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Simple Summary: Wilms’ tumor is the most common renal malignant tumor in children, and
chemotherapy is an indispensable part of the treatment for most Wilms’ tumor patients. Chemotherapy-
induced myelosuppression is the most common and serious toxicity of chemotherapy, which can
hinder the process of chemotherapy and even endanger life. However, there is a lack of tools to predict
chemotherapy-induced myelosuppression. We herein develop a model based on machine learning
that can effectively predict the risk of chemotherapy-induced myelosuppression in children with
Wilms’ tumor, offering the possibility to identify children with high risk of chemotherapy-induced
myelosuppression early and take preventive strategies.

Abstract: Purpose: Develop and validate an accessible prediction model using machine learning (ML)
to predict the risk of chemotherapy-induced myelosuppression (CIM) in children with Wilms’ tumor
(WT) before chemotherapy is administered, enabling early preventive management. Methods: A total
of 1433 chemotherapy cycles in 437 children with WT who received chemotherapy in our hospital from
January 2009 to March 2022 were retrospectively analyzed. Demographic data, clinicopathological
characteristics, hematology and blood biochemistry baseline results, and medication information
were collected. Six ML algorithms were used to construct prediction models, and the predictive
efficacy of these models was evaluated to select the best model to predict the risk of grade ≥ 2 CIM
in children with WT. A series of methods, such as the area under the receiver operating characteristic
curve (AUROC), the calibration curve, and the decision curve analysis (DCA) were used to test the
model’s accuracy, discrimination, and clinical practicability. Results: Grade ≥ 2 CIM occurred in
58.5% (839/1433) of chemotherapy cycles. Based on the results of the training and validation cohorts,
we finally identified that the extreme gradient boosting (XGB) model has the best predictive efficiency
and stability, with an AUROC of up to 0.981 in the training set and up to 0.896 in the test set. In
addition, the calibration curve and the DCA showed that the XGB model had the best discrimination
and clinical practicability. The variables were ranked according to the feature importance, and the
five variables contributing the most to the model were hemoglobin (Hgb), white blood cell count
(WBC), alkaline phosphatase, coadministration of highly toxic chemotherapy drugs, and albumin.
Conclusions: The incidence of grade ≥ 2 CIM was not low in children with WT, which needs
attention. The XGB model was developed to predict the risk of grade ≥ 2 CIM in children with WT
for the first time. The model has good predictive performance and stability and has the potential
to be translated into clinical applications. Based on this modeling and application approach, the
extension of CIM prediction models to other pediatric malignancies could be expected.
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1. Introduction

Wilms’ tumor (WT) is the most common renal malignancy in children and has the
second highest incidence of pediatric primary abdominal malignancies. Although multidis-
ciplinary treatments have advanced, recurrence occurs in approximately 15% of children
with WT, and the survival rate after recurrence is only about 50% [1–3]. As the surgical
resection of pediatric tumors is often difficult, chemotherapy is an indispensable part of the
treatment for most WT patients.

However, chemotherapy drugs have many toxicities and side effects. Chemotherapy-
induced myelosuppression (CIM) is the most common and severe toxicity of chemotherapy
for tumors, typically manifesting as anemia, neutropenia, thrombocytopenia, and/or lym-
phopenia [4–7], leading to an increased risk of life-threatening infection, fatigue, and
potential bleeding [8,9]. CIM often forces children to interrupt or postpone their chemother-
apy course, severely compromising the effectiveness of treatment and even leading to death
due to CIM-related complications. Studies have reported that the mortality rate related to
grade 4 CIM can reach 4–12% [10]. Therefore, early identification of children at high risk of
CIM and timely implementation of corresponding preventive and therapeutic measures
can not only improve the effectiveness of tumor treatment, but also significantly reduce the
disease burden caused by the related complications [11].

Studies have shown that risk factors for CIM include age, nutritional status, poor
liver and kidney function, low baseline white blood cell count (WBC), chemotherapy
cycles, etc. [12–15]. Various mathematical models for predicting CIM or febrile neutropenia
(FN) have been proposed [16–18] and successfully applied to predict dynamic changes in
neutrophil count [19,20]. However, these studies focused on predicting the risk of FN in
adult tumors such as breast cancer, small cell lung cancer, and colorectal cancer [14,21,22].

The predictors of CIM in pediatric malignant solid tumors, especially in WT, have not
been reported. In addition, most of the pharmacokinetic mathematical models developed
in these studies focus on predicting CIM/FN caused by a single drug, making it difficult
to extend to pediatric tumors requiring multidrug combination therapy. Moreover, the
application of these models requires repeated and frequent monitoring of changes in hema-
tological parameters and drug concentrations, such invasive tests are often unacceptable
to children and parents [20,22], and the relatively backward economic and medical levels
in developing countries seem to make the implementation of such monitoring strategies
more difficult.

Therefore, CIM or FN prediction models reported in the existing studies are difficult to
widely apply to predict CIM in children with WT. It is necessary to develop a CIM prediction
model for children with WT that is easy to use and has good prediction efficiency.

At present, artificial intelligence (AI) has been widely applied in the medical field.
Machine learning (ML), as a branch of AI, can overcome the shortcomings of traditional
logistic regression and mathematical models, and has a strong ability for feature recogni-
tion, classification, and prediction [23]. The models established based on machine learning
have been successfully used in predicting the prognosis of various tumors or diseases,
which presented good predictive ability [24–26]. Shibahara et al. collected pretreatment
clinical data of glioma patients treated with nimustine hydrochloride (ACNU), and fur-
ther successfully established a prediction model of CIM using machine learning, as well
as describing the relationship between myelosuppression and hematopoietic stem cells
(HSCs) [27]. In our study, various premedication clinical data in each chemotherapy cycle
of WT children with a large sample size from the clinical big data platform of our hospital
were collected, including blood cells baseline level, liver and kidney function indicators,
tumor stage, body weight, body surface area and other variables, and six ML algorithms
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were used to construct CIM prediction models. Meanwhile, further evaluation of each
model was carried out to select the model with the best prediction performance, which can
help doctors identify children with WT at high risk of CIM early and develop individual-
ized strategies for prevention, treatment, and follow-up to reduce the disease burden and
improve prognosis.

2. Methods
2.1. Patients

The data of patients with WT who received chemotherapy in our hospital from January
2009 to March 2022 were collected from our hospital’s clinical big data platform. Inclusion
criteria: (1) younger than 18 years old; (2) patients diagnosed with WT; (3) patients having
received at least one cycle of chemotherapy; (4) patients having received at least one routine
blood test and biochemical blood test before and after chemotherapy. Exclusion criteria:
(1) patients with other hematologic diseases or a history of HIV infection or stem cell
transplantation; (2) patients with incomplete medical records (missing more than 50% of
variables used for analysis); (3) patients with treatment interruption.

2.2. Collection and Definition of Variables
2.2.1. General Variables

Variables such as demographic data, clinicopathological characteristics, the laboratory
examination, and medication information after each admission were collected as follows:
age, gender, height, weight, tumor stage, COG grade, the routine hematologic index and
biochemical index, routine urinalysis, the type of chemotherapy drugs used, chemotherapy
cycles, etc.

2.2.2. Outcome Indicators

The occurrence of grade ≥ 2 CIM was taken as the outcome indicator. According to
the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE)
version 5.0, if one of the following 4 criteria is met after chemotherapy, it can be defined as
grade ≥ 2 CIM: (1) WBC < 3.0 × 109/L; (2) absolute neutrophil count (ANC) < 1.5 × 109/L;
(3) hemoglobin level (Hgb) < 100 g/L; (4) platelet count (PLT) < 75 × 109/L.

2.2.3. Calculation of Composite Variables

(1) Systemic immune-inflammation index (SII) = PLT × ANC/absolute lymphocyte
count (ALC) [28]

(2) Neutrophil to lymphocyte ratio (NLR) = ANC/ALC
(3) Platelet to lymphocyte ratio (PLR) = PLT/ALC
(4) Body surface area (BSA) = 0.035 × body weight + 0.1 (body weight ≤ 30 kg)

BSA = 1.05 + (body weight − 30) × 0.02 (body weight > 30 kg)

2.2.4. Derived Variables

Coadministration of highly toxic chemotherapy drugs refers to any high hematologic
toxicity chemotherapy drugs used during that chemotherapy cycle.

Chemotherapy drugs are divided into two categories according to the level of hema-
tological toxicity [29,30]: (1) high: cyclophosphamide (CTX), ifosfamide, doxorubicin,
epirubicin, actinomycin D, carboplatin, etoposide, topotecan, vindesine; (2) moderate/low:
cisplatin, vincristine, bleomycin, fluorouracil.

2.3. Data Preprocessing
2.3.1. Quality Control of Samples

Each chemotherapy cycle of each WT patient was taken as a separate sample. The
missing rate of each sample characteristic variable was counted, and 50% was selected as
the threshold value according to the distribution of each sample characteristic variable
and modeling requirements. If 50% or more of all characteristic variables were missing
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simultaneously, the sample characteristic variable was considered seriously missing and
met the exclusion criteria.

2.3.2. Imputation Methods of Missing Data

For clinical characteristic variables, after the sample size was determined, the missing
rate of each characteristic variable was checked, and 20% was selected as the threshold
according to the modeling requirements. If the missing rate of the characteristic variable
exceeds 20%, the variable will be deleted and not included in the model construction.
Other missing categorical variables were imputed with the mode while missing continuous
variables were imputed with the median. In addition, chemotherapy drugs with a relative
frequency of medication less than 5% were also deleted and not included in the model
construction (relative frequency of medication = frequency of drug use/total sample size).

2.4. Model Building
2.4.1. Datasets and Algorithms

Extreme gradient boosting (XGB), logistic regression (LR), random forest (RF), least
absolute shrinkage and selection operator (LASSO), support vector machine (SVM), and
CatBoost were used to establish the ML model. R version 4.2.0 and Python version 3.7 were
used for model construction and statistical analysis. Stratification was performed according
to the outcome, and the data set was randomly divided into the training set and the test set
at a 7:3 ratio.

2.4.2. Original Variables and Variable Selection

Information value (IV) was used as a correlation indicator, which can be used to
measure the difference in the distribution of a variable between the two groups of samples
to characterize the predictive ability of the variable on the outcome [31]. The threshold
value of IV was set as 0.2, and variables with IV less than 0.2 were deleted. Since the
chemotherapy cycle and the type of chemotherapy drugs have been confirmed to be related
to the occurrence of CIM, these two variables were included in the model even though their
IV were less than 0.2.

For the selected variables related to the outcome, the absolute value of the correlation
coefficient was calculated to examine the collinearity, and the threshold was set as 0.8.
The variable with the smaller IV was also deleted from the collinear variables exceeding
the threshold.

2.4.3. Modelling Procedure

Fivefold cross-validation (CV) was used to divide the CV training set and the CV
validation set inside the training set, then the optimal hyperparameter of the model was
obtained using Bayesian optimization. According to the optimal hyperparameter, the
model was trained again on the entire training set to obtain the final model, and further
evaluated the models’ prediction performance on the training set and test set.

The area under the curve (AUC), sensitivity (TPR), specificity (TNR), precision (ACC),
and precision (PPV) of the receiver operating characteristic curve (ROC) were used to
characterize the fitting and accuracy of the model. Population stability index (PSI) was
used to measure the stability of the model in the training set and validation set [32].
(PSI < 0.1, the model is stable; PSI: 0.1~0.25, the model is slightly unstable; PSI > 0.25, the
model is unstable). Hosmer–Lemeshow test was used to assess the calibration of models.
The decision curve analysis (DCA) was used to evaluate the clinical utility of these models.
Moreover, Coefficients of weight importance in the final model were provided to rank the
feature importance.

2.4.4. Clinical Application of the Model

In order to realize the translation of research results into clinical practice, the model
was presented and applied in our hospital information system (HIS) in the form of clinical
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decision support system (CDSS). After the first hematological examination for each patient,
the doctor preliminarily confirms the medication regimen, at which point the system
backstage automatically extracts the relevant data from the HIS into the model, then
calculate the risk value and present it in the CDSS. “Risk Scoring” is one of the essential
modules. A patient’s risk score was calculated based on the final model score × 100, where
low–medium risk was classified according to negative predictive value (NPV) = 0.8 and
medium–high risk was classified according to positive predictive value (PPV) = 0.9. That
is, the cutoff value for low–medium risk should ensure a negative prediction rate of >80%
for low-risk patients, and the cutoff value for medium–high risk should ensure a positive
prediction rate of >90% for high-risk patients.

To further improve the intuitiveness, accessibility, and practicability of the model,
a brief description and the scoring basis of the model were presented in the CDSS, and
the “Historical Trend” module was added to show the occurrence of CIM in previous
admissions. In addition, the system can provide recommendations for possible prevention
or intervention strategies based on the model scores.

2.5. Statistical Analysis Methods

Continuous variables were described in the form of the median (lower and upper
quantile), and categorical variables were described in the form of frequency and percentage.
Wilcoxon rank sum test and chi-square test were used to compare the differences between
groups for continuous variables and categorical variables, respectively. p < 0.05 was
considered statistically different.

The entire modeling procedure is shown in Figure 1.
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3. Result
3.1. Description of Baseline Characteristics

On our hospital’s clinical big data platform, 437 cases of WT patients receiving
chemotherapy were retrieved, with a total of 1478 chemotherapy cycles. According to
the inclusion and exclusion criteria, 45 samples were excluded, resulting in a final sample
size of 1433. According to the National Cancer Institute Common Terminology Crite-
ria for Ad-verse Events (CTCAE) version 5.0, grade ≥ 2 CIM can be defined if one of
the following four criteria is met after chemotherapy: (1) WBC < 3.0 × 109/L; (2) ab-
solute neutrophil count (ANC) < 1.5 × 109/L; (3) hemoglobin level (Hgb) < 100 g/L;
(4) platelet count (PLT) < 75 × 109/L. The baseline characteristics of all patients and the
comparison of baseline characteristics of patients in different datasets are shown in Table 1,
and the comparison of baseline characteristics of patients with and without grade ≥ 2 CIM
is shown in Table 2.

Table 1. Comparison of baseline characteristics of patients in different data sets.

Variable ALL (N = 1433) Training Set
(N = 1003)

Test Set
(N = 430) Statistic (Z/χ2) p Value

Age (days), M (Q1–Q3) 1388 (807–2221) 1391 (810–2245) 1376 (803–2163) −0.814 0.416
Sex 2.707 0.100

Female 674 (47.0%) 486 (48.5%) 188 (43.7%)
Male 759 (53.0%) 517 (51.5%) 242 (56.3%)

Weight (kg), M (Q1–Q3) 14.5 (11.5–19.0) 14.5 (11.5–19.0) 14.0 (11.5–18.0) −0.844 0.398
BSA (m2), M (Q1–Q3) 0.61 (0.50–0.77) 0.61 (0.50–0.77) 0.59 (0.50–0.73) −0.823 0.410
Tumor stage 6.561 0.161

I 116 (8.1%) 84 (8.4%) 32 (7.4%)
II 224 (15.6%) 149 (14.9%) 75 (17.4%)
III 495 (34.5%) 360 (35.9%) 135 (31.4%)
IV 516 (36.0%) 360 (35.9%) 156 (36.3%)
V 82 (5.7%) 50 (5.0%) 32 (7.4%)

Risk classification (COG) 0.045 0.831
FH 1022 (71.3%) 717 (71.5%) 305 (70.9%)
uFH 411 (28.7%) 286 (28.5%) 125 (29.1%)

Chemotherapy cycles, M (Q1–Q3) 4.0 (2.0–9.0) 4.0 (2.0–8.0) 5.0 (2.0–9.0) 1.408 0.159
Hematologic index, M (Q1–Q3)

Neutrophil percentage 0.59 (0.48–0.70) 0.59 (0.48–0.70) 0.58 (0.47–0.69) −1.087 0.277
ANC (×109/L) 3.50 (2.36–4.91) 3.53 (2.35–4.99) 3.49 (2.39–4.83) −0.031 0.975
Monocyte percentage 0.04 (0.03–0.07) 0.04 (0.03–0.06) 0.04 (0.03–0.07) −0.659 0.510
AMC (×109/L) 0.28 (0.19–0.39) 0.28 (0.19–0.38) 0.30 (0.19–0.41) −1.212 0.225
P–LCR (%) 24.2 (19.0–29.8) 24.2 (19.0–29.9) 24.4 (18.9–29.7) −0.381 0.703
MCV (fL) 82.9 (78.7–87.6) 83.0 (78.6–87.6) 82.9 (78.8–87.5) −0.283 0.777
MCHC (g/L) 325.0 (315.0–333.0) 325.0 (316.0–333.0) 325.0(315.0–333.0) −0.100 0.920
MCH (pg) 27.1 (25.4–28.8) 27.0 (25.4–28.9) 27.1 (25.3–28.7) −0.423 0.673
Lymphocyte percentage (%) 0.30 (0.20–0.43) 0.30 (0.20–0.43) 0.32 (0.21–0.43) −0.842 0.400
ALC (×109/L) 1.75 (0.95–3.11) 1.71 (0.97–2.99) 1.94 (0.93–3.36) −1.220 0.223
WBC (×109/L) 6.10 (4.32–8.73) 6.01 (4.27–8.73) 6.28 (4.45–8.74) −0.809 0.419
RBC (×109/L) 3.96 (3.52–4.36) 3.94 (3.51–4.33) 4.02 (3.53–4.41) −1.427 0.154
RDW (%) 15.5 (14.0–17.3) 15.5 (14.0–17.3) 15.5 (14.1–17.5) −0.551 0.582
ARD (fL) 47.0 (41.0–52.0) 47.0 (42.0–52.0) 47.0 (41.0–52.0) −0.248 0.804
Hematocrit (%) 32.9 (29.9–35.5) 32.8 (29.9–35.3) 33.2 (29.8–35.9) −1.257 0.209
PDW (fL) 11.0 (9.8–12.4) 11.0 (9.8–12.4) 11.1 (9.8–12.3) −0.329 0.742
Thrombocytocrit (%) 0.31 (0.24–0.38) 0.31 (0.24–0.38) 0.32 (0.25–0.38) −0.114 0.909
MPV (fL) 10.0 (9.3–10.7) 9.9 (9.3–10.7) 10.0 (9.3–10.7) −0.274 0.784
PLT (×109/L) 297.0 (227.0–387.0) 295.0 (223.0–390.0) 304.0 (238.0–378.0) −0.903 0.366
Hgb (g/L) 107.0 (95.0–116.0) 107.0 (95.0–116.0) 107.0 (96.0–118.0) −1.100 0.271
SII 575.2 (334.7–951.1) 579.8 (336.0–967.5) 569.4 (333.4–917.1) −0.398 0.691
NLR 1.97 (1.12–3.37) 2.00 (1.13–3.44) 1.85 (1.09–3.24) −0.996 0.319
PLR 162.8 (101.4–274.4) 169.7 (102.5–276.5) 149.6 (96.8–268.8) −1.180 0.238
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Table 1. Cont.

Variable ALL (N = 1433) Training Set
(N = 1003)

Test Set
(N = 430) Statistic (Z/χ2) p Value

Urinalysis index
pH 6.52 (6.00–7.00) 6.52 (6.00–7.00) 6.52 (6.00–7.00) −0.433 0.665

Biochemical index
LDH (U/L) 286.8 (227.0–418.4) 286.5 (228.0–418.4) 287.0 (225.0–418.4) −0.246 0.806
UA (µmol/L) 284.8 (242.0–325.0) 284.8 (237.0–325.0) 284.8 (249.5–325.0) −1.598 0.110
TBIL (µmol/L) 6.80 (4.00–8.10) 6.80 (4.00–8.20) 6.50 (4.00–7.80) −0.970 0.332
TP (g/L) 63.8 (60.7–67.4) 63.8 (60.9–67.3) 63.8 (60.2–67.8) −0.313 0.755
Globulin (g/L) 22.2 (19.3–24.4) 22.2 (19.1–24.4) 22.2 (19.6–24.2) −0.202 0.840
Albumin (g/L) 41.7 (39.6–44.8) 41.7 (39.7–44.9) 41.7 (39.3–44.7) −0.592 0.554
ALP (U/L) 175.8(133.1–197.3) 175.8 (134.0–199.0) 175.8(132.0–193.5) −0.637 0.524
Scr (µmol/L) 34.3 (28.0–38.0) 34.3 (28.0–38.0) 34.3 (28.0–38.5) −1.139 0.255
ALT (U/L) 21.7 (14.4–26.0) 21.1 (14.3–25.6) 22.5 (14.6–27.1) −1.303 0.192
AST (U/L) 35.9 (28.1–40.0) 35.4 (28.0–39.4) 37.2 (29.0–41.3) −2.270 0.023

Grade ≥ 2 CIM 0.001 0.977
With 594 (41.5%) 416 (41.5%) 178 (41.4%)
Without 839 (58.5%) 587 (58.5%) 252 (58.6%)

AMC: absolute monocyte count; P–LCR: platelet–large cell ratio; MCV: mean corpuscular volume; MCHC: mean
corpuscular hemoglobin concentration; MCH: mean corpuscular hemoglobin; ALC: absolute lymphocyte count;
WBC: white blood cell count; RBC: red blood cell count; RDW: red blood cell distribution width; ARD: absolute
value of RBC distribution; PDW: platelet distribution width; MPV: mean platelet volume; PLT: platelet count; Hgb:
hemoglobin; LDH: lactate dehydrogenase; UA: uric acid; TBIL: total bilirubin; TP: total protein; ALP: alkaline
phosphatase; Scr: serum creatinine; ALT: alanine transaminase; AST: aspartate transaminase.

Table 2. Comparison of baseline characteristics of patients with and without CIM.

Variable
Grade ≥ 2 CIM

Statistic p Value
Without (N = 594) With (N = 839)

Age (days), M (Q1–Q3) 1554 (905–2478) 1294 (726–2022) −4.432 <0.001
Sex 11.368 0.001
Female 248 (41.7%) 426 (50.8%)
Male 346 (58.3%) 413 (49.2%)
Weight (kg), M (Q1–Q3) 16.0 (12.0–20.0) 14.0 (11.0–18.0) −5.388 <0.001
BSA (m2), M (Q1–Q3) 0.66 (0.52–0.80) 0.59 (0.49–0.73) −5.385 <0.001
Tumor stage 1.915 0.751

I 51 (8.6%) 65 (7.8%)
II 92 (15.5%) 132 (15.7%)
III 211 (35.5%) 284 (33.9%)
IV 211 (35.5%) 305 (36.4%)
V 29 (4.9%) 53 (6.3%)

Risk classification (COG) 3.011 0.083
FH 409 (68.9%) 613 (73.1%)
uFH 185 (31.1%) 226 (26.9%)

Chemotherapy cycles 5 (2.0–10.0) 4 (1.0–8.0) 5.574 <0.001
Hematologic index, M (Q1–Q3)

Neutrophil percentage (%) 0.59 (0.48–0.71) 0.59 (0.47–0.69) −1.398 0.162
ANC (×109/L) 3.68 (2.65–4.74) 3.38 (2.06–5.10) −2.631 0.009
Monocyte percentage (%) 0.04 (0.03–0.06) 0.05 (0.03–0.07) −4.919 <0.001
AMC (×109/L) 0.27 (0.19–0.37) 0.29 (0.20–0.40) −2.650 0.008
P–LCR (%) 25.2 (20.1–31.3) 23.7 (18.3–28.4) −3.726 <0.001
MCV (fL) 83.1 (79.4–87.3) 82.9 (78.1–87.7) −0.853 0.393
MCHC (g/L) 328.0 (319.0–334.0) 322.0 (312.0–332.0) −7.379 <0.001
MCH (pg) 27.3 (26.0–28.8) 26.9 (24.8–28.8) −3.545 <0.001
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Table 2. Cont.

Variable
Grade ≥ 2 CIM

Statistic p Value
Without (N = 594) With (N = 839)

Lymphocyte percentage (%) 0.31 (0.19–0.43) 0.30 (0.21–0.43) −0.562 0.574
ALC(×109/L) 1.85 (1.01–3.01) 1.70 (0.92–3.21) −1.272 0.203
WBC (×109/L) 6.35 (4.80–8.23) 5.98 (3.78–9.05) −2.253 0.024
RBC (×109/L) 4.21 (3.88–4.54) 3.73 (3.29–4.18) −13.946 <0.001
RDW (%) 14.8 (13.7–16.1) 16.1 (14.4–18.3) −9.918 <0.001
ARD (fL) 45.0 (41.0–49.0) 47.7 (42.0–54.0) −6.889 <0.001
Hematocrit (%) 34.9 (33.0–36.8) 30.8 (27.9–33.6) −18.756 <0.001
PDW (fL) 11.2 (10.0–12.6) 10.8 (9.7–12.1) −4.376 <0.001
Thrombocytocrit (%) 0.29 (0.24–0.37) 0.34 (0.25–0.40) −5.935 <0.001
MPV (fL) 10.0 (9.4–10.9) 9.9 (9.2–10.5) −4.009 <0.001
PLT (×109/L) 278.0 (218.0–345.0) 316.0 (237.0–413.0) −5.989 <0.001
Hgb (g/L) 114.0 (107.0–121.0) 98.0 (89.0–110.0) −19.054 <0.001
SII 516.2 (322.5–909.0) 616.0 (346.0–977.5) −2.349 0.019
NLR 1.90 (1.13–3.65) 2.00 (1.11–3.22) −0.650 0.516
PLR 140.0 (94.9–243.2) 180.1 (109.0–301.0) −4.873 <0.001

Urinalysis index
pH 6.52 (6.00–7.00) 6.52 (6.00–7.00) −0.535 0.593

Biochemical index
LDH (U/L) 275.0 (227.8–418.4) 297.1 (226.8–418.4) −2.666 0.008
UA (µmol/L) 284.8 (242.0–305.1) 284.8 (241.0–335.0) −3.076 0.002
TBIL (µmol/L) 6.86 (4.20–8.30) 6.10 (3.80–8.00) −2.992 0.003
TP (g/L) 63.8 (62.0–68.1) 63.8 (59.9–67.0) −4.537 <0.001
Globulin (g/L) 22.2 (19.2–23.9) 22.2 (19.5–24.8) −1.555 0.120
Albumin (g/L) 42.5 (41.6–45.5) 41.7 (38.1–44.1) −7.927 <0.001
ALP (U/L) 175.8 (160.0–204.8) 159.5 (118.9–188.0) −8.870 <0.001
Scr (µmol/L) 34.3 (28.0–37.0) 34.3 (27.5–39.0) −0.525 0.600
ALT(U/L) 21.0 (14.4–24.0) 22.0 (14.2–27.6) −1.216 0.224
AST (U/L) 35.9 (28.8–38.1) 35.9 (28.0–42.0) −1.416 0.157

AMC: absolute monocyte count; P–LCR: platelet–large cell ratio; MCV: mean corpuscular volume; MCHC: mean
corpuscular hemoglobin concentration; MCH: mean corpuscular hemoglobin; ALC: absolute lymphocyte count;
WBC: white blood cell count; RBC: red blood cell count; RDW: red blood cell distribution width; ARD: absolute
value of RBC distribution; PDW: platelet distribution width; MPV: mean platelet volume; PLT: platelet count; Hgb:
hemoglobin; LDH: lactate dehydrogenase; UA: uric acid; TBIL: total bilirubin; TP: total protein; ALP: alkaline
phosphatase; Scr: serum creatinine; ALT: alanine transaminase; AST: aspartate transaminase.

3.2. Selection of Variables during Modeling

Matching the patient’s first laboratory examination index after admission, a total of
46 clinically relevant characteristic variables were extracted, of which six characteristic
variables (absolute value of basophils, percentage of basophils, cholinesterase, prealbumin,
bile acids, and urine pH) had a missing rate of more than 20% and were excluded. Finally,
40 clinical characteristic variables were incorporated into the model for further screening,
as shown in Table 3.

3.3. Selection of Chemotherapy Drugs

The relative frequency of the use of each chemotherapy drug is shown in Table 4,
among which bleomycin, fluorouracil, topotecan, vindesine, and ifosfamide were excluded
because the relative frequency of use was less than 5% and significantly different from that
of other drugs. Thus, a total of nine variables including cisplatin, doxorubicin, epirubicin,
carboplatin, etoposide, actinomycin D, cyclophosphamide, and vincristine, as well as
the coadministration of highly toxic chemotherapy drugs, were incorporated into the
final model.
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Table 3. 40 clinical characteristic variables to be screened.

Variable Missing Sample Miss Rate (%)

Age 0 0.00
Sex 0 0.00
Weight 49 3.42
BSA 49 3.42
Tumor stage 1 0.07
Risk classification (COG) 48 3.35
Chemotherapy cycle 18 1.26
Neutrophil percentage 5 0.35
ANC 18 1.26
Monocyte percentage 8 0.56
AMC 45 3.14
P–LCR 94 6.56
MCV 3 0.21
MCHC 3 0.21
MCH 2 0.14
Lymphocyte percentage 6 0.42
ALC 16 1.12
WBC 2 0.14
RBC 1 0.07
RDW 4 0.28
ARD 102 7.12
Hematocrit 3 0.21
PDW 86 6.00
Thrombocytocrit 114 7.96
MPV 81 5.65
PLT 2 0.14
Hgb 1 0.07
SII 16 1.12
NLR 16 1.12
PLR 16 1.12
LDH 219 15.28
UA 204 14.24
TBIL 220 15.35
TP 219 15.28
Globulin 220 15.35
Albumin 219 15.28
ALP 220 15.35
Scr 205 14.31
ALT 221 15.42
AST 220 15.35

AMC: absolute monocyte count; P–LCR: platelet–large cell ratio; MCV: mean corpuscular volume; MCHC: mean
corpuscular hemoglobin concentration; MCH: mean corpuscular hemoglobin; ALC: absolute lymphocyte count;
WBC: white blood cell count; RBC: red blood cell count; RDW: red blood cell distribution width; ARD: absolute
value of RBC distribution; PDW: platelet distribution width; MPV: mean platelet volume; PLT: platelet count; Hgb:
hemoglobin; LDH: lactate dehydrogenase; UA: uric acid; TBIL: total bilirubin; TP: total protein; ALP: alkaline
phosphatase; Scr: serum creatinine; ALT: alanine transaminase; AST: aspartate transaminase.

3.4. Variables Finally Selected for the Model

According to the selection criteria of predictive variables, 19 variables finally incorpo-
rated into the model are shown in Table 5. In order to improve the interpretability of the
final model (XGB), we ranked the feature importance of the incorporated variables. The
five variables contributing the most to the model were hemoglobin (Hgb), white blood cell
count (WBC), alkaline phosphatase, coadministration of highly toxic chemotherapy drugs,
and albumin, as shown in Figure 2.
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Table 4. Frequency of use of each chemotherapy drug.

Drug Relative Frequency Frequency

Bleomycin 0.001 1
Fluorouracil 0.006 9
Topotecan 0.011 16
Vindesine 0.012 17
Ifosfamide 0.017 23
Cisplatin 0.124 172
Doxorubicin 0.126 176
Epirubicin 0.175 243
Carboplatin 0.254 354
Etoposide 0.342 476
Actinomycin D 0.348 485
Cyclophosphamide 0.504 701
Vincristine 0.703 978

Table 5. Variables finally included in the model.

Variable (n = 19) IV

Hgb 1.770
RBC 0.708
ALP 0.422
RDW 0.392
WBC 0.372
ANC 0.369
Albumin 0.328
MCHC 0.243
PLT 0.213
Chemotherapy cycles 0.082
Coadministration of highly toxic chemotherapy drug 0.061
Cisplatin 0.028
Vincristine 0.022
Epirubicin 0.013
Carboplatin 0.007
Actinomycin D 0.005
Etoposide 0.001
Cyclophosphamide 0.000
Doxorubicin 0.000

IV: information value; Hgb: hemoglobin; RBC: red blood cell count; ALP: alkaline phosphatase; RDW: red blood
cell distribution width; WBC: white blood cell count; MCHC: mean corpuscular hemoglobin concentration; PLT:
platelet count.

3.5. Evaluation of the Model

The fitting effect and authenticity evaluation results of each model are shown in
Figure 3, Tables 6 and 7, respectively. The results show that the XGB model has the best
fitting effect, the largest AUC (training set: 0.981, test set: 0.896), good sensitivity (76.2%),
and specificity (93.2%), and better stability. In the XGB model, the feature importance of
each variable is shown in Figure 2. The five variables that contribute the most to the model
are Hgb, WBC, alkaline phosphatase, coadministration of highly toxic chemotherapy drugs,
and albumin. In addition, the XGB model showed the best calibration in the comparison
of calibration curves of other models (Figure 4). DCA showed that the XGB model can
contribute to clinical decision-making (Figure 5).
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count; MCHC: mean corpuscular hemoglobin concentration; PLT: platelet count; RDW: red blood cell
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Table 6. Evaluation of fitting effect of each model.

Model
AUC

PSI
Training Set Test Set

XGB 0.981 0.896 0.033
CatBoost 0.996 0.888 0.086
RF 0.842 0.856 0.015
SVM 0.930 0.849 0.066
LR 0.843 0.842 0.007
LASSO 0.843 0.842 0.007

XGB: extreme gradient boosting; LR: logistic regression; RF: random forest; LASSO: least absolute shrinkage and
selection operator; SVM: support vector machine; PSI: population stability index.

Table 7. Evaluation of authenticity of each model.

Model Best Cutoff TPR TNR ACC PPV

XGB 0.529 76.2% 93.3% 83.3% 94.1%
RF 0.569 68.3% 88.2% 76.5% 89.1%
CatBoost 0.585 75.0% 90.4% 81.4% 91.7%
SVM 0.581 75.0% 84.3% 78.8% 87.1%
LR 0.687 66.3% 88.8% 75.6% 89.3%
LASSO 0.685 66.3% 88.8% 75.6% 89.3%

TPR: sensitivity; TNR: specificity; ACC: precision; PPV: precision; XGB: extreme gradient boosting; LR: lo-
gistic regression; RF: random forest; LASSO: least absolute shrinkage and selection operator; SVM: support
vector machine.
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3.6. Clinical Application of the Model

Through a series of evaluations of the model, the XGB model with the best predictive
efficacy was selected, presented, and applied in our hospital’s HIS in the form of CDSS.
It includes modules such as the risk scoring and scoring basis of grade ≥ 2 CIM, model
description, historical trend of the previous occurrence of CIM, and management recom-
mendations (Figure 6). The predictive model is currently running smoothly in the HIS.
Moreover, to better demonstrate how our model works in reality and to further elaborate
on the clinical applicability of the model, we ran the model in our hospital HIS to assess
the risk of CIM in a particular child (Supplementary Materials).



Cancers 2023, 15, 1078 13 of 19

Cancers 2023, 15, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 4. Calibration curves of the six ML models. 

 
Figure 5. Decision curve analysis of the six ML models. Figure 5. Decision curve analysis of the six ML models.

Cancers 2023, 15, x FOR PEER REVIEW 15 of 22 
 

 

3.6. Clinical Application of the Model 
Through a series of evaluations of the model, the XGB model with the best predictive 

efficacy was selected, presented, and applied in our hospital’s HIS in the form of CDSS. It 
includes modules such as the risk scoring and scoring basis of grade ≥ 2 CIM, model de-
scription, historical trend of the previous occurrence of CIM, and management recom-
mendations (Figure 6). The predictive model is currently running smoothly in the HIS. 
Moreover, to better demonstrate how our model works in reality and to further elaborate 
on the clinical applicability of the model, we ran the model in our hospital HIS to assess 
the risk of CIM in a particular child (Supplementary Materials). 

 
Figure 6. The interface of the CIM prediction model in the form of CDSS applied in our hospital 
HIS. AI Evaluation: the “AI Evaluation” module shows the risk scores of patients with grade ≥ 2 
CIM calculated by the model, with the corresponding “protective factors” and “risk factors” listed 
below. Historical Trend: the “Historical Trends” module records the occurrence of CIM in previous 
chemotherapy cycles. Model Description: this module provides a detailed description of the appli-
cable conditions and the model results. Management Recommendations: according to the predic-
tion results of the model, the management suggestions automatically output by the system back-
stage are displayed in this module. References: this module presents some references. 

4. Discussion 
4.1. CIM Is Not Rare during the Treatment of Children with WT 

Chemotherapy is one of the important means of treating tumors. Currently, most 
chemotherapy drugs exert their effects through cytotoxicity. Cells with strong prolifera-
tive activity may be more sensitive to chemotherapy drugs, making drugs more likely to 

Figure 6. The interface of the CIM prediction model in the form of CDSS applied in our hospital
HIS. AI Evaluation: the “AI Evaluation” module shows the risk scores of patients with grade
≥ 2 CIM calculated by the model, with the corresponding “protective factors” and “risk factors”
listed below. Historical Trend: the “Historical Trends” module records the occurrence of CIM in
previous chemotherapy cycles. Model Description: this module provides a detailed description of
the applicable conditions and the model results. Management Recommendations: according to the
prediction results of the model, the management suggestions automatically output by the system
backstage are displayed in this module. References: this module presents some references.

4. Discussion
4.1. CIM Is Not Rare during the Treatment of Children with WT

Chemotherapy is one of the important means of treating tumors. Currently, most
chemotherapy drugs exert their effects through cytotoxicity. Cells with strong proliferative
activity may be more sensitive to chemotherapy drugs, making drugs more likely to
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damage hematopoietic stem cells or blood cell precursors, leading to severe CIM [27,33].
A clinical consensus is that grade ≥ 2 CIM requires close monitoring and even timely
intervention. Identifying patients with a high risk of grade ≥ 2 CIM before administration of
chemotherapy drugs can guide doctors to timely administer granulocyte colony-stimulating
factor (G-CSF) and other drugs to prevent the occurrence of CIM during the process of
closely monitoring the changes in blood cells levels, which avoids the interruption of the
chemotherapy course and even the occurrence of more serious complications caused by
CIM [34,35]. It is also why we choose the occurrence of grade ≥ 2 CIM as the outcome
indicator. In this study, grade ≥ 2 CIM occurred in 58.5% (839/1433) chemotherapy cycles.
Although Castagnola et al. reported that the incidence of FN in children with central
nervous system tumors was 27% [36], the outcome of the study was FN rather than CIM,
and the different types of tumors studied may also affect the incidence of FN, so our findings
cannot be compared with their study. Other studies have reported that the incidence of FN
in solid tumors is 13–21%, while FN in hematologic tumors is about 33% [37–39]. Whereas
most of the outcome indicators in these studies were FN, and the subjects were adults,
which could not be compared with the incidence of CIM in our study. However, this also
emphasizes that the incidence of CIM in children with solid tumors is still unknown and
more studies are needed to fill in the gaps. In addition, more than half of the chemotherapy
cycles in our study presented grade ≥ 2 CIM, which fully demonstrates that CIM is not
rare in treating pediatric tumors, especially WT, and the development of early prediction
models for CIM in children with solid tumors is indeed necessary.

4.2. Contribution of Variables to Model Prediction Results

According to the ranking of IV, 19 variables were finally included in the model. Studies
have shown that chemotherapy cycles and regimens can affect the occurrence of CIM, so
even if the IV of those relevant variables were less than 0.2, they were still included in our
model. Feature importance is an indicator to measure the contribution of each variable
to the model’s predictive result (Figure 1). In the XGB model, the Hgb level ranked first
in the feature importance ranking. This seems to differ from what most studies have
reported. More than one study reported that baseline WBC and ANC levels, but not
Hgb levels, were the most critical risk factors for CIM or FN [14,40,41]. On the contrary,
it has also been reported that a low baseline level of Hgb was associated with CIM in
elderly tumor patients [42]. It has been reported that in addition to Hgb, the decrease of
alkaline phosphatase, red blood cell count (RBC), and average hemoglobin concentration
and the increase of red blood cell distribution width (RDW) can also reflect anemia or
hematopoietic abnormalities to some extent [27,33]. Herein, except for RDW, the above
five indicators were lower in the CIM group than in the without-CIM group. This may be
because most of the children in this study underwent surgery before chemotherapy, and
inevitable intraoperative bleeding and the consumption of the tumor on the body led to a
lower baseline Hgb or RBC level before chemotherapy. While stimulated by blood loss, the
proliferation of bone marrow hematopoietic cells may be more active, thus more likely to
be attacked by chemotherapy drugs.

Although Aagaard et al. did not find that low levels of WBC and ANC were associated
with the development of bone marrow suppression in their study [43], most studies have
shown that low baseline WBC and ANC levels are risk factors for myelosuppression [12–14],
and our findings are consistent with them: the low baseline level of WBC and ANC in the
XGB model strongly predicts CIM. Due to the short cycle life of granulocytes, it is difficult
for haemopoietic stem cells or haemopoietic microenvironment damaged by chemotherapy
drugs to generate new granulocytes to replace the consumed granulocytes [27,30]. Hence,
a low ANC level is often the earliest manifestation of CIM. Lower baseline WBC or ANC
levels mean lower granulocyte reserves, meaning CIM is more likely to occur.

In addition, the low baseline level of albumin may be related to the nutritional status
of patients, thus affecting the occurrence of CIM, which is also consistent with the result of
another study [44].
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Moreover, different patients have different chemotherapy regimens [45–47], and dif-
ferent chemotherapy regimens incorporate chemotherapy drugs with different degrees
of hematological toxicity [48,49], so treating each chemotherapy regimen as a variable is
unrealistic. As a result, we added the variable “Coadministration of highly toxic chemother-
apy drugs” to investigate the effect of highly toxic chemotherapy drugs on the risk of
developing CIM. Although its IV was small, its feature importance ranked fourth in the
XGB model. It validates that chemotherapy drugs with high hematotoxicity are indeed
more likely to cause CIM. Unexpectedly, the ranking of feature importance of chemother-
apy drugs in the model seems to be different from our understanding of hematological
toxicity of chemotherapy drugs. Low hematologic toxicity drugs such as cisplatin and
vincristine ranked even higher than high hematologic toxicity drugs such as doxorubicin
and cyclophosphamide. This may be because drugs such as cisplatin and vincristine are
more frequently used in chemotherapy regimens for children with WT and are often used
in combination with other highly toxic chemotherapeutic drugs. Thus, the ranking of the
feature importance of these variables may differ slightly from our general understanding
of CIM risk factors. Nevertheless, the XGB model developed in this study still performed
surprisingly well in predicting grade ≥ 2 CIM.

4.3. XGB Model Has Good Predictive Performance for Grade ≥ 2 CIM

Since the first mechanism model based on pharmacokinetics and pharmacodynam-
ics was developed, other mathematical models for predicting CIM or investigating the
relationship between a chemotherapy drug and changes in blood cell levels have been
developed one after another. These mathematical models can simulate hematopoiesis,
granulocytopoiesis, myelosuppression, and leukemia cytodynamics. Recently published
reviews have provided a comprehensive overview and summary of various models [50,51],
and studies have reported associations between the occurrence of CIM and genomic speci-
ficity [52–54]. Of these models, the maximum AUC of the model predicting FN or CIM
occurrence is only 0.83. Notably, after evaluating the fitting effects of several models used
in our study, we found that the XGB model had an AUC of up to 0.981 in the training
set and 0.896 in the test set, with satisfactory sensitivity and specificity, as well as good
stability. The calibration curve and DCA also suggested that the XGB model had good
calibration and could promote clinical decision-making. In addition to good predictive
performance, the XGB model we developed has other advantages: the modeling variables
we selected were from the baseline data of hematological and biochemical tests before
chemotherapy, and the information about the proposed chemotherapy regimen. These
variables are readily available prior to drug administration. Children do not need to bear
the expensive cost such as genomic marker detection, or the burden and pain caused by
frequent laboratory tests.

4.4. Application of CIM Prediction Model in Clinical Practice

Translating clinical research results to clinical applications has been a significant
challenge. The clinical decision support system (CDSS) helps doctors improve and enhance
the efficiency of decision-making by providing systematic medical knowledge and in-
depth analysis of medical records through a human–computer interaction model, thereby
improving the quality of medical care [55]. CDSS is a vital bridge to facilitate the translation
of clinical research into clinical application.

Considering the application scenarios of the CIM prediction model, we present the
final model in the form of CDSS in our hospital HIS. Patients undergo hematological and
biochemical tests after admission. The doctor then specifies the current chemotherapy
regimen, followed by the system backstage immediately extracting the relevant data,
calculating the CIM risk score through the model and outputting it via CDSS. Doctors
can make appropriate treatment plans based on the predicted results. Despite the risk
score module, the “Management Recommendations” module and the “Historical Trend”
module that records the occurrence of CIM in previous chemotherapy cycles can greatly
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help doctors make better clinical decisions. To better demonstrate how our model works
in reality and to further elaborate on the clinical applicability of the model, we ran the
model in our hospital HIS to assess the risk of CIM in a particular child. Please refer to the
Supplementary Materials (Figure S1) for sample cases and model results output interface.

By applying this approach, firstly, doctors can identify high-risk patients early and
adopt appropriate management plans to improve patients’ prognosis. Secondly, the model
calculations and results output are carried out automatically by the system backstage,
eliminating the inconvenience of other predictive modeling tools requiring manual data
input for the corresponding variables. Thirdly, the relevant data of CIM occurrence in each
admission will be automatically stored in the system, which will be helpful for other related
clinical studies in the future. All of the above fully reflect the practicability, accessibility,
and high predictive efficiency of our model in clinical application.

4.5. Limitations and Prospects

However, our study also has some limitations. Firstly, the nature of the retrospective
study may inevitably introduce some selection bias; secondly, the risk factors related to
CIM, such as prealbumin, BMI, bile acid, bilirubin, etc., which have been reported in other
studies [40,56], were not included in the model due to a large amount of missing data.
This may be because doctors or patients have insufficient awareness of CIM and do not
conduct relevant tests. Thirdly, the dynamic changes in blood cells may be able to predict
the specific time when CIM occurs and finding this time point will help doctors develop
more accurate prevention strategies for CIM. However, these data were also missing in
this study. In addition, our sample size needs to be expanded to make more accurate
predictions for different grades of CIM. Furthermore, our model has been successfully
piloted in HIS with CDSS, and more data needs to be collected prospectively to further
verify the model’s accuracy. Finally, different types of tumors may affect the occurrence of
CIM, but only children with WT were included in this study. Therefore, the models that
can be extended to other pediatric malignant solid tumors need further development. To
summarize, a prospective clinical study with large samples and regularly collected data
needs to be carried out. We are currently conducting animal experiments related to CIM in
order to accurately predict the CIM by finding other more readily available indicators. We
intend to validate these indicators in prospective clinical studies and incorporate them into
the model for continuous calibration and optimization. Despite these limitations, to our
knowledge, this study is the first to use ML algorithms to establish a predictive model for
CIM in children with WT, achieving better predictive effects than other pharmacokinetic
or mathematical models. Based on the construction method and clinical application ap-
proach of this ML model, a CIM prediction model that can be extended to other pediatric
malignancies and facilitates widespread clinical applications can be expected.

5. Conclusions

The incidence of grade ≥ 2 CIM was not low in children with WT, which needs more
attention. This study developed an ML-based prediction model to predict the risk of
grade ≥ 2 CIM in WT children for the first time. The model has good predictive perfor-
mance and stability and is also convenient for clinical application, which will help doctors
identify patients at high risk of CIM earlier, and develop and implement individualized
preventive medication strategies, thus reducing the disease burden and economic burden of
CIM in children with WT. Based on this modeling and application approach, the extension
of CIM prediction models to other pediatric malignancies is expected.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15041078/s1. Figure S1. Case example: the interface of
CIM prediction model output results. The text in the figure has been translated into English.
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