNs) [144] and expel metabolic waste as the heart contracts and
relaxes. Recently, cardiac lymphatics have been discovered to have therapeutic potential
for cardiovascular diseases.

Initially, it was thought that the only origin of LECs was embryonic veins. In contrast,
Klotz found that LECs of cardiac lymphatics have two origins: the venous endothelium
and the yolk sac [145]. Furthermore, they suggest that cardiac lymphangiogenesis after the
ischemic injury is promoted, similar to lymphangiogenesis, which promotes inflammation
resolution after skin infection. This effect may also help resolve myocardial inflammation
and improve cardiac function after MI [145]. MI can also cause dysfunction of the lymphatic
vessels around the heart scar, poor fluid drainage, and edema. Delivery of VEGFC genes
by albumin-alginate by Henri et al. promoted the regeneration of cardiac lymphatic vessels
and saved the harmful remodeling of the collecting lymphatic vessels [146].

Furthermore, Vieira et al. demonstrated that cardiac lymphatic angiogenesis after MI
could transport pro-inflammatory macrophages to MLNs to alleviate inflammation, a pro-
cess based on LYVE-1 [147]. Recently, Glinton found that efferocytosis can regulate CD36+

macrophages’ secretion of VEGFC to promote lymphangiogenesis and inhibit macrophages’
over-secretion of pro-inflammatory cytokines, thus improving cardiac function [13,148].
The expression of VEGFC was also observed to be upregulated in regenerated coronary
endothelial cells. It activated the signaling axis, thus promoting the proliferation of coro-
nary endothelial cells in zebrafish heart injury models [149]. This suggests that VEGFC
can promote cardiac regeneration and repair by the proliferation of LECs and coronary
endothelial cells. In rat cardiac ischemia-reperfusion models, VEGFC targets VEGFR2 and
activates Akt signaling, thus promoting Bax expression, blocking mitochondrial membrane
translocation, protecting cardiomyocytes from H2O2-mediated apoptosis, and showing a
dose-dependent reduction in infarct size for VEGFC [150].

Similarly, the absence of VEGFC/VEGFR3 signaling in mouse models of cardiac
hypertrophy increases cardiac hypertrophy and dysfunction, while VEGFC transmission
improves hypertrophy and delays the development of centripetal heart failure [151]. The
bioactive peptide apelin has been implicated in tumor lymphangiogenesis and promotes
lymphatic metastasis [152]. However, Tatin et al. found [152] that apelin regulates LEC
secretion of S1P after MI to maintain the integrity of the cardiac LEC barrier and is beneficial
to cardiac homeostasis, which is also an exciting strategy for treating ischemic diseases
by intervening in lymphangiogenesis. After the adrenal medulla hormone (AM/Adm)
drives MI, the expression of Cx43 connexin of LECs promotes the coupling of LEC gap
junctions and reduces the dilatation and edema of the cardiac lymphatic system, thus
improving cardiac function after MI [153]. In conclusion, the protective role of cardiac
lymphatic vessels in cardiovascular disease manifests itself primarily in the following ways:
1. protein exudation and cholesterol transport, 2. inflammation and immune response,
3. liquid equilibrium [154], 4. anti-cardiomyocyte apoptosis, and 5. promote coronary
endothelial proliferation.

Cardiac lymphatic vessels have shown good cardioprotective potential in experimen-
tal models, and the VEGFC gene/protein delivery system targeting the heart may be a
new therapeutic approach for cardiovascular diseases. Zhang et al. used SAP hydrogels
to deliver VEGFC and lymphatic endothelial progenitor cells (LEPCs) to the myocardial
tissue, effectively alleviating cardiac edema, myocardial fibrosis, and the inflammatory
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environment in MI [155]. Qiao et al. constructed a HepNP–VEGFC complex intravenous de-
livery system using VEGFC and negatively charged heparin polysaccharide nanoparticles
(HepNP). In acute MI, HepNP–VEGFC therapy has been shown to eliminate edema, reduce
scarification, and improve cardiac function. It is even more effective when administered
with a fractional VEGFC/VEGFA [156]. Houssari et al. found that cardiac-infiltrated T cells
could secrete IFN-γ to inhibit the formation of cardiac lymphatic vessels.

Meanwhile, amplifying VEGFC with adenoviral vectors promotes therapeutic lym-
phangiogenesis, which accelerates the regression of cardiac inflammation after MI, reduces
the level of left ventricular T cell and pro-inflammatory macrophage infiltration, delays scar
remodeling, and reduces cardiac dysfunction after MI [157]. Therapeutic lymphangiogene-
sis, which improves cardiac function after MI by reducing myocardial edema, inflammation,
and fibrosis, has shown potential in experimental models. The prognostic correlation of
inflammatory cardiac lymphangiogenesis and its cardioprotective effect in patients with
heart disease needs to be further explored in the future [158].

7. Effect of Lymphangiogenesis on Immunotherapy

Although tumor lymphangiogenesis is primarily immunotolerant, the transport func-
tion of immune cells and antigens in lymphatic vessels is still necessary to activate adaptive
immunity. Multiple immunotherapies have been developed to target tumors, but they do
not benefit all patients. Recently, multiple studies have shown that lymphangiogenesis
enhances immunotherapy responses, which may be a promising sensitizer for patients who
do not respond well to immunotherapy.

In the absence of dermal lymphatic vessels, the implantation of B16 melanoma in mice
stimulated only a tiny amount of immune cell infiltration and cytokines, which was also
demonstrated in the analysis of the correlation between human lymphatic markers and
the level of immune cell infiltration. Furthermore, the OVA vaccine (ovalbumin) could
not activate CD8+ T cells, indicating that the antitumor immune response depends on
tumor lymphatic vessels [159]. VEGFC has recently been shown to activate CCL21/CCR7
signaling in a mouse model to promote the activation and recruitment of naive T cells
to tumors, enhancing the efficacy of adoptive T cell therapy (ATT), DC vaccines, and
CpG TLR9 ligand CpG [8]. Chemokine receptor 7 (CCR7) was expressed in naive T cells,
regulatory T cells, memory T cells, mature DCs, and B cells. As a receptor for CCL21 and
CCL19, CCR7 induces the directed movement of lymphocytes and regulates immune and
tolerance responses [160]. Maria et al. [161] developed an immunotherapeutic vaccine to
induce lymphangiogenesis using genetically modified lethally irradiated tumor cells to
overexpress VEGFC. The vaccine induced a persistent specific T cell immune response in a
mouse melanoma model, causing delayed tumor growth.

Glioblastoma (GBM) is adults’ most lethal primary brain malignant tumor. The
lymphocytes infiltrating into the TME of GBM are mostly depleted dysfunctional T cells,
immune-suppressing TAM, and functionally suppressed NK cells. Therefore, the TME of
GBM lacks T cell infiltration and shows no survival benefit against immunotherapy such as
immune checkpoint inhibitors, CAR T cells, and DC vaccines [162,163].

The CNS TME lacks tumor-associated lymphatic vessels compared to peripheral
tissue tumors and thus has limited immune surveillance capacity. Meningeal lymphatic
angiogenesis facilitated by increased expression of VEGFC promotes lymphatic drainage,
tumor antigen presentation, and immune surveillance. It can induce an intense and
persistent T-cell-dependent antitumor immune response against GBM that reverses immune
escape. The mouse model treated with targeted VEGFC therapy in combination with
immunotherapy showed significant survival benefits compared to those treated with anti-
immune checkpoint inhibitors alone [10]. Murine glioma and melanoma cells with brain
metastases can specifically induce remodeling of the dorsal MLV but not in the basal MLV
and nasal lymphatic vessel.

Furthermore, the dorsal MLV is a crucial channel for intratumor fluid, tumor cells,
and DCs to transport to CLN. VEGFC-stimulated MLV production increased DC drainage,
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which increased the number of CD8+ T cells and CD8+Ki67+ T cells and inhibited the activa-
tion of CD4+Foxp3+ Tregs cells. Meanwhile, the effect of chemotactic T cell recruitment of
CCL21/CCR7 can enhance the effect of anti-PD-1/CTLA4 immunotherapy. In conclusion,
enhancing MLV production may be an effective method for immunotherapy for brain
tumors [11]. Radiotherapy is the first-line therapy for GBM. It has recently been found that
its sensitivity is also dependent on the lymphatic system of the CNS due to its ability to
modulate the immune environment of GBM. Radiation therapy combined with VEGFC
activates CCL21, promotes the transport of DCs, and increases the number of CD8+Ki67+ T
cells, Treg cells, and overall CD8+ T cells in CLN, thus showing a higher sensitivity to GBM
and metastatic brain tumors [12].

Without the cooperation of effector immune cells, immunotherapy is futile. In con-
clusion, lymphatic vessels enhance immunotherapy efficacy in four ways (increasing the
immune-activating effect of DC, increasing the chemotaxis of immune cells to the lymphatic
system, inhibiting immunosuppressive cell activation, and increasing immune effector cell
activation), which precisely compensates for the immune tolerance phenotypes of the TME.
This makes it a promising immunotherapy partner.

8. Tissue-Engineered Biomaterial for Lymphangiogenesis

Lymphangiogenesis has shown excellent potential in preclinical studies of tumor
immunotherapy, cardiovascular disease, lymphedema, and anti-brain tumor. Biomaterials
can generate temporal and spatial regulation of lymphangiogenesis, which may be a novel
therapeutic strategy to deal with the progression of multiple diseases.

Hydrogels are a particular class of biomaterials with solid-like characteristics consist-
ing of cross-linked polymers that mimic the properties of the ECM to improve cell adhesion,
survival, and function and can be used to deliver small molecules, proteins, endothelial
cells, and stem cells. The therapeutic effects of hydrogels are mainly achieved through
the following three ways: controlling drug release, supporting or guiding tissue growth,
and carrying foreign cells into the native tissue. It has some advantages in promoting
therapeutic lymphangiogenesis due to its spatiotemporal controllability [164]. Table 3
summarizes recent research on tissue engineering materials for lymphangiogenesis. Due
to its adjustability, the poly(ethylene glycol) (PEG) hydrogel system has been proven to
promote lymphatic vessel germination in vitro and in vivo [165].

Hyaluronic acid (HA) is a non-sulfated glycosaminoglycan that regulates lymphan-
giogenesis [166]. HA hydrogels can bind with LYVE-1 homologs, which is an excellent
substrate that can mimic the lymphatic neophyte environment [167] and can also mediate
the transport of DCs [168] to block the recruitment of neutrophils [169]. The injection of
HA hydrogels in the MI mouse model alleviated scar formation and collagen deposition,
demonstrating that this material has a particular application potential [170]. HA can also be
chemically modified to enhance its functional diversity. For example, a promising approach
is to modify HA with norbornene groups [171]. BioBridge [172] is a nanofibrous collagen
scaffold that increases the density of the lymphatic collecting duct in a porcine model. This
scaffold is promising for the treatment of lymphedema.

Hydrogels made of various biological materials, such as collagen, fibrin, and alginate,
have been used in tissue engineering for lymphangiogenesis. Polyacrylate (PEGDA) hy-
drogels have been widely used in bone tissue [173] engineering and angiogenesis [174].
PEGDA hydrogels have good mechanical plasticity compared with other hydrogels and
are a potential matrix to promote lymphatic angiogenesis. In conclusion, tissue-engineered
biomaterials that promote the generation of the lymphatic system may be an effective
platform to study the molecular mechanism and function of the lymphatic system and may
also be a new therapeutic strategy for lymphedema and cardiovascular diseases.

LEPCs: lymphatic endothelial progenitor cells; SAP: self-assembling peptide.
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Table 3. Examples of tissue-engineered materials used to promote lymphangiogenesis.

Year/Authors Materials Effect Reference

2022/Hooks et al. PEG-3MAL hydrogels Promote the sprouting of collected
lymphatic vessels sprouting [165]

2014/Marino et al. Collagen type I and fibrin hydrogel Form lymphatic capillaries in vitro
within 21 days [175]

2007/Helm et al. VEGF-fibrin-collagen hydrogel Promote lymphangiogenesis [176]

2016/Hadamitzky et al. Aligned nano fibrillar collagen
scaffolds (BioBridge)

Alleviate the porcine
lymphedema ‘model [172]

2017/Campbell et al. Alginate hydrogels release of
VEGFC/VEGFD Therapeutic lymphangiogenesis [177]

2014/Li et al. PEI-alginate nanoparticles deliver
VEGFR3-siRNA

Suppress tumor lymphangiogenesis
and lymphatic metastasis [178]

2021/Chávez et al. Fibrin-collagen scaffolds of
SynHA cyanobacteria

Promote lymphangiogenesis in dermal
regeneration scaffold [179]

2011/Hwang et al. VEGFC hydrogel Promote lymphangiogenesis in a
mouse model [180]

2019/Zhang et al. Combined delivery of LEPCs and
VEGFC with SAP

Promote cardiac lymphangiogenesis
and repair of the infarcted myocardium [155]

2020/Qiao et al. Hep@VEGFC delivery system Reduce scar formation and improve
cardiac function [156]

2020/Houssari et al. VEGFCadeno-associated viral gene
delivery of VEGFC

Accelerate the resolution of cardiac
inflammation after MI [157]

9. Conclusions and Prospects

In conclusion, lymphatic vessels are the crossroads of tumor metastasis, inflammation,
and immunity. Their complex functions, especially their dual roles in immunity, prevent
them from being amplified or suppressed blindly. Exploring the lymphangiogenesis signals
and understanding the heterogeneity of lymphangiogenesis function in different signal
generations, anatomical locations, and diseases may be an essential step for accurately
regulating lymphangiogenesis function in a favorable direction. The recently discovered
lymphatic immune tolerance mechanism is the umbrella of tumor metastasis, and we
believe it may exert more antitumor effects in the early stage of the tumor. Understanding
when and under what conditions tumor-associated lymphatic vessels begin to change from
beneficial to harmful effects may be an important challenge in this field. This immune
tolerance mechanism also shows good prospects in antagonizing organ transplantation
rejection [181]. Meanwhile, the enhanced immunotherapeutic effect of lymphatic system
amplification in brain tumors and melanoma may be a new hope for immunotherapy-
insensitive patients. In addition, the beneficial role of lymphatic vessels in preclinical
models of cardiovascular disease opens up new therapeutic strategies for saving cardiac
function. The lymphatic system is an emerging field with great potential for disease
treatment, but it still has a long way to go.
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Abbreviations

AcCoA acetyl CoA
AD Alzheimer’s disease
Ang2 angiopoietins 2
APC antigen presenting cells
ATT adoptive T T-cell therapy
BCa bladder cancer
BECs blood endothelial cells
CLN cervical lymph node
CNS central nervous system
CSCC cervical squamous cell carcinoma
DCs dendritic cells
EAE encephalomyelitis
ECM extracellular matrix
EVs extracellular vesicles
FAO fatty acid β-oxidation
FRCs fibroblastic reticular cells
GAL8 galectin 8
GBM glioblastoma
HCC hepatocellular carcinoma
HE hepatic encephalopathy
HepNP heparin polysaccharide nanoparticles
HEVs high endothelial venules
ICH intracerebral hemorrhage
IDO 2, 3-dioxygenase
iNOS nitric oxide synthase
LD lipid droplets
LECs lymphatic endothelial cells
LEPCs lymphatic endothelial progenitor cells
LNs lymph nodes
LNSCs lymph node stromal cells
LPS lipopolysaccharide
LSEC liver sinusoidal endothelial cells
MB medulloblastoma
MHC-I major histocompatibility class I complexes
MI myocardial infarction
MLNs mediastinal lymph nodes
MLVs meningeal lymphatic vessels
OSCC oral squamous cell carcinoma
OSS oscillatory shear stress
PDAC pancreatic ductal adenocarcinoma
PDPN podoplanin
PEG the poly(ethylene glycol)
PEGDA polydiacrylate
PGF placental growth factor
PROX1 Prospero homeobox 1
PTAs peripheral tissue antigens
S1P sphingosine 1 phosphate
SAH subarachnoid hemorrhage
TAM tumor-associated macrophages
TLR4 Toll-like receptor 4
TME tumor microenvironment
VEGF vascular endothelial growth factor
LECs lymphatic endothelial cells
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