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Simple Summary: BRCAPRO is a widely used breast cancer risk prediction model based on family
history. A major limitation of this model is that it does not consider non-genetic risk factors. We ex-
pand BRCAPRO by combining it with another popular model, BCRAT, that uses mostly non-genetic
risk factors, and show that the expanded model can achieve improvements in prediction accuracy
over both BRCAPRO and BCRAT.

Abstract: Accurate risk stratification is key to reducing cancer morbidity through targeted screening
and preventative interventions. Multiple breast cancer risk prediction models are used in clinical
practice, and often provide a range of different predictions for the same patient. Integrating infor-
mation from different models may improve the accuracy of predictions, which would be valuable
for both clinicians and patients. BRCAPRO is a widely used model that predicts breast cancer risk
based on detailed family history information. A major limitation of this model is that it does not
consider non-genetic risk factors. To address this limitation, we expand BRCAPRO by combining it
with another popular existing model, BCRAT (i.e., Gail), which uses a largely complementary set of
risk factors, most of them non-genetic. We consider two approaches for combining BRCAPRO and
BCRAT: (1) modifying the penetrance (age-specific probability of developing cancer given genotype)
functions in BRCAPRO using relative hazard estimates from BCRAT, and (2) training an ensemble
model that takes BRCAPRO and BCRAT predictions as input. Using both simulated data and data
from Newton-Wellesley Hospital and the Cancer Genetics Network, we show that the combination
models are able to achieve performance gains over both BRCAPRO and BCRAT. In the Cancer Ge-
netics Network cohort, we show that the proposed BRCAPRO + BCRAT penetrance modification
model performs comparably to IBIS, an existing model that combines detailed family history with
non-genetic risk factors.

Keywords: BRCAPRO; BCRAT; model aggregation; ensemble learning; stacking

1. Introduction

Breast cancer is the second most common cancer and the second leading cause of cancer
death in women in the U.S. [1,2]. Identifying individuals at high risk is critical for guiding
decisions about risk management and prevention, including screening, genetic counseling
and testing, and preventative procedures. At least 24 breast cancer risk prediction models
have been developed for clinical use [3]. These models estimate either an individual’s risk of
carrying a pathogenic mutation in a breast cancer susceptibility gene, an individual’s future
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risk of breast cancer, or both. They are based on a wide range of risk factors, methodologies,
and study populations. Regression-based models, such as the Breast Cancer Risk Assessment
Tool (BCRAT, also known as the Gail model) [4–7], use hormonal/reproductive risk factors
(such as age at first live birth), history of benign disease, and simple summaries of family
history. Other models, such as BRCAPRO [8], BOADICEA [9–11], and IBIS [12], are Mendelian
models that use detailed family history information and principles of genetic inheritance.
IBIS and BOADICEA [11] take into account hormonal/reproductive risk factors and history
of benign disease. BRCAPRO currently does not use non-genetic risk factors, which limits
its predictive accuracy [13,14]. Because it is widely adopted in clinical practice [15], adding
non-genetic risk factors to the model is crucial. We address this problem by combining it with
the widely used BCRAT model, which is based on a largely complementary set of risk factors,
most of which are non-genetic.

BRCAPRO is a family history-based model that provides carrier probabilities for
breast cancer susceptibility genes BRCA1 and BRCA2 as well as future risk estimates for
invasive breast and ovarian cancer. It translates family history data into risk estimates using
Mendelian laws of inheritance, Bayes’ rule, and literature-based estimates of mutation
prevalence and penetrance (age-specific probability of developing cancer given genotype).
In contrast, BCRAT estimates an individual’s future risk of invasive breast cancer based on
a relative hazard model that includes age, hormonal and reproductive risk factors, history
of benign disease, and first-degree family history of breast cancer. The relative hazard
model was originally trained using case-control data from Caucasian women participating
in a U.S. mammography screening program. It was later updated for African-American [5],
Asian-American [6], and Hispanic [7] women. Although there is overlap in the inputs to
BRCAPRO and BCRAT, the two models are largely complementary (Figure 1). BRCAPRO
uses potentially extensive family history information, while BCRAT considers only first-
degree female relatives with breast cancer. BCRAT considers several non-genetic risk
factors that are not considered by BRCAPRO, including age at menarche, age at first live
birth, and number of breast biopsies. A validation study in a large U.S. screening cohort
found that 6-year risk predictions from BRCAPRO and BCRAT had a moderate correlation
of 0.53 [16]. Because BRCAPRO and BCRAT embed different information, combining these
models can potentially lead to accuracy gains.

There already exist models that incorporate both detailed family history information
and non-genetic risk factors, namely, IBIS (also known as the Tyrer–Cuzick model) [12]
and BOADICEA [11]. These two models have outperformed BRCAPRO and BCRAT in
two previous validation studies [13,14]. However, we believe it is valuable to investigate
the combination of BRCAPRO and BCRAT in order to determine (1) how much predictive
value non-genetic risk factors add to BRCAPRO, (2) how much predictive value detailed
family history adds to BCRAT, and (3) whether model combination can achieve competitive
performance compared to developing a hybrid model from the ground up. Moreover,
BRCAPRO and BCRAT continue to be widely used in clinical practice. A model that
directly combines and improves upon predictions from BRCAPRO and BCRAT may be
appealing to current users of these two models.

We consider two combination approaches: (1) penetrance modification and (2) ensem-
ble learning. While we focus on BRCAPRO and BCRAT in this paper, these approaches can
be applied in general to expand any Mendelian model to include additional risk factors.
The first approach modifies the penetrance functions in BRCAPRO to account for the effects
of the BCRAT risk factors. We develop a penetrance modification model, BRCAPRO +
BCRAT (M), using a relative hazard approach that has similarities to the one used in IBIS.
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Figure 1. Inputs to BRCAPRO and BCRAT and their overlap.

Ensemble learning consists of training multiple base models and combining their
predictions. A wide variety of ensemble methods have been developed, including stack-
ing [17], which involves training a meta-model to optimally combine predictions from
the base models, bagging [18,19], which involves averaging models trained on bootstrap
samples of the original data, and boosting [20], which involves constructing an ensemble
by sequentially adding new models that are trained to correct the errors of previous ones.
The rationale for these methods is that combining predictions can reduce variance and
expand the set of functions that can be represented by any individual base model [21]. Ex-
tensive research, both empirical [21,22] and theoretical [23–27], has shown that ensembles
can achieve performance gains over their base models, especially when the base models
produce dissimilar predictions [28,29]. Debray et al. (2014) [30] demonstrated the value of
aggregating published prediction models using real and simulated data on deep venous
thrombosis and traumatic brain injury. Across various scenarios, model averaging and
stacking outperformed model recalibration [31,32] and performed as well as or better than
developing a new model from the ground up. Moreover, the authors noted that stacking
is more efficient than model averaging, as stacking has fewer unknown parameters. In
the setting of breast cancer risk prediction, Ming et al. (2019) [33] showed that boosting
and random forests, a form of bagging, were able to achieve higher discriminatory accu-
racy than BCRAT and BOADICEA. In this paper, we develop a stacked logistic regression
ensemble, BRCAPRO + BCRAT (E), that takes predictions from BRCAPRO and BCRAT
as input.

We compare the performance of the combination models to the individual BRCAPRO
and BCRAT models in simulations and a data application, where we use training data
from the Newton-Wellesley Hospital (NWH) and validation data from the Cancer Genetics
Network (CGN). In the data application, we use IBIS as a reference for comparison in
order to evaluate the strategy of developing a hybrid model from the ground up versus the
strategy of combining existing models.

2. Materials and Methods
2.1. Problem Definition

Given a female individual without a previous diagnosis of breast cancer who presents
for risk assessment (the counselee), the goal is to predict her risk of developing invasive
breast cancer within τ years (where τ is a pre-specified positive integer) based on family
history and other risk factors while accounting for death from other causes as a competing
risk. Below, we provide an overview of the risk prediction models compared in this paper.
A more detailed description of the models with formal notation is provided in Appendix A.
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2.2. Existing Models
2.2.1. BRCAPRO

BRCAPRO [8] estimates the probability of carrying a deleterious germline mutation in
BRCA1 and BRCA2 using Bayes’ rule, laws of Mendelian inheritance, mutation prevalence
and penetrance, and family history of breast and ovarian cancer. In addition, it estimates
future risk of breast and ovarian cancer based on the carrier probabilities and penetrances. The
family history information used by BRCAPRO includes the following variables for each family
member (missing values are allowed): gender, breast cancer status, age of onset of breast cancer
if applicable, ovarian cancer status, age of onset of ovarian cancer if applicable, and current age
or age at death. Information on preventative interventions (mastectomy/oophorectomy) and
genetic testing results for BRCA1/BRCA2 can also be included.

BRCAPRO calculates the counselee’s probability of having a given genotype using
Bayes’ rule and Mendelian laws of inheritance. This calculation depends on mutation
prevalence and penetrance estimates obtained from published studies (see Appendix A for
more details). The prevalences are ethnicity-specific (in particular, different prevalences
are used for Ashkenazi Jewish and non-Ashkenazi Jewish families), and the penetrances,
which are functions of age, are cancer- and sex-specific. The penetrance functions for
non-carriers are based on rates from the Surveillance, Epidemiology, and End Results
(SEER) program, and are race-specific, while the penetrance functions for carriers are
from a meta-analysis of published studies [34]. After estimating the carrier probabilities,
BRCAPRO calculates future risk of breast and ovarian cancer through a weighted average
of the genotype-specific risks.

We ran BRCAPRO using the BayesMendel R package [35] version 2.1-6.1, selecting the
crude risk option.

2.2.2. BCRAT

BCRAT [4–7] estimates the relative hazard of developing breast cancer based on age
and the following risk factors: age at menarche, number of benign breast biopsies, age at
first live birth, number of female first-degree relatives with breast cancer, and history of
atypical hyperplasia. The relative hazard model includes interactions between age and
number of biopsies as well as age at first live birth and number of affected relatives. The
regression coefficients were estimated from U.S. case-control studies. Separate models
were fit to data from White, African-American, Asian, and Hispanic women to obtain
race/ethnicity-specific estimates. In the future risk calculation, the race-specific baseline
hazard of breast cancer (based on SEER data) is multiplied by the relative hazard associated
with the risk factors (see Appendix A).

We ran BCRAT using the BCRA R package (https://cran.r-project.org/web/packages/
BCRA/index.html, accessed on 20 March 2020), version 2.1.

2.2.3. IBIS

In our data application, we examine the IBIS model [12,36] as a reference for com-
parison, as it combines detailed family history information with non-genetic risk factors.
It first calculates carrier probabilities and risk of breast cancer based on family history,
then incorporates additional risk factors (age at menarche, age at menopause, height, body
mass index, age at first live birth, menopausal hormone therapy, atypical hyperplasia,
lobular carcinoma in situ, breast density, and a polygenic risk score for breast cancer) via
a relative hazard model. The carrier probabilities are calculated using a similar approach
as in BRCAPRO; however, in addition to BRCA1 and BRCA2, IBIS considers a hypothetical
low-penetrance susceptibility gene that acts as a surrogate for other unspecified breast cancer
susceptibility genes. Estimates of the prevalence and penetrance of BRCA1 and BRCA2 were
obtained from previously published studies, while the prevalence and penetrance of the hypo-
thetical gene were estimated from a Swedish population-based study. The penetrance function
for non-carriers is based on incidence rates from the Thames Cancer Registry.

https://cran.r-project.org/web/packages/BCRA/index.html
https://cran.r-project.org/web/packages/BCRA/index.html


Cancers 2023, 15, 1090 5 of 30

IBIS calculates a weighted average of the cumulative penetrances for each genotype to
obtain the risk of breast cancer conditional on family history only. In the final future risk
calculation, IBIS multiplies the hazard of breast cancer conditional on family history by the
relative hazard associated with the additional risk factors (see Appendix A for details).

Software for running IBIS is available at http://www.ems-trials.org/riskevaluator/
(accessed on 20 April 2018). We used the command line program for version 8, selecting
the competing mortality option.

2.3. Model Combination Approaches
2.3.1. Penetrance Modification Model: BRCAPRO + BCRAT (M)

The penetrance modification approach combines BRCAPRO and BCRAT by using the
BCRAT relative hazard to modify the calculation of the non-carrier future risk in BRCAPRO.
Specifically, the baseline non-carrier hazard in the BRCAPRO future risk calculation is
scaled by the BCRAT relative hazard based on a discrete proportional hazards model (see
Appendix A for details). In the current implementation, we apply the modification to only
the non-carrier future risk calculation, as BCRAT is not recommended for known carriers
of BRCA1/2 mutations [37]. As in BRCAPRO, the final risk is a weighted average of the
genotype-specific risks.

We refer to this model as the penetrance modification model, BRCAPRO + BCRAT (M),
because the modification of the hazard function induces a modification of the corresponding
penetrance function. This combination approach is similar to replacing the non-carrier
future risk from BRCAPRO with the future risk from BCRAT. However, it is not identical
because BRCAPRO and BCRAT use slightly different baseline hazards (see Figure A1 in
Appendix B for plots of the hazards used in BCRAT and BRCAPRO).

The relative hazard approach for incorporating the BCRAT risk factors has similarities
to the approach used by IBIS, except that IBIS averages the genotype-specific risks before
incorporating non-genetic risk factors while BRCAPRO + BCRAT (M) incorporates the
BCRAT risk factors before averaging the genotype-specific risks. The advantage of the
latter approach is that it allows the effects of the BCRAT risk factors to differ by genotype.
Genotype-specific effects have been observed for certain BCRAT risk factors, such as age
at menarche (see [38] for a review). However, in general, the effects of the BCRAT risk
factors on carriers are not well-studied; only a limited number of prospective studies have
been done and they have had small sample sizes [38]. Therefore, the current version of
BRCAPRO + BCRAT (M) modifies only the non-carrier hazard.

2.3.2. Ensemble Model: BRCAPRO + BCRAT (E)

The second model combination approach involves training a stacked ensemble model [17]
that uses BRCAPRO and BCRAT as the (pre-trained) base models. We consider a logistic
regression ensemble that predicts τ-year risk of breast cancer for fixed τ, as well as a
time-to-event ensemble that provides predictions for different time intervals.

As in Debray et al. (2014) [30], for a fixed value of τ we can combine the τ-year
BRCAPRO and BCRAT predictions using a logistic regression model that includes the two
predictions as covariates along with an interaction term (their product). Other covariates
and/or published models can be included as inputs. We refer to this model as BRCAPRO +
BCRAT (E).

Alternatively, we can use BRCAPRO and BCRAT predictions and their product as covari-
ates in a time-to-event model. We consider a Fine-Gray proportional subdistribution hazards
model for breast cancer, accounting for death as a competing risk (see Appendix A for details).
The BRCAPRO and BCRAT predictions are calculated at baseline for a predefined time point
τ∗ and do not vary with τ∗. We refer to this model as BRCAPRO + BCRAT (E2).

In contrast to the penetrance modification model, which can be implemented using
published parameter estimates, the ensemble models require training. If predictions from
BRCAPRO and BCRAT are highly correlated in the training data, then multicollinearity can
lead to unstable coefficient estimates [39]. Moreover, the ensemble models might perform

http://www.ems-trials.org/riskevaluator/
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poorly in external validation if the training data are not representative of the validation
data. Ideally, they should be trained using a prospective cohort that is representative of the
target population. Otherwise, recalibration or reweighting methods can be used to account
for differences in the covariate distributions between the training population and the target
population. One widely used method is importance weighting [40], which weights each
training observation by the ratio of the joint probability distributions of the covariates in
the target and training populations [40]. The importance weights can be estimated using
kernel mean matching [41], Kullback–Leibler importance estimation [42], or least squares
importance fitting [43].

In the simulations and data application, we applied a square root transformation to the
BRCAPRO and BCRAT predictions prior to fitting the ensemble models, as the distributions
of the predictions were highly right-skewed. For BRCAPRO + BCRAT (E2), we used τ∗ = 5
to compute the covariates.

2.4. Model Evaluation Metrics

In the simulations and data application, we considered the binary outcome of being
diagnosed with breast cancer within τ = 5 years. In the data application, we additionally
considered the time-to-event outcome over the course of follow-up, as many of the counse-
lees in the validation dataset were followed for more than five years; however, there was
substantial variability in follow-up times.

We used five performance measures [44]: (1) the ratio of observed (O) to expected (E)
events, where E is calculated by summing everyone’s predicted probabilities (a measure of
calibration, with 1 indicating perfect calibration); (2) the area under the receiver operating
characteristic curve (AUC) or concordance (C) statistic, which is the probability that an
individual who experiences the event has a higher score than an individual who does
not, and is a measure of discrimination; (3) the Brier score, which is the mean squared
difference between the predicted probabilities and actual outcomes; (4) the standardized net
benefit (SNB) [45–47], which is the difference between the true positive rate and a weighted
false positive rate, where the weight is based on a pre-specified threshold for classifying
individuals as high-risk versus low-risk (the weight is the ratio of the odds of the threshold
risk to the odds of the outcome); and (5) the logarithmic score [48], which is the negative
log-likelihood. Calibration was assessed using both overall O/E and calibration plots of
O/E by risk decile. We calculated SNB for only the binary outcome, using a 5-year risk
threshold of 1.67% (the clinical 5-year risk threshold for eligibility for chemoprevention).
We report the Brier score and logarithmic score in terms of relative difference with respect
to BRCAPRO, as these metrics are prevalence-dependent, and as such are more difficult to
interpret on their original scale.

In the data application, certain individuals in the validation dataset were censored
before τ = 5 years. To account for censoring, we used inverse probability of censoring
weights (IPCW) [49,50] to calculate the O/E, AUC, Brier score, and logarithmic score
for the binary outcome; individuals with observed outcomes were used to calculate the
performance measures and weighted by their inverse probability of not being censored by
the minimum of (1) the end of the 5-year projection period and (2) the time at which they
were diagnosed with breast cancer. Individuals who were censored were not directly used
to calculate the performance measures, and were instead used to estimate the censoring
distribution via the Kaplan–Meier estimator.

For the time-to-event outcome, O/E was calculated by comparing the numbers of
observed and expected cases across the entire study period; for the expected number of
cases E, we predicted risk up to the end of the individual follow-up time for each counselee,
meaning that τ varied across counselees. In addition, we used time-to-event versions of
the C-statistic and logarithmic score. The time-to-event C-statistic [51] is the probability of
an individual with a shorter time-to-event having a higher score than an individual with a
longer time-to-event. A fixed prediction period of τ = 10 years was used to calculate the
C-statistic (which requires the same prediction period for everyone), as ten years was the
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maximum event time observed in the data. We used a version of the logarithmic score that
accounted for competing risks [52]. In the absence of censoring, the logarithmic score is a
strictly proper scoring rule for the problem of predicting a probability distribution [53,54].
We have previously shown that the competing risks version remains strictly proper under
non-informative censoring [52].

We calculated 95% bootstrap confidence intervals (CIs) for all of the performance
measures except for the time-to-event C-statistic, for which a 95% CI was obtained using
perturbation resampling [51]. For each performance measure, we looked at pairwise
comparisons of the models across bootstrap replicates of the validation set.

2.5. Simulations

We performed simulations to compare the 5-year performance of the combination
models to that of the individual BRCAPRO and BCRAT models in a setting where the
assumptions of the penetrance modification model hold.

First, we generated each counselee’s baseline family history, consisting of (1) the
family structure (i.e., the number of sisters, number of brothers, etc.), (2) dates of birth,
(3) genotypes, (4) cancer ages, and (5) death ages.

We simulated pedigrees in order to mimic the family structures observed in real
families from the CGN dataset (the validation dataset for the data application, described in
Section 2.6.2). We restricted the family members to first- and second-degree relatives of
the counselee.

For counselees, dates of birth and baseline dates for risk assessment were sampled
from the CGN dataset. For non-counselees, dates of birth were generated relative to the
counselee’s date of birth by assuming that the age difference between a parent and a
child had a mean of 27 and standard deviation of 6. We generated the birth dates of the
counselee’s parents and children based on the counselee’s birth date, then the birth dates of
the counselee’s grandparents and siblings based on the birth dates of the parents, then the
birth dates of the counselee’s aunts and uncles based on the birth dates of the grandmothers.

Next, we generated the BRCA1/2 genotypes for each family member. We first gener-
ated the genotypes of the grandparents (founders) using the default Ashkenazi Jewish allele
frequencies for BRCA1 and BRCA2 in BRCAPRO, which reflect a higher-risk population
(CGN participants represent a higher-risk population than the general population, as they
were selected for family history of cancer). For individuals in subsequent generations, we
generated genotypes according to Mendelian inheritance.

For each individual, we generated baseline breast and ovarian cancer phenotypes
conditional on genotype. Age of onset was sampled from {1, 2, . . . , baseline age}, with
probabilities provided by the genotype-specific penetrance functions from BRCAPRO. The
probability of being unaffected at baseline was provided by one minus the cumulative
penetrance up to the baseline age. Counselees were assumed to be alive at baseline, while
for each non-counselee we generated a death age from a distribution with mean of 80 and
standard deviation of 15. If an individual had an age of onset greater than their age at
death, then the individual’s cancer status was changed to unaffected. Counselees with
breast cancer at baseline were excluded from the analyses.

We then generated baseline BCRAT covariates (other than number of affected first-
degree relatives and age at first live birth, which were calculated from the baseline family
history) by sampling values from the distribution in the CGN. Values for different covariates
were sampled independently of each other. The BCRAT covariates were used to modify
the BRCAPRO non-carrier penetrance to obtain the BRCAPRO + BCRAT (M) non-carrier
penetrance (Equation (A16)).

For counselees who did not have breast cancer at baseline, future ages of onset were
generated from the BRCAPRO + BCRAT (M) penetrances (for carriers, the BRCAPRO
+ BCRAT (M) penetrances are the same as in BRCAPRO), which were rescaled to be
conditional on not having developed cancer by the baseline age. Cases were defined as
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counselees who developed breast cancer within five years of their baseline age. The 5-year
outcomes were not subject to censoring.

We simulated 100,000 families in total. After excluding 4443 counselees with breast cancer
at baseline, we used the first randomly generated 50,000 counselees to train the ensemble
model (similar to the size of the training set in the data application; see Section 2.6.1) and the
remaining 45,557 for validation. There were 814 cases in the training set and 724 cases in the
validation set.

2.6. Data Application

Using data from Newton-Wellesley Hospital (NWH), we trained ensemble mod-
els for the binary outcome at τ = 5 (Model (A19)) and for the time-to-event outcome
(Model (A20)). We validated these models, along with BRCAPRO + BCRAT (M), BR-
CAPRO, BCRAT, and IBIS, using data from the CGN. We assessed performance based
on both the binary and time-to-event outcomes. In addition, we looked at performance
stratified by family history, with strata defined based on the NCCN criteria for further
genetic risk evaluation [55].

In the analyses, we excluded women with any of the following conditions prior
to baseline: invasive breast cancer, ductal carcinoma in situ, lobular carcinoma in situ,
bilateral mastectomy or bilateral oophorectomy. In addition, we excluded women who
tested positive for BRCA1/2 prior to baseline (BCRAT requirement), women < 20 years old
at baseline (BCRAT requirement), and women with a projection interval extending beyond
85 years of age (IBIS requirement).

The characteristics of the training and validation datasets are described below and
summarized in Table 1.

Table 1. Main characteristics of the CGN and NWH cohorts.

Variable Category CGN NWH

N 7314 37,881
Age (median [IQR]) 47 [38, 57] 49 [43, 58]

Race (%) White 6104 (83.5) 30,758 (81.2)
Black 257 (3.5) 479 (1.3)

Hispanic 694 (9.5) 548 (1.4)
Asian 160 (2.2) 1228 (3.2)

Native American 29 (0.4) 25 (0.1)
Unknown 70 (1.0) 4843 (12.8)

Affected 1st-degree
Relatives (%) 0 4171 (57.0) 32,197 (85.0)

1 2496 (34.1) 5277 (13.9)
2+ 647 (8.8) 407 (1.1)

Follow-up Time
(median [IQR]) 7.3 [6.0, 8.3] 6.7 [6.3, 7.2]

Censored < 5 Years
(%) 934 (12.8) 0 (0.0)

Cases (%) 159 (2.2) 714 (1.9)
5-year Cases (%) 112 (1.5) 495 (1.3)

2.6.1. Training Dataset (NWH)

After applying the exclusion criteria, the training cohort consisted of 37,881 women
who visited the breast imaging department of NWH in Newton, Massachusetts for screen-
ing or diagnostic imaging from February 2007 through December 2009. During the initial
(baseline) visit, information was collected on personal and family history of cancer, re-
productive history, sociodemographic factors, and lifestyle factors. Family history was
limited to relatives with cancer. Breast cancer diagnoses through 2015 were determined
from the Massachusetts State Cancer Registry, Partners Hospital Cancer Registries, and
patient self-reporting. The median age of the counselees was 49, with an interquartile range
(IQR) of 43–58; 30,758 (81.2%) of the counselees were White, while 5684 (15.0%) had at least
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one affected first- or second-degree relative. The median follow-up time was 6.7 years (IQR
6.3–7.2). All counselees were followed for at least six years. There were 495 counselees
(1.3%) who developed breast cancer within five years of baseline and 714 counselees (1.9%)
who developed breast cancer over the course of follow-up.

Because the NWH cohort represents a general screening population and the CGN
validation cohort (described below) represents a higher-risk population enriched for fam-
ily history of cancer, we applied importance weights to the training data based on the
distributions of the BCRAT covariates, 5-year BCRAT predictions, and 5-year BRCAPRO
predictions when we fit the ensemble models. The weights were estimated using least
squares importance fitting via the densratio R package (https://cran.r-project.org/web/
packages/densratio/index.html (accessed on 20 April 2018)).

2.6.2. Validation Dataset (CGN)

The validation cohort consisted of 7314 women who enrolled in the CGN, a national
research network of fifteen academic medical centers that was established for the purpose
of studying inherited predisposition to cancer. Enrollment began in 1999 and ended in
2010. One of the criteria for enrollment was a personal and/or family history of cancer.
Participants provided information on personal and family history of cancer, sociodemo-
graphic factors, and lifestyle factors through an initial (baseline) phone interview and
annual follow-up updates. From 2009 onward, information was collected on reproductive
history, cancer treatments, cancer screening results, and genetic testing results.

The median age of the counselees was 47 (IQR 38–57); 6104 (83.5%) of the counselees
were White, while 3143 (42.9%) had at least one female first-degree relative with breast
cancer. The median follow-up time was 7.3 years (IQR 6.0–8.3) and 934 (12.8%) counselees
were censored within five years of baseline without being diagnosed with breast cancer.
Of the counselees, 159 (2.2%) developed breast cancer during follow-up, with 112 of the
diagnoses occurring within five years of baseline. Demographic characteristics stratified by
center are provided in Table A4 of Appendix D. Because follow-up times and breast cancer
incidence rates varied by center, we estimated the censoring distribution (which was needed
to calculate several of the performance measures) by separately fitting a Kaplan–Meier
curve for each center.

Information on certain risk factors was missing or incomplete. We did not have informa-
tion on atypical hyperplasia (used in BCRAT and IBIS), breast density (used in IBIS), polygenic
risk scores (used in IBIS), or hormone replacement therapy (used in IBIS). Participants were
asked whether they had ever had a benign breast biopsy, but were not asked about the number
of biopsies (categorized as 0, 1, or ≥2 in BCRAT). Because participants were asked about
reproductive history starting in 2009, 4157 (56.8%) were missing age at menarche (used in
BCRAT and IBIS). Information on Ashkenazi Jewish heritage (used in BRCAPRO and IBIS)
was not available for the University of Washington (UWASH) center. We coded the missing
variables according to the specifications of the software for each model. Number of breast
biopsies was coded as 1 for participants who indicated that they had previously had a biopsy.

3. Results
3.1. Simulation Results

The performance measures are shown in Table 2 and calibration plots are shown in
Figure 2. We chose not to report the performance of the IBIS model in this section, as the
data generating model is more favorable to BRCAPRO and BCRAT. BRCAPRO + BCRAT
(M), the true model, had the best performance, although the ensemble models were able
to achieve similar performance to the true model and performance gains over BRCAPRO
and BCRAT. The combination models were well-calibrated overall, with O/E = 1.01 (95%
CI 0.94–1.08) for BRCAPRO + BCRAT (M), O/E = 0.98 (95% CI 0.91–1.04) for BRCAPRO +
BCRAT (E), and O/E = 0.99 (95% CI 0.92–1.05) for BRCAPRO + BCRAT (E2). BRCAPRO
and BCRAT underpredicted the number of cases, with O/E = 1.15 (95% CI 1.07–1.23) for
BRCAPRO and O/E = 1.14 (95% CI 1.05–1.21) for BCRAT. The combination models were

https://cran.r-project.org/web/packages/densratio/index.html
https://cran.r-project.org/web/packages/densratio/index.html
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well-calibrated in each decile of risk (Figure 2), while BRCAPRO and BCRAT were more
prone to underpredicting risk in certain deciles. The combination models had slightly
higher AUCs than BRCAPRO and BCRAT: 0.69 (95% CI 0.67–0.71 for BRCAPRO + BCRAT
(M), 0.68 (95% CI 0.67–0.70) for BRCAPRO + BCRAT (E) and BRCAPRO + BCRAT (E2),
0.67 (95% CI 0.65–0.69) for BRCAPRO, and 0.66 (95% CI 0.64–0.68) for BCRAT. In addition,
the combination models performed better than BRCAPRO and BCRAT with respect to the
Brier score, logarithmic score, and SNB. Across 1000 bootstrap replicates of the validation
dataset, BRCAPRO + BCRAT (M) outperformed BRCAPRO and BCRAT with respect to
all performance measures in more than 95% of the replicates and the ensemble models
outperformed BRCAPRO and BCRAT with respect to all performance measures except
O/E in more than 95% of the replicates. The ensemble models had better O/E ratios than
BRCAPRO and BCRAT more than 92% of the time. BRCAPRO + BCRAT (M) outperformed
BRCAPRO + BCRAT (E) and BRCAPRO + BCRAT (E2) more than 97% of the time with
respect to each of AUC, Brier score, and logarithmic score.

Figure 2. Calibration plots by decile of risk for five-year predictions in a simulated dataset with
45,557 counselees (724 cases). For each model, we grouped individuals by decile of risk and plotted
the observed proportion of women who developed cancer (with 95% Wilson CI) versus the predicted
probability (sum of risk predictions) within each decile.
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Table 2. Five-year performance on a simulated dataset with 45,557 probands (717 cases). B+B:
BRCAPRO + BCRAT. ∆BS: % relative improvement in Brier Score compared to BRCAPRO. ∆LS:
% relative improvement in logarithmic score compared to BRCAPRO. The “Comparisons Across
Bootstrap Replicates” section shows pairwise comparisons involving the combination models across
1000 bootstrap replicates of the validation dataset; the row for A > B shows the proportion of
bootstrap replicates where model A outperformed model B with respect to each metric. Proportions
> 0.5 are highlighted in blue (with darker shades of blue for higher proportions) and proportions
≤ 0.5 are highlighted in red (with darker shades of red for lower proportions).

O/E AUC SNB ∆BS ∆LS

Performance Metrics
B+B (M) 1.01 (0.94, 1.08) 0.69 (0.67, 0.71) 0.26 (0.21, 0.30) 0.25 (0.09, 0.41) 1.12 (0.60, 1.66)
B+B (E) 0.98 (0.91, 1.04) 0.68 (0.67, 0.70) 0.25 (0.20, 0.29) 0.12 (−0.02, 0.25) 0.63 (0.18, 1.05)
B+B (E2) 0.99 (0.92, 1.05) 0.68 (0.67, 0.70) 0.24 (0.19, 0.29) 0.16 (0.01, 0.29) 0.65 (0.21, 1.07)

BRCAPRO 1.15 (1.07, 1.23) 0.67 (0.65, 0.69) 0.21 (0.17, 0.25) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)
BCRAT 1.14 (1.05, 1.21) 0.66 (0.64, 0.68) 0.20 (0.15, 0.24) −0.21 (−0.46, 0.06) −1.15 (−2.10, −0.16)

Comparisons Across Bootstrap Replicates
B+B(M)>B+B(E) 0.570 0.994 0.725 0.999 1.000
B+B(M)>B+B(E2) 0.504 0.995 0.795 0.972 1.000

B+B(M)>BRCAPRO 0.978 0.999 0.998 0.998 1.000
B+B(M)>BCRAT 0.962 1.000 1.000 1.000 1.000
B+B(E)>B+B(E2) 0.312 0.919 0.808 0.011 0.133

B+B(E)>BRCAPRO 0.944 0.999 1.000 0.961 0.998
B+B(E)>BCRAT 0.924 1.000 0.999 0.994 1.000

B+B(E2)>BRCAPRO 0.953 0.999 0.995 0.979 0.999
B+B(E2)>BCRAT 0.938 1.000 0.998 0.996 1.000

3.2. Data Application Results
3.2.1. Five-Year Binary Outcome

The performance measures based on the five-year outcome are shown in Table 3
(overall performance) and Table 4 (performance stratified by family history). Figure 3
shows the distributions of the predictions as well as pairwise correlations between models,
while Figure 4 shows the calibration plots. The weights from the ensemble models are
provided in Appendix C.

As seen in Figure 3, the lowest correlations were observed between models with
smaller overlaps of the input variables, as expected. BRCAPRO and BCRAT had the
lowest correlation (ρ = 0.44). Even models with higher correlations displayed divergent
predictions. Correlations of predictions from BRCAPRO + BCRAT (M) with predictions from
each of the other models ranged from ρ = 0.78 with BRCAPRO to ρ = 0.93 with BRCAPRO +
BCRAT (E). BRCAPRO + BCRAT (E) and BRCAPRO + BCRAT (E2), which assigned a higher
weight to BCRAT than to BRCAPRO (Appendix C), were more highly correlated with BCRAT
(ρ = 0.93) than with BRCAPRO ((ρ = 0.67 for (E) and ρ = 0.62 for (E2)).

On aggregate, BRCAPRO + BCRAT (M) (O/E = 1.03, 95% CI 0.84–1.23) and IBIS
(O/E = 0.98, 95% CI 0.80–1.17) were well-calibrated, while BCRAT (O/E = 1.15, 95% CI
0.94–1.37), BRCAPRO + BCRAT (E) (O/E = 1.17, 95% CI 0.96–1.40), BRCAPRO + BCRAT
(E2) (O/E = 1.20, 95% CI 0.98–1.43), and BRCAPRO (O/E = 1.30, 95% CI 1.07–1.56) under-
estimated risk. When calibration was considered by decile (Figure 4), 8 out of 60 intervals
overall failed to cross the diagonal, compared to the result of 3 expected by chance when all
models are well-calibrated. BRCAPRO + BCRAT (M) overestimated risk in the top decile of
risk and IBIS overestimated risk in the second highest decile, while BRCAPRO and BCRAT
underestimated risk in other deciles. All models except BRCAPRO overpredicted risk by a
certain amount in the second-smallest decile, suggesting that the source of this pattern may
reside in specific characteristics of the distribution of covariates other than family history.

The AUCs were 0.68 (95% CI 0.63–0.72) for the combination models, 0.67 for IBIS (95%
CI 0.62–0.71), 0.66 for BCRAT (95% CI 0.61–0.71), and 0.65 (95% CI 0.60–0.69) for BRCAPRO.
IBIS had the highest SNB (SNB = 0.28, 95% CI 0.16–0.38), followed by BRCAPRO + BCRAT
(M) (SNB = 0.24, 95% CI 0.13–0.35) and the ensemble models (SNP = 0.24, 95% CI 0.12–0.34
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for (E2), SNB = 0.23 and SNP = 0.23, 95% CI 0.10–0.33 for (E)). All models performed
similarly with respect to the Brier score and logarithmic score. Across 1000 bootstrap
replicates, BRCAPRO + BCRAT (M) outperformed BRCAPRO and BCRAT with respect
to all performance measures except the Brier score in the majority of the replicates. Each
ensemble model outperformed BRCAPRO and BCRAT with respect to all metrics except
O/E in the majority of the replicates. Furthermore, each of the three combination models
outperformed IBIS with respect to AUC, Brier score, and logarithmic score in the majority
of the replicates, although IBIS had better calibration and SNB in most replicates.

Among counselees who met the NCCN criteria for further genetic risk evaluation
(Table 4), the combination models and IBIS had higher AUCs and SNBs than BRCAPRO
and BCRAT. BRCAPRO + BCRAT (M) and IBIS overestimated risk while all other models
except BCRAT underestimated risk. Among counselees who did not meet the NCCN
criteria, all models underestimated risk. BRCAPRO had a slightly lower AUC than the
other models, and IBIS had the highest SNB.

Table 3. Five-year performance in the entire CGN cohort. B+B: BRCAPRO + BCRAT. ∆BS: % relative
improvement in Brier Score compared to BRCAPRO. ∆LS: % relative improvement in logarithmic
score compared to BRCAPRO. The “Comparisons Across Bootstrap Replicates” section shows pair-
wise comparisons involving the combination models across 1000 bootstrap replicates of the validation
dataset; the row for A > B shows the proportion of bootstrap replicates where model A outperformed
model B with respect to each metric. Proportions > 0.5 are highlighted in blue (with darker shades of
blue for higher proportions) and proportions ≤ 0.5 are highlighted in red (with darker shades of red
for lower proportions).

O/E AUC SNB ∆BS ∆LS

Performance Metrics
B+B (M) 1.03 (0.84, 1.23) 0.68 (0.63, 0.72) 0.24 (0.13, 0.35) 0.21 (−0.42, 0.84) 1.61 (−0.49, 3.59)
B+B (E) 1.17 (0.96, 1.40) 0.68 (0.63, 0.72) 0.23 (0.10, 0.33) 0.38 (−0.10, 0.84) 1.74 (−0.06, 3.41)
B+B (E2) 1.20 (0.98, 1.43) 0.68 (0.63, 0.72) 0.24 (0.12, 0.34) 0.40 (−0.07, 0.85) 1.81 (0.06, 3.48)

BRCAPRO 1.30 (1.07, 1.56) 0.65 (0.60, 0.69) 0.17 (0.05, 0.25) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)
BCRAT 1.15 (0.94, 1.37) 0.66 (0.61, 0.71) 0.18 (0.07, 0.28) 0.22 (−0.51, 0.85) 0.88 (−2.03, 3.60)

IBIS 0.98 (0.80, 1.17) 0.67 (0.62, 0.71) 0.28 (0.16, 0.38) −0.05 (−0.69, 0.52) 0.89 (−1.43, 3.07)

Comparisons Across Bootstrap Replicates
B+B(M)>B+B(E) 0.841 0.421 0.702 0.208 0.412
B+B(M)>B+B(E2) 0.874 0.382 0.534 0.225 0.381

B+B(M)>BRCAPRO 0.943 0.920 0.933 0.727 0.934
B+B(M)>BCRAT 0.811 0.763 0.982 0.503 0.783

B+B(M)>IBIS 0.475 0.709 0.186 0.823 0.774
B+B(E)>B+B(E2) 0.963 0.310 0.001 0.288 0.266

B+B(E)>BRCAPRO 0.983 0.965 0.913 0.936 0.970
B+B(E)>BCRAT 0.066 0.844 0.870 0.895 0.907

B+B(E)>IBIS 0.214 0.717 0.119 0.919 0.806
B+B(E2)>BRCAPRO 0.987 0.955 0.950 0.953 0.980

B+B(E2)>BCRAT 0.047 0.870 0.937 0.895 0.938
B+B(E2)>IBIS 0.181 0.739 0.189 0.918 0.823

3.2.2. Time-to-Event Outcome

The performance measures based on the time-to-event outcome are shown in Table A5
(overall performance) and Table A6 (performance stratified by family history) in Appendix D.
BRCAPRO + BCRAT (E) was excluded from the analyses because it only provides five-year
risks. We did not calculate the logarithmic score for BRCAPRO + BCRAT (E2) or IBIS because
the cause-specific distribution for competing mortality, which is needed to calculate the
likelihood, is not explicitly modelled by BRCAPRO + BCRAT (E2) and is not available as an
output from the IBIS software.

Overall, the relative performance of the models for the time-to-event outcome was
similar to the relative performance for the five-year outcome; however, among counselees
meeting the NCCN criteria BCRAT had worse discriminatory accuracy for the time-to-
event outcome than the other models. O/E and discriminatory accuracy did not change
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substantially compared to Tables 3 and 4, and differences in Brier score and logarithmic
score across models were small. BRCAPRO + BCRAT (M) and BRCAPRO + BCRAT (E2)
performed similarly to BCRAT and IBIS overall (Table A5), and had higher C-statistics than
BCRAT in the subset of counselees meeting the NCCN criteria (Table A6). The combination
models had similar or better calibration and discrimination compared to BRCAPRO overall
as well as within each family history stratum.

Table 4. Five-year performance in the CGN cohort stratified by family history (whether or not the
proband met the NCCN criteria for further genetic risk evaluation [55]; in applying the criteria,
we only used information on breast and ovarian cancer diagnoses in relatives). B+B: BRCAPRO +
BCRAT. ∆BS: % relative improvement in Brier Score compared to BRCAPRO. The “Comparisons
Across Bootstrap Replicates” section shows pairwise comparisons involving the combination models
across 1000 bootstrap replicates of the validation dataset; the row for A > B shows the proportion of
bootstrap replicates where model A outperformed model B with respect to each metric. Proportions
> 0.5 are highlighted in blue (with darker shades of blue for higher proportions) and proportions
≤ 0.5 are highlighted in red (with darker shades of red for lower proportions).

O/E AUC SNB ∆BS ∆LS

Strong Family History (34 cases)
Performance Metrics

B+B (M) 0.81 (0.55, 1.09) 0.71 (0.63, 0.79) 0.44 (0.18, 0.59) 0.75 (−1.20, 2.14) 3.62 (−2.27, 8.06)
B+B (E) 1.07 (0.74, 1.44) 0.71 (0.62, 0.79) 0.41 (0.17, 0.57) 1.19 (−0.16, 2.54) 4.15 (−0.77, 8.39)
B+B (E2) 1.14 (0.78, 1.53) 0.71 (0.62, 0.79) 0.41 (0.17, 0.57) 1.11 (−0.19, 2.49) 3.90 (−1.07, 8.29)

BRCAPRO 1.32 (0.91, 1.79) 0.66 (0.58, 0.74) 0.30 (0.08, 0.47) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)
BCRAT 1.03 (0.71, 1.39) 0.66 (0.56, 0.75) 0.31 (0.06, 0.47) 0.77 (−1.36, 2.65) 1.55 (−6.64, 8.24)

IBIS 0.74 (0.50, 1.00) 0.69 (0.60, 0.77) 0.41 (0.14, 0.57) −0.15 (−2.52, 1.46) 1.12 (−5.56, 5.92)

Comparisons Across Bootstrap Replicates
B+B(M)>B+B(E) 0.339 0.593 0.634 0.192 0.318
B+B(M)>B+B(E2) 0.409 0.584 0.633 0.272 0.408

B+B(M)>BRCAPRO 0.615 0.931 0.917 0.794 0.892
B+B(M)>BCRAT 0.278 0.906 0.965 0.463 0.778

B+B(M)>IBIS 0.951 0.706 0.718 0.880 0.920
B+B(E)>B+B(E2) 0.704 0.521 0.423 0.699 0.718

B+B(E)>BRCAPRO 0.841 0.853 0.905 0.956 0.949
B+B(E)>BCRAT 0.410 0.945 0.879 0.856 0.941

B+B(E)>IBIS 0.751 0.669 0.532 0.919 0.897
B+B(E2)>BRCAPRO 0.876 0.834 0.903 0.949 0.933

B+B(E2)>BCRAT 0.335 0.954 0.877 0.772 0.915
B+B(E2)>IBIS 0.664 0.652 0.541 0.901 0.874

Less Family History (78 cases)
Performance Metrics

B+B (M) 1.16 (0.94, 1.44) 0.65 (0.60, 0.71) 0.16 (0.02, 0.28) −0.02 (−0.41, 0.37) 0.80 (−0.92, 2.47)
B+B (E) 1.21 (0.98, 1.49) 0.66 (0.61, 0.71) 0.14 (0.01, 0.27) 0.03 (−0.22, 0.26) 0.80 (−0.54, 2.08)
B+B (E2) 1.22 (0.98, 1.50) 0.66 (0.61, 0.71) 0.16 (0.03, 0.29) 0.10 (−0.16, 0.33) 1.02 (−0.29, 2.34)

BRCAPRO 1.28 (1.04, 1.59) 0.63 (0.58, 0.68) 0.10 (−0.02, 0.21) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)
BCRAT 1.20 (0.97, 1.48) 0.66 (0.61, 0.71) 0.12 (−0.00, 0.24) −0.01 (−0.41, 0.35) 0.68 (−1.55, 2.92)

IBIS 1.14 (0.92, 1.41) 0.66 (0.61, 0.71) 0.22 (0.09, 0.34) −0.01 (−0.38, 0.39) 0.81 (−1.38, 3.11)

Comparisons Across Bootstrap Replicates
B+B(M)>B+B(E) 0.937 0.275 0.623 0.333 0.490
B+B(M)>B+B(E2) 0.940 0.196 0.429 0.233 0.329

B+B(M)>BRCAPRO 0.964 0.875 0.822 0.432 0.813
B+B(M)>BCRAT 0.934 0.223 0.900 0.424 0.542

B+B(M)>IBIS 0.101 0.396 0.121 0.429 0.476
B+B(E)>B+B(E2) 0.961 0.126 0.000 0.001 0.008

B+B(E)>BRCAPRO 0.979 0.958 0.806 0.630 0.890
B+B(E)>BCRAT 0.055 0.385 0.687 0.715 0.588

B+B(E)>IBIS 0.075 0.498 0.106 0.594 0.477
B+B(E2)>BRCAPRO 0.982 0.955 0.875 0.821 0.923

B+B(E2)>BCRAT 0.043 0.446 0.875 0.939 0.742
B+B(E2)>IBIS 0.069 0.532 0.168 0.744 0.579
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Figure 3. Scatter plots, density plots, and pairwise correlations of five-year predictions in the CGN
data. Red corresponds to data from cases, blue corresponds to data from controls (individuals who
did not develop breast cancer within five years), and beige corresponds to data from counselees
censored before five years. Corr: Pearson correlation, cens: counselees censored before five years, ctrl:
controls. The lower diagonal panels show scatter plots of the predictions from each pair of models.
For example, the panel in the second row, first column has predictions from BRCAPRO + BCRAT (E)
on the x-axis and predictions from BRCAPRO + BCRAT (M) on the y-axis. The diagonal panels show
density plots of the predictions from each model, stratified by case-control status. For example, the
panel in the first row, first column shows the distribution of predictions from BRCAPRO + BCRAT
(M). The upper diagonal panels show the Pearson correlations between predictions from each pair of
models. For example, the first row, second column shows the overall correlation, correlation among
cases, correlation among censored counselees, and correlation among controls for predictions from
BRCAPRO + BCRAT (M) and BRCAPRO + BCRAT (E). *** = p < 0.001.
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Figure 4. Calibration plots by decile of risk for five-year predictions in CGN. For each model, we
grouped individuals by decile of risk and plotted the observed proportion of women who developed
cancer (with 95% Wilson CI) versus predicted probability (sum of risk predictions) within each decile.
In computing the observed proportions, the inverse probabilities of the censoring weights were used
to account for censoring.

4. Discussion

Model combination is a way to systematically integrate information from different
models to achieve more comprehensive and accurate risk assessment. By leveraging
existing models instead of building new ones from the ground up, it is possible to save
considerable time and effort, remove barriers to adoption if the ingredient models are
well-accepted, and, in the case of ensemble approaches such as stacking, permit reuse of
proprietary models as long as predictions can be obtained even when the full model is
not available.

We used model combination to expand a widely used Mendelian model, BRCAPRO, to
include non-genetic risk factors from a widely used non-Mendelian model. We considered
two approaches, namely, penetrance modification and ensemble learning. The penetrance
modification model BRCAPRO + BCRAT (M) and the ensemble models BRCAPRO +
BCRAT (E) for binary outcomes and BRCAPRO + BCRAT (E2) for time-to-event outcomes
all achieved accuracy gains over BRCAPRO and BCRAT in simulations and data from the
CGN, showing the value of model combination. Augmenting the family history input to
BRCAPRO with non-genetic risk factors and augmenting the BCRAT risk factors with more
detailed family history information both led to improvements, and could provide a better
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tool to users of either BRCAPRO or BCRAT as well as to clinicians who use both and then
qualitatively integrate the two estimates for their patients.

In data simulated under the penetrance modification model, all combination models
outperformed BRCAPRO and BCRAT with respect to calibration, discrimination, net
benefit, and prediction accuracy based on the Brier score and logarithmic score. In the
CGN cohort, we additionally validated IBIS, an existing model that combines detailed
family history with non-genetic risk factors. The penetrance modification model achieved
comparable performance to IBIS overall, outperforming BRCAPRO with respect to each
performance measure and outperforming BCRAT with respect to each measure except the
Brier score in a large majority of bootstrap replicates. The ensemble models outperformed
BRCAPRO with respect to each measure and BCRAT with respect each measure other than
calibration, showing worse overall calibration than the penetrance modification model. In
the subset of women with a strong family history of breast/ovarian cancer based on NCCN
criteria, all combination models showed notable improvements in discrimination and net
benefit over BRCAPRO and BCRAT.

While the AUC gains of 2–3% achieved by the combination models over BRCAPRO
and BCRAT in the entire CGN cohort may not change the clinical implications for most
individuals, the net benefit measure, which aims to quantify the expected benefits versus
harms of treatment and has been used to assess the clinical utility of numerous models in
cancer research and other fields [45,46], provides additional information on the value of
the combination models. The 5–7% gain in standardized net benefit (based on a high-risk
threshold of 1.67%, the FDA threshold for chemoprevention eligibility) indicates that there
is a subset of individuals who would be accurately classified by the combination models
and inaccurately classified by BRCAPRO/BCRAT. The combination models would be
highly valuable for this subgroup. In particular, among women with a strong family history
of cancer, the combination models achieved a 5% improvement in AUC and 10–14% im-
provement in standardized net benefit over BRCAPRO and BCRAT. In this subgroup, early
screening and prevention measures can substantially reduce cancer risk and mortality [56].
Figure 3 highlights the substantial number of counselees for whom differences in model
predictions are large enough to warrant different discussions about the expected benefits of
preventative options.

BCRAT performed well in the entire CGN cohort, although it had less discrimination
and net benefit than the combination models and IBIS among women with a strong family
history, highlighting the importance of collecting detailed family history information for
higher-risk subgroups [37]. Furthermore, BCRAT is not designed to calculate risk for
known BRCA1/2 carriers, while the other four models all take into account genetic testing
results (which the ensemble models do indirectly through BRCAPRO risk prediction).

The additional inputs in the combination models compared to BRCAPRO or BCRAT
alone require additional data collection effort; however, models integrating detailed fam-
ily history and non-genetic risk factors are already used in clinical practice (IBIS and
BOADICEA), and these models use similar inputs compared to our combination models.
Furthermore, missing values are allowed in our combination models, which can help to
reduce the burden of data collection in clinical practice.

A limitation of our study arises from missing information on BCRAT and IBIS risk
factors in the CGN dataset (atypical hyperplasia, age at menarche, and for IBIS, breast
density, hormone replacement therapy, and polygenic risk scores). This could potentially
have affected the discrimination of BCRAT, IBIS, and the combination models as well as
their relative ranking. To mitigate this concern, we observe that the models retain relatively
good discrimination that is comparable to previous studies [13,16]. Furthermore, the CGN
did not collect genetic testing information for non-counselees, which could considerably
improve the discrimination of BRCAPRO, IBIS, and the combination models [57].

Another limitation is that the CGN and NWH cohorts are predominantly non-Hispanic
white (>80%), with <5% Black and <10% Hispanic. The combination models evaluated
here do not overcome the potential limitations of BRCAPRO and BCRAT in predicting risk
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among racial/ethnic minorities, at least as evaluated in the current datasets. While one
recent study evaluated BRCAPRO, BCRAT, IBIS, and BRCAPRO + BCRAT (M) in a diverse
US cohort and found no significant difference in model performance between Black and
White women [58], BCRAT has shown only modest discrimination in other validation studies
focusing on African-American, Asian-American, and US-born Hispanic women [5–7], and
its performance has varied in non-US populations [59]. Moreover, other validation studies
of BRCAPRO in minority population have shown its clinical utility for predicting carrier
probabilities [60,61], although its performance for predicting future risk has not been evaluated.
Future work should evaluate the combination models among more diverse populations.

A further challenge is that the NWH and CGN cohorts are not representative of the
same clinical population. The NWH cohort is a lower-risk cohort; as seen in Table 1, it
has a lower proportion of women with a first-degree family history of breast cancer. In
addition, the family history information available for the NWH cohort is less detailed
than that for the CGN cohort. While this allows us to assess the robustness of a model
to heterogeneity across different datasets, it creates a challenge for the ensemble models,
which are trained in NWH and validated in CGN, compared to the penetrance modification
model, which leverages literature estimates based on populations potentially more similar
to CGN. We used importance weighting to address this limitation; however, this approach
remains an approximation and relies on accurate estimation of the probability distributions
of risk factors in the training and target populations. The performance of the ensemble
approach could potentially be improved by training on data that are more representative
of the validation data. This is supported by the fact that the ensemble models were
well-calibrated in the simulations, where the training and validation datasets were both
generated under BRCAPRO + BCRAT (M).

The two combination approaches considered here each have their strengths and
limitations. Ensembling via logistic regression calibrates the model to the training data.
The penetrance modification model, on the other hand, relies on previously published
estimates of prevalence, penetrance, and relative hazards. These features can be a strength
or a limitation depending on how well the training dataset represents the target population.
While ensembling can sometimes be successful without training weights (for example,
predictions can be combined using a simple average), in our approach we used stacking
to train weights on individual-level data. This opens opportunities for recalibration to
improve suitability for a population different from the training population.

A disadvantage of estimating ensemble weights via logistic regression is the need
to estimate the censoring distribution when there are counselees in the training dataset
who are censored before the last time point of interest. An advantage of ensembling is
its greater flexibility compared to the penetrance modification approach. Ensembling can
easily handle any number of models that can be of any form. Including additional risk
factors is straightforward. The penetrance modification model requires more assumptions,
as it specifically combines a model based on Mendelian inheritance with a relative hazard
model. Additional risk modifiers can be incorporated as new relative hazard estimates
become available; however, it is important to properly scale the relative hazards to be
compatible with the hazard functions they are meant to modify and to consider whether
the effects of the risk modifiers differ by carrier status. BRCAPRO + BCRAT (M) currently
modifies only the non-carrier hazard function, for which it uses the BCRAT relative hazard.
Future work is needed to evaluate the inclusion of modifiers of the carrier hazard functions.
One more advantage of ensembling is that after the model is trained it only requires the
predictions from the models being combined (along with any additional risk factors that
are explicitly included in the ensemble model), and does not require the raw inputs, which
are potentially less accessible than the predictions.

BRCAPRO + BCRAT (M) has been externally validated in two average-risk cohorts: a
large US mammography screening cohort of over 120,000 women [58] and an Australian
cohort of over 7000 women [14]. In the US cohort, BRCAPRO + BCRAT (M) performed
better than BRCAPRO, especially among women with a family history of cancer, and per-
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formed similarly to BCRAT. In the Australian cohort, BRCAPRO + BCRAT (M) performed
similarly to BRCAPRO and worse than BCRAT. To investigate whether these results may
have been driven by cohort characteristics, we simulated data to mimic the characteristics
of the Australian cohort, as the original data are not publicly available. In these additional
simulations, we were unable to reproduce the results reported in the Australian study.
Rather than seeing similar performance of BRCAPRO and BRCAPRO + BCRAT (M), as
shown in [14], in our simulations BRCAPRO + BCRAT (M) outperformed BRCAPRO alone,
which is consistent with the results from the US cohort validation [58] (Appendix E).

While at least two breast cancer risk prediction models integrating detailed family
history and non-genetic risk factors, namely, IBIS and BOADICEA, are well-validated and
widely available, our work contributes to the improvement of clinical risk prediction in the
following ways: (1) we have developed an expanded version of BRCAPRO that can easily
be integrated in clinical and research settings where BRCAPRO is currently used, and (2)
the model combination methodology proposed in this paper is applicable to a wide range
of prediction problems. BRCAPRO is currently part of seven widely used and commercially
available clinical tools. These have thousands of users, not all of whom have access to IBIS
and BOADICEA. The proposed BRCAPRO + BCRAT (M) model has been added to the
software implementation of BRCAPRO, which can facilitate its integration in clinical and
research settings where BRCAPRO is used. Two useful features of BRCAPRO are the free
availability of its software and code (through the BayesMendel R package) for research
purposes and the option for users to specify their own values for the model parameters
(through the brcaparams function in the BayesMendel R package), including modifications
to the allele frequencies and penetrance instead of using the default published estimates.
This provides researchers with the flexibility to tailor the model to different populations as
well as an easy way to check the sensitivity of risk predictions to differing sets of parameter
values. While risk calculation tools for IBIS and BOADICEA are freely available, to the best
of our knowledge the code is not easily accessible and there is no option to customize and
implement user-specified parameters. Furthermore, the model combination approaches
we propose can be applied to many other prediction problems. Ensemble learning can be
used to combine an arbitrary number of models of any type. Penetrance modification is
a way to incorporate risk factors beyond family history into complex Mendelian models,
including the recently developed multi-gene and multi-syndrome model PanelPro [15,62],
which can incorporate an arbitrary number of genes and cancer types and can potentially
provide greater clinical benefit than single-syndrome models such as BRCAPRO.

5. Conclusions

In summary, we have demonstrated the feasibility of two complementary and method-
ologically different approaches to integrating the popular breast cancer risk assessment
models BRCAPRO and BCRAT. Both combination models show accuracy improvements
over the existing models, and can potentially prove effective in clinical application. In
the CGN validation, BRCAPRO + BCRAT (M) achieved comparable performance to the
IBIS model by leveraging the strengths of BRCAPRO and BCRAT. Additional validation of
BRCAPRO + BCRAT (M) in independent prospective studies, ideally with larger and more
diverse cohorts and more complete covariate information, would provide further support
for clinical adoption.
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Appendix A. Notation Details

Given a female individual of age a without a previous diagnosis of breast cancer who
presents for risk assessment (the counselee), the goal is to predict her risk of developing
invasive breast cancer within τ years (τ being a pre-specified positive integer) based on
family history H and other risk factors Z (described below) while accounting for death
from other causes as a competing risk. Formally, we are interested in the probability
P(T ≤ a + τ, J = B|T > a, H, Z), where T is the age at onset of breast cancer (a non-
negative integer) and J indicates whether she develops breast cancer before dying from
other causes (J = B) or dies without developing breast cancer (J = D). In this paper, we
focus on crude or absolute risk of breast cancer, which refers to the risk in the presence of
competing causes of death, as opposed to net or pure risk, which refers to the hypothetical
risk if competing causes of death were eliminated. BRCAPRO and IBIS provide both the
crude and net risks, while BCRAT provides only the crude risk.

While BRCAPRO uses a discrete model for T, BCRAT and IBIS use continuous models
for the time to breast cancer, so we introduce additional notation for these models. Treating
time as continuous, let T̃B be the age at onset of breast cancer, T̃D the age at death from other
causes, and T̃ = min(T̃B, T̃D), with T̃B, T̃D, and T̃ taking on values in the interval [0, ∞).
TB = bT̃Bc and TD = bT̃Dc, and T̃ = bTc (where b·c denotes the floor function).

We use discrete T for the penetrance modification model, as it is an extension of
BRCAPRO. For the ensemble model, time can be treated as either continuous or discrete.
Without loss of generality, we use continuous time notation.

https://github.com/zoeguan/brcapro_bcrat_combination
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Appendix A.1. BRCAPRO

Family history can be represented as a pedigree, or a graph where each node is a
family member and edges flow from parents to offspring. The family history information
used by BRCAPRO, H, includes the following variables for each family member (missing
values are allowed): gender, breast cancer status, age of onset of breast cancer if applicable,
ovarian cancer status, age of onset of ovarian cancer if applicable, and current age or age at
death. Information on preventative interventions (mastectomy/oophorectomy) and genetic
testing results for BRCA1/BRCA2 can be included as well.

Let n be the number of family members in the pedigree and let i = 1, . . . , n index
the family members, where i = 1 corresponds to the counselee. We now describe the
notation for the cancer histories of the family members, which is slightly different from the
notation for the counselee above because the carrier probability calculation in BRCAPRO
incorporates ovarian cancer as well as breast cancer and treats death from other causes
as a form of censoring rather than a competing risk. Let TBi be the age of breast cancer
onset, TOi the age of ovarian cancer onset, Ci the current age (if alive) or death age (if
dead), XBi = min(TBi, Ci), XOi = min(TOi, Ci), δBi = I(TBi ≤ Ci), and δOi = I(TOi ≤ Ci).
Denote family member i’s cancer history by Hi = (XBi, XOi, δBi, δOi). Let Gi = (Gi1, Gi2)
be the genotype of family member i, where Gi1 indicates BRCA1 carrier status and Gi2
indicates BRCA2 carrier status, and let Ui indicate whether family member i is male. Let
G = (G1, . . . , Gn) and H = (H1, . . . , Hn).

Using Bayes’ rule and the assumption of conditional independence of phenotypes
assigned genotypes (across individuals as well as cancer types), the counselee’s probability
of having genotype G1 is

P(G1|H, U) =
P(G1)∑G2,...,Gn ∏n

i=1 P(Hi|Gi, Ui)P(G2, . . . , Gn|G1)

∑G1
P(G1)∑G2,...,Gn ∏n

i=1 P(Hi|Gi, Ui)P(G2, . . . , Gn|G1)
. (A1)

The summation over genotypes is calculated using the Elston–Stewart peeling algo-
rithm [63], and P(G2, . . . , Gn|G1) is calculated based on Mendelian laws of inheritance. The
prevalences P(Gi) (P(G1) = P(G2) = · · · = P(Gn)) are obtained from the literature and
are ethnicity-specific (in particular, different prevalences are used for Ashkenazi Jewish and
non-Ashkenazi Jewish families); P(Hi|Gi, Ui) is calculated using literature-based net pene-
trances for breast and ovarian cancer. The penetrances are functions of age, and are cancer- and
sex-specific. The penetrance functions for non-carriers are based on rates from the Surveillance,
Epidemiology, and End Results (SEER) program and are race-specific, while the penetrance
functions for carriers are from a meta-analysis of published studies [34].

After estimating the carrier probabilities, BRCAPRO calculates future risk of breast and
ovarian cancer through a weighted average of the genotype-specific risks. The counselee’s
crude risk of developing breast cancer between ages a and a + τ, conditional on having
genotype g (g ∈ {(0, 0), (1, 0), (0, 1)}) and not having breast cancer by age a, is

P(T ≤ a + τ, J = B|T > a, G1 = g) =
a+τ

∑
t=a+1

P(T = t, J = B|T ≥ t, G1 = g)P(T ≥ t|G1 = g)
P(T > a|G1 = g)

=
a+τ

∑
t=a+1

λ
g
B(t)

t−1

∏
u=a+1

(
1− λ

g
B(u)− λD(u)

)
(A2)

where λ
g
B(t) = P(T = t, J = B|T ≥ t, G1 = g) is the cause-specific hazard of breast cancer

conditional on genotype g and λD(t) = P(T = t, J = D|T ≥ t) is the cause-specific hazard of
death from causes other than breast cancer; λ

g
B(t) is calculated from the crude female breast

cancer penetrance for genotype g, P(T = t, J = B|G1 = g) using the recursive formula

λ
g
B(t) =

P(T = t, J = B|G1 = g)

∏t−1
u=1(1− λ

g
B(u)− λD(u))

, (A3)
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while λD(t) is estimated based on SEER mortality rates for all causes except breast cancer.
The final risk estimate is

P(T ≤ a + τ, J = B|T > a, H, U) = ∑
g

P(T ≤ a + τ, J = B|T > a, G1 = g)P(G1 = g|H, U). (A4)

Appendix A.2. BCRAT

BCRAT [4–7] estimates the relative hazard of developing breast cancer based on age
(dichotomized into < 50 and ≥ 50) and the following risk factors: Z1 = age at menarche,
Z2 = number of benign breast biopsies, Z3 = age at first live birth (set Z3 = 25 for nulli-
parous non-Hispanic women and Z3 = 30 for nulliparous Hispanic women), Z4 = number
of female first-degree relatives with breast cancer, and Z5 = presence of atypical hyperplasia
in a breast biopsy (0, 1, or unknown). Let Z = (Z1, . . . , Z5).

The relative hazard for an individual of age t with risk factors Z compared to an
individual of age t with no BCRAT risk factors (other than age) is

r(t, Z) = exp(β1 I[Z1 ∈ [12, 13]] + β2 I[Z1 < 12]+

β3 I[Z2 = 1] + β4 I[Z2 ≥ 2] + β5 I[t ≥ 50]I[Z2 = 1] + β6 I[t ≥ 50]I[Z2 ≥ 1]+

β7 I[Z3 ∈ [20, 24]] + β8 I[Z3 ∈ [25, 29]] + β9 I[Z3 > 29]+

β10 I[Z4 = 1] + β11 I[Z4 = 2]+

β12 I[Z3 ∈ [20, 24]]I[Z4 = 1] + β13 I[Z3 ∈ [25, 29]]I[Z4 = 1] + β14 I[Z3 > 29]I[Z4 = 1]+

β15 I[Z3 ∈ [20, 24]]I[Z4 ≥ 2] + β16 I[Z3 ∈ [25, 29]]I[Z4 ≥ 2] + β17 I[Z3 > 29]I[Z4 ≥ 2]+

β18 I[Z2 > 0]I[Z5 = 0] + β19 I[Z2 > 0]I[Z5 = 1]), (A5)

where I[·] denotes the indicator function (equal to 1 if the bracketed expression is true and
0 otherwise). The relative hazard model includes interactions between age and number of
biopsies, as well as age at first live birth and number of affected relatives. The regression
coefficients were estimated from U.S. case-control studies. Separate models were fit to
data from White, African-American, Asian, and Hispanic women to obtain race/ethnicity-
specific estimates.

The crude risk of developing breast cancer between ages a and a + τ, conditional on
not having breast cancer at age a, is

P(T̃ ≤ a + τ, J = B|T̃ > a, Z) =
∫ a+τ

a
λ̃B,0(t)r(t, Z) exp

{
−
∫ t

a
(λ̃B,0(u)r(u, Z) + λ̃D(u))du

}
dt, (A6)

where λ̃B,0(t) = lim
dt→0

P(t ≤ T̃ < t + dt, J = B|T̃ ≥ t, Z = 0)/dt is the cause-specific

hazard of breast cancer for those with no BCRAT risk factors and λ̃D(u) = lim
dt→0

P(t ≤ T̃ <

t + dt, J = D|T̃ ≥ t)/dt is the cause-specific hazard of death from causes other than breast
cancer; λ̃B,0(t) is calculated from λ̃B(t) = lim

dt→0
P(t ≤ T̃ < t + dt, J = B|T̃ ≥ t)/dt, the

cause-specific hazard of breast cancer in the general population, using the formula

λ̃B,0(t) = λ̃B(t)(1− AR(t)), (A7)

where
AR(t) = 1− 1

∑z r(t, z)P(Z = z|t) (A8)

is the population attributable risk due to Z for those of age t [64] and P(Z = z|t) is the
probability mass function for Z among individuals of age t in the general population. Here,
P(Z = z|t) and r(t, z) are both assumed to be constant for t < 50 and for t ≥ 50, meaning
that AR(t) is as well. Race-specific estimates of λ̃B(t) and AR(t) were obtained from SEER
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data, and λ̃D(t) was estimated based on SEER mortality rates for all causes except breast
cancer. In the implementation of the model, the age scale is divided into thirteen intervals,
with λ̃B(t) and λ̃D(t) assumed to be constant on each interval; see [4] for more details.

Appendix A.3. IBIS

IBIS calculates a weighted average of the cumulative penetrances for each genotype:

P(T̃ ≤ t, J = B|H, U) = ∑
g,θ

P(T̃ ≤ t, J = B|G, Θ)P(G1 = g, Θ = θ|H, U), (A9)

where Θ indicates the counselee’s carrier status with respect to the hypothetical gene. In
IBIS, carriers of both BRCA1 and BRCA2 mutations are treated as BRCA1 carriers.

Let V represent the following risk factors: age at menarche, age at menopause, height,
body mass index, age at first live birth, menopausal hormone therapy, atypical hyperplasia,
lobular carcinoma in situ, breast density, and polygenic risk score. The crude risk of
developing breast cancer between ages a and a + τ, conditional on not having breast cancer
at age a, is

P(T̃ ≤ a + τ, J = B|T̃ > a, H, U, V) =
∫ a+τ

a
λ̃B,H(t)rP(V)×

exp
{
−
∫ t

a
(λ̃B,H(u)rP(V) + λ̃D(u))du

}
dt,

(A10)

where λ̃B,H(t) = lim
dt→0

P(t ≤ T̃ < t + dt, J = B|T̃ ≥ t, H, U)/dt is the cause-specific hazard

of breast cancer conditional on family history, and rP(V) is a normalized version of the
relative hazard of breast cancer associated with risk factors V

rP(V) = φ(V)(1− AR) =
φ(V)∫

φ(v) f (v)dv
(A11)

where φ(V) is the relative hazard associated with V (relative to the no-risk population), AR
is the population attributable risk due to V, and f (v) is the population prevalence of v. In
the IBIS model, the risk factors are assumed to be independent and rP(V) is approximated by

rP(V) ≈∏
k

φ(Vk)∫
φ(vk) f (vk)dvk

(A12)

where k indexes the risk factors in V.

Appendix A.4. Penetrance Modification Model: BRCAPRO + BCRAT (M)

The penetrance modification approach combines BRCAPRO and BCRAT by using the
BCRAT relative hazard to modify the genotype-specific hazard functions in BRCAPRO.
Because BCRAT tends to underestimate risk for known carriers of BRCA1/2 mutations and
is not recommended for these individuals [37], we propose to apply the BCRAT relative
hazard only to the non-carrier hazard function in BRCAPRO.

Analogous to the BCRAT relative hazard model

λ̃B(t|Z) = λ̃B,0(t)r(t, Z), (A13)

where λ̃B(t|Z) = lim
dt→0

P(t ≤ T̃ < t + dt, J = B|T̃ ≥ t, Z)/dt is the cause-specific hazard

of breast cancer conditional on Z, we can define the following relative hazard model for
non-carriers as

λ̃B(t|Z, G1 = 0) = λ̃0
B(t)r

0(t, Z), (A14)
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where λ̃B(t|Z, G1 = 0) = lim
dt→0

P(t ≤ T̃ < t + dt, J = B|T̃ ≥ t, Z, G1 = 0)/dt is the non-

carrier cause-specific hazard of breast cancer conditional on Z, λ̃0
B(t) = lim

dt→0
P(t ≤ T̃ <

t+ dt, J = B|T̃ ≥ t, G1 = 0)/dt is the non-carrier cause-specific hazard of breast cancer, and
r0(t, Z) is the relative hazard of breast cancer compared to non-carriers (discussed in more
detail below). Models (A13) and (A14) are continuous-time models. To apply the hazard
modification in the discrete-time framework of BRCAPRO, we consider the discrete-time
analogue induced by Equation (A14) under the setting where only integer-valued t is
observed (see Chapter 2.4.2 of [65]):

λB(t|Z, G1 = 0) = 1−
(
1− λ0

B(t)
)r0(t,Z)

, (A15)

where λB(t|Z, G1 = 0) = P(T = t, J = B|T ≥ t, Z, G1 = 0) is the discrete non-carrier
cause-specific hazard of breast cancer conditional on Z and λ0

B(t) is the discrete non-carrier
cause-specific hazard of breast cancer defined in Section 2.2.1.

We then modify the calculation of the non-carrier risk in BRCAPRO by replacing λ0
B(t)

in Equation (A2) with λB(t|Z, G1 = 0) to obtain

P(T ≤ a + τ, J = B|T > a, G1 = 0, Z) =
a+τ

∑
t=a+1

(
1−

(
1− λ0

B(t)
)r0(t,Z)

)
×

t−1

∏
u=a+1

((
1− λ0

B(u)
)r0(u,Z) − λD(u)

)
.

(A16)

As in BRCAPRO, the final risk is a weighted average of the genotype-specific risks:

P(T ≤ a + τ, J = B|T > a, H, U, Z) = ∑
g

P(T ≤ a + τ, J = B|T > a, G1 = g, Z)P(G1 = g|H, U). (A17)

Similar to rP(T) from IBIS (Equation (A11)), r0(t, Z) is a normalized version of r(t, Z)
where the normalization factor is the average relative hazard among non-carriers:

r0(t, Z) = r(t, Z)(1− AR0(t)) =
r(t, Z)

∑z r(t, z)P(Z = z|t, G1 = 0)
(A18)

where AR0(t) is the population-attributable risk due to Z among non-carriers of age t.
Normalization is necessary because r(t, Z) is with respect to the no-risk population; in
order to modify λ0

B(t), we need to obtain the relative hazard with respect to the non-
carrier population.

Because the prevalence of BRCA1/2 mutations in the general population is very low
(estimated at 1/400 [66]), we approximate AR0(t) with AR(t), i.e., we assume P(Z =
z|t, G1 = 0) ≈ P(Z = z|t). Therefore, BRCAPRO + BCRAT (M) takes parameters from
existing models and does not need to be trained on new data (although the parameters
should be updated as new data becomes available). Race-specific estimates of AR(t) are
available from BCRAT; however, as they are based on data from the 1980s to early 2000s, we
re-estimated AR(t) based on the distribution of BCRAT covariates in more recent data from
the 2015 National Health Interview Survey (NHIS), which uses a cross-sectional sample
of U.S. adults designed to be representative of the U.S. general population. As in IBIS
(Equation (A12)) we assumed that the risk factors are independent, except that we used
the joint distribution of age at first live birth and number of affected first-degree relatives,
which was because Equation (A5) includes an interaction between these variables. The
race-specific estimates from the NHIS are provided in Appendix B.
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Because the BRCAPRO carrier probabilities P(G1 = g|H) already account for family
history, it may seem redundant to include the BCRAT family history variable (number
of female first-degree relatives with breast cancer) among the penetrance-modifying risk
factors (Equation (A17)). However, its inclusion can be useful because (1) there is a strong
interaction between the family history variable and age at first live birth in BCRAT and
(2) the BCRAT family history variable could potentially account for residual familial risk
due to shared environmental factors or genes other than BRCA1/BRCA2, which are not
currently considered by BRCAPRO.

Appendix A.5. Ensemble Model (BRCAPRO + BCRAT (E))

Let FB(τ) = P(T̃ ≤ a + τ, J = B|T > a, H, U, Z), and let FB,1(τ) be the τ-year BR-
CAPRO risk prediction and FB,2(τ) the τ-year BCRAT risk prediction. For BRCAPRO +
BCRAT (E), we combine the τ-year BRCAPRO and BCRAT predictions using the logistic
regression model

log
FB(τ)

1− FB(τ)
= β0 + β1FB,1(τ) + β2FB,2(τ) + β3FB,1(τ)FB,2(τ). (A19)

For BRCAPRO + BCRAT (E2), we consider a Fine–Gray proportional subdistribution
hazards model [67] for breast cancer, accounting for death as a competing risk:

1− FB(τ) = (1− FB,0(τ))
exp (β1FB,1(τ

∗)+β2FB,2(τ
∗)+β3FB,1(τ

∗)FB,2(τ
∗)) (A20)

where FB,0(t) is the baseline cumulative incidence function for breast cancer and τ∗ is a
predefined time point; the covariates FB,1(τ

∗) and FB,2(τ
∗) are calculated at baseline do not

vary with τ.

Appendix B. Penetrance Modification Parameters

Appendix B.1. Hazard Functions in BRCAPRO and BCRAT

Figure A1. BCRAT cause-specific hazard of breast cancer for White women in the general population
(λ̃B(t) = λ̃B,0(t)/(1− AR(t))) and BRCAPRO cause-specific hazard of breast cancer for White female
non-carriers (λ0

B(t)).
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Appendix B.2. Population Attributable Risk Estimates for BCRAT Covariates

Table A1. Estimates of 1/(1− AR(t)) from NHIS 2015.

White Black Hispanic Asian Native American

< 50 1.81 1.41 1.37 2.10 1.55
≥ 50 1.96 1.44 1.41 2.43 1.94

Appendix C. Ensemble Weights from NWH

For BRCAPRO + BCRAT (E), we fit the logistic regression model

log
FB(τ)

1− FB(τ)
= β0 + β1

√
FB,1(τ) + β2

√
FB,2(τ) + β3

√
FB,1(τ)

√
FB,2(τ),

to the NWH cohort, where τ = 5. The estimated weights are provided below.

Table A2. Coefficient estimates for BRCAPRO + BCRAT (E).

Estimate Standard Error

β̂0 2.55 1.31
β̂1 0.86 0.32
β̂2 1.21 0.28
β̂3 0.11 0.06

For BRCAPRO + BCRAT (E2), we fit the Fine–Gray model

1− FB(τ) = (1− FB,0(τ))
exp

(
β1
√

FB,1(τ∗)+β2
√

FB,2(τ∗)+β3
√

FB,1(τ∗)
√

FB,2(τ∗)
)

to the NWH cohort with τ∗ = 5. The estimated weights are provided below.

Table A3. Coefficient estimates for BRCAPRO + BCRAT (E2).

Estimate Standard Error

β̂1 19.76 5.67
β̂2 24.18 6.22
β̂3 −113.06 45.30

Appendix D. CGN Validation: Additional Tables

Table A4. CGN cohort characteristics by center.

Variable
Category N Age

(Median [IQR])
Affected 1st-Degree Relatives (%) Follow-Up

(Median [IQR])
Censored

(%)
5-Year

Cases (%)0 1 2+

BAYLOR 69 47 [38, 52] 34 (49.3) 28 (40.6) 7 (10.1) 7.5 [6.1, 8.6] 12 (17.4) 0 (0.0)
CU 1198 51 [41, 64] 528 (44.1) 547 (45.7) 123 (10.3) 7.6 [6.4, 8.5] 85 (7.1) 23 (1.9)

DUKE 286 46 [38, 53] 134 (46.9) 116 (40.6) 36 (12.6) 7.2 [6.2, 8.2] 40 (14.0) 9 (3.1)
EMORY 136 44 [38.8, 51] 56 (41.2) 51 (37.5) 29 (21.3) 7.2 [6.6, 8.3] 29 (21.3) 3 (2.2)

GU 309 43 [35, 52] 107 (34.6) 147 (47.6) 55 (17.8) 7.8 [6.3, 8.5] 81 (26.2) 2 (0.6)
JH 469 47 [39, 56] 279 (59.5) 148 (31.6) 42 (9.0) 8.0 [6.1, 9.0] 73 (15.6) 10 (2.1)

MDAND 295 45 [37, 53] 215 (72.9) 64 (21.7) 16 (5.4) 6.1 [4.2, 7.0] 87 (29.5) 4 (1.4)
UCI 608 48 [37, 59] 352 (57.9) 223 (36.7) 33 (5.4) 5.3 [4.0, 7.1] 209 (34.4) 4 (0.7)
UNC 229 46 [39, 53] 80 (34.9) 111 (48.5) 38 (16.6) 8.0 [7.1, 9.0] 28 (12.2) 6 (2.6)
UNM 324 [41, 63] 160 (49.4) 123 (38.0) 41 (12.7) 6.6 [6.0, 7.5] 43 (13.3) 11 (3.4)

UPENN 540 45 [37, 53] 297 (55.0) 185 (34.3) 58 (10.7) 8.1 [6.6, 9.1] 76 (14.1) 8 (1.5)
UTAH 880 47 [35, 61] 522 (59.3) 298 (33.9) 60 (6.8) 7.3 [5.4, 8.0] 61 (6.9) 14 (1.6)
UTSA 92 43 [35.8, 52] 29 (31.5) 48 (52.2) 15 (16.3) 5.1 [4.0, 6.5] 36 (39.1) 1 (1.1)
UTSW 247 41 [33.5, 47] 88 (35.6) 116 (47.0) 43 (17.4) 6.6 [5.6, 7.6] 30 (12.1) 4 (1.6)

UWASH 1632 46 [37, 56] 1290 (79.0) 291 (17.8) 51 (3.1) 7.6 [6.9, 8.3] 44 (2.7) 13 (0.8)
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Table A5. Performance over follow-up period in entire CGN cohort. B+B: BRCAPRO + BCRAT. ∆BS:
% relative improvement in Brier Score compared to BRCAPRO. ∆LS: % relative improvement in
logarithmic score compared to BRCAPRO. The “Comparisons Across Bootstrap Replicates” section
shows pairwise comparisons involving the combination models across 1000 bootstrap replicates of
the validation dataset; the row for A > B shows the proportion of bootstrap replicates where model
A outperformed model B with respect to each metric. Proportions > 0.5 are highlighted in blue (with
darker shades of blue for higher proportions) and proportions ≤ 0.5 are highlighted in red (with
darker shades of red for lower proportions).

O/E C ∆BS ∆LS

Performance Metrics
B+B (M) 1.04 (0.88, 1.19) 0.66 (0.61, 0.70) 0.15 (−0.61, 0.84) 0.49 (−0.04, 1.04)
B+B (E2) 1.16 (0.98, 1.33) 0.65 (0.60, 0.70) 0.42 (−0.05, 0.89)

BRCAPRO 1.33 (1.12, 1.52) 0.61 (0.56, 0.66) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)
BCRAT 1.14 (0.96, 1.30) 0.65 (0.61, 0.69) 0.28 (−0.55, 1.09) −0.74 (−1.69, 0.11)

IBIS 0.99 (0.83, 1.13) 0.64 (0.59, 0.69) −0.30 (−1.00, 0.33)

Comparisons Across Bootstrap Replicates
B+B(M)>B+B(E2) 0.892 0.788 0.105

B+B(M)>BRCAPRO 0.975 0.997 0.668 0.956
B+B(M)>BCRAT 0.866 0.721 0.279 1.000

B+B(M)>IBIS 0.445 0.775 0.928
B+B(E2)>BRCAPRO 0.993 0.999 0.958

B+B(E2)>BCRAT 0.044 0.504 0.724
B+B(E2)>IBIS 0.172 0.663 0.988

Table A6. Performance over follow-up period in CGN cohort stratified by family history (whether or
not the proband met the NCCN criteria for further genetic risk evaluation [55]); in applying the criteria,
we only used information on breast and ovarian cancer diagnoses in relatives. B+B: BRCAPRO +
BCRAT. ∆BS: % relative improvement in Brier Score compared to BRCAPRO. The “Comparisons
Across Bootstrap Replicates” section shows pairwise comparisons involving the combination models
across 1000 bootstrap replicates of the validation dataset; the row for A > B shows the proportion of
bootstrap replicates where model A outperformed model B with respect to each metric. Proportions
> 0.5 are highlighted in blue (with darker shades of blue for higher proportions) and proportions
≤ 0.5 are highlighted in red (with darker shades of red for lower proportions).

O/E C ∆BS ∆LS

Strong Family History (45 cases)
Performance Metrics

B+B (M) 0.76 (0.54, 1.01) 0.65 (0.52, 0.74) −0.67 (−3.29, 1.04) −0.08 (−2.77, 2.26)
B+B (E2) 1.03 (0.72, 1.35) 0.62 (0.48, 0.71) 0.15 (−1.17, 1.32)

BRCAPRO 1.27 (0.89, 1.68) 0.62 (0.49, 0.72) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)
BCRAT 0.95 (0.66, 1.26) 0.57 (0.43, 0.66) −0.50 (−3.19, 1.72) −3.45 −7.02, 0.03)

IBIS 0.70 (0.49, 0.92) 0.66 (0.51, 0.76) −1.49 (−4.19, 0.48)

Comparisons Across Bootstrap Replicates
B+B(M)>B+B(E2) 0.233 0.969 0.101

B+B(M)>BRCAPRO 0.550 0.855 0.223 0.461
B+B(M)>BCRAT 0.146 0.976 0.393 0.999

B+B(M)>IBIS 0.987 0.327 0.812
B+B(E2)>BRCAPRO 0.825 0.487 0.559

B+B(E2)>BCRAT 0.527 0.964 0.839
B+B(E2)>IBIS 0.855 0.094 0.931

B+B (M) 1.21 (0.99, 1.42) 0.66 (0.61, 0.71) 0.47 (−0.08, 1.11) 0.61 (0.16, 1.06)
B+B (E2) 1.23 (1.01, 1.44) 0.65 (0.59, 0.70) 0.52 (0.08, 1.00)

BRCAPRO 1.35 (1.11, 1.58) 0.60 (0.53, 0.66) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)

Less Family History (114 cases)
Performance Metrics

BCRAT 1.24 (1.02, 1.45) 0.67 (0.62, 0.72) 0.59 (0.03, 1.23) −0.17 (−1.01, 0.62)
IBIS 1.18 (0.97, 1.38) 0.65 (0.58, 0.70) 0.16 (−0.35, 0.65)

B+B(M)>B+B(E2) 0.971 0.768 0.358
B+B(M)>BRCAPRO 0.995 0.987 0.946 0.996

B+B(M)>BCRAT 0.976 0.125 0.251 0.985
Comparisons Across Bootstrap Replicates

B+B(M)>IBIS 0.043 0.625 0.832
B+B(E2)>BRCAPRO 0.995 1.000 0.995

B+B(E2)>BCRAT 0.920 0.087 0.257
B+B(E2)>IBIS 0.035 0.522 0.934
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Appendix E. Simulations Based on Australian Validation Study

Using simulations to mimic an Australian validation study [68], we compared the
performance of IBIS, BRCAPRO, BCRAT, and BRCAPRO + BCRAT in predicting 15-year
risk of breast cancer. We sampled baseline covariates from a real dataset of 40,000 women
who underwent mammography screening at Newton-Wellesley Hospital (NWH) from
2007–2009 (described in [16]). The sampled subset consisted of 7608 women with a similar
risk factor distribution as the original Australian cohort. We ran IBIS, BRCAPRO, BCRAT,
BRCAPRO + BCRAT to predict 15-year risk of breast cancer for these women. Because
information on number of biopsies and atypical hyperplasia was not available in the study
of Li et al., these variables were set to unknown when running BCRAT and BRCAPRO
+ BCRAT. We then simulated 15-year breast cancer outcomes based on the 15-year IBIS
predictions and compared the performance of the models. Cohort characteristics are shown
in Table A7, the performance results from the simulations are shown in Table A8, and the
performance results with the original Australian cohort are shown in Table A9.

Table A7. Characteristics of simulated and original datasets. Family history is defined as family
history of breast cancer in first- or second-degree relatives.

Variable Simulated Original

N 7608 7608
Mean age 54.1 58.5

Mean height (cm) 163 162
Mean weight (kg) 70.6 71.3

Mean menarche age 12.8 12.9
Mean age at first birth 26.1 25.4

Mean age at menopause 48.7 49.5
15-year cases (%) 412 (5.4) 351 (4.6)

% with family history 24.9 22.6

Table A8. Performance of IBIS, BRCAPRO, BCRAT, and BRCAPRO + BCRAT on simulated data.

Model Expected Expected/Observed (95% CI) AUC (95% CI)

IBIS 422.9 0.97 (0.88, 1.06) 0.63 (0.60, 0.66)
BRCAPRO 374.7 1.10 (1.00, 1.20) 0.55 (0.53, 0.58)

BCRAT 355.2 1.16 (1.05, 1.26) 0.57 (0.54, 0.60)
BRCAPRO + BCRAT (M) 382.8 1.08 (0.98, 1.17) 0.58 (0.55, 0.61)

Table A9. Performance of IBIS, BRCAPRO, BCRAT, and BRCAPRO + BCRAT in original study.

Model Expected Expected/Observed (95% CI) AUC (95% CI)

IBIS 341.5 0.97 (0.88, 1.08) 0.57 (0.54, 0.61)
BRCAPRO 389.3 1.11 (1.00, 1.23) 0.51 (0.48, 0.54)

BCRAT 327.9 0.93 (0.84, 1.04) 0.54 (0.51, 0.57)
BRCAPRO + BCRAT (M) 389.7 1.11 (1.00, 1.23) 0.51 (0.48, 0.54)
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