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Simple Summary: In the present review, we reported the main findings describing tumor-associated
microenvironment in patients with IDH mutated and wild-type gliomas. We also focused on the main
differences between microenvironment composition reporting data about the microenvironment
of pilocytic astrocytomas and IDH wt H3 altered gliomas. This review is finally focused on novel
potential treatments targeting the tumor microenvironment.

Abstract: Gliomas are the most frequent central nervous system (CNS) primary tumors. The prognosis
and clinical outcomes of these malignancies strongly diverge according to their molecular alterations
and range from a few months to decades. The tumor-associated microenvironment involves all cells
and connective tissues surrounding tumor cells. The composition of the microenvironment as well as
the interactions with associated neoplastic mass, are both variables assuming an increasing interest in
these last years. This is mainly because the microenvironment can mediate progression, invasion,
dedifferentiation, resistance to treatment, and relapse of primary gliomas. In particular, the tumor
microenvironment strongly diverges from isocitrate dehydrogenase (IDH) mutated and wild-type (wt)
tumors. Indeed, IDH mutated gliomas often show a lower infiltration of immune cells with reduced
angiogenesis as compared to IDH wt gliomas. On the other hand, IDH wt tumors exhibit a strong
immune infiltration mediated by several cytokines and chemokines, including CCL2, CCL7, GDNF,
CSF-1, GM-CSF, etc. The presence of several factors, including Sox2, Oct4, PD-L1, FAS-L, and TGF
β2, also mediate an immune switch toward a regulatory inhibited immune system. Other important
interactions are described between IDH wt glioblastoma cells and astrocytes, neurons, and stem cells,
while these interactions are less elucidated in IDH-mutated tumors. The possibility of targeting the
microenvironment is an intriguing perspective in terms of therapeutic drug development. In this
review, we summarized available evidence related to the glioma microenvironment, focusing on
differences within different glioma subtypes and on possible therapeutic development.

Keywords: glioblastoma; astrocytoma; oligodendroglioma; microenvironment; immune cells;
angiogenesis

1. Introduction

Gliomas are the most frequent primary central nervous system (CNS) tumors, with an
annual incidence of approximately 6 cases per 100,000 individuals worldwide [1].

Histological diagnosis, supported by tissue-based tests (e.g., immunohistochemical),
has long been the basis for assessing prognosis and clinical management; nonetheless, the
classification of gliomas dramatically changed over the past decade following the advances
in molecular analyses.

The fifth edition of the World Health Organization (WHO) Classification of CNS
Tumors (WHO CNS 5), published in 2021, enforced the role of molecular parameters, such
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as altered key genes and proteins, useful in providing diagnostic information and clinically
meaningful grading systems [2,3].

The prognosis of patients with gliomas significantly diverges according to tumor
histology and molecular features. Indeed, patients with oligodendroglioma and astrocy-
toma often show several years of long-term overall survival (OS) [4]. On the contrary,
glioblastoma (GBM) patients show worse clinical outcomes [4]. Indeed, despite several
efforts to improve clinical outcomes, the prognosis of patients with newly diagnosed GBM
remains extremely poor (overall survival ranging from 12 to 18 months).

Of note, in WHO CNS 5—GBM comprises only wild-type tumors while IDH wild-
type (wt) diffuse astrocytic tumors with specific genetic parameters match with GBM
diagnosis even in cases that appear histologically lower grade (absence of microvascular
proliferation and/or necrosis). Molecular alterations considered to identify molecular GBM
are Telomerase Reverse Transcriptase (TERT) promoter mutation, Epidermal Growth Factor
Receptor (EGFR) gene amplification, and combined gain of chromosome 7 and loss of
chromosome 10 [2,5].

Beyond genetic and epigenetic data, further elucidation of a tumor’s biological behav-
ior, evolution, and resistance to therapy has recently been enriched with studies on TME
(tumor- microenvironment) [6]. The interaction between cancer cells and immune, glial,
endothelial cells, neurons, and stem cells composing TME can enhance tumor proliferation
and invasiveness, immune suppression, and angiogenesis.

Few studies investigated the composition and role of TME in IDH-mutated gliomas,
while several data assessing GBM microenvironment composition have been provided.
However, a study confirmed that TME composition significantly differs between oligoden-
drogliomas and astrocytomas [7]. Furthermore, tumors’ grade seems to influence TME
composition, especially in terms of macrophage and microglia composition [8]. In these
patients, the possibility of manipulating TME composition represents a concrete hope in
terms of novel drug development, especially within patients with GBM.

Not surprisingly, the clinical aggressiveness observed in this tumor reflects a complex
pattern of molecular alterations, high heterogeneity among tumor cells, and a unique
ability to induce phenotypic modifications in other cells, including immune cells, neurons,
glial cells, and endothelial/stromal cells [9]. The possibility of targeting these complex
interactions could be a promising strategy in terms of novel drug development [10].

In this paper, we analyze current knowledge about microenvironment composition
and mechanisms that regulate its interaction with tumor cells, collecting analogies and
differences among patients with a diagnosis of astrocytoma, oligodendrogliomas, and GBM
(Table 1). Furthermore, we focused our interest on novel possible therapeutic approaches
targeting TME.

Table 1. Clinical, morphological, and genomic/epigenetic characteristics of gliomas.

Oligodendroglioma Astrocytoma H3—Altered Gliomas Glioblastoma IDH wt

Morphology

- rounded nuclei
- clear perinuclear

halo [11,12]
- globally resembling a

honeycomb [11,12].

- oval to elongated
nuclei [11,12]

- varying appearance of
cytoplasm [11,12];

- fine fibrillar processes.

- astrocytoma-like
neoplastic cells;

- microvascular
proliferation and
necrosis possible [13]

- microvascular
proliferation;

- necrosis [14].

Genomic and
epigenetic
alterations

- IDH1/2
- 1p19q codeletion
- G-CIMP;
- TERT (96%);
- CIC (62%);
- FUBP1 (29%);
- NOTCH1 (31%) [11,12].

- IDH1/2 mutation
- ATRX loss (87%);
- G-CIMP;
- CDKN2A/2B (10%)
- TP53 (94%) [11,12].

- H3 alterations;
- EZHIP
- TP53 (70%);
- ATRX (30%);
- PDGFRA (45%);
- Loss of H3

trimethylation [13].

- TERT (70%);
- EGFR Amplification

(40%);
- +7/−10

Chromosome;
- TP53 (20%) [14].
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Table 1. Cont.

Oligodendroglioma Astrocytoma H3—Altered Gliomas Glioblastoma IDH wt

Prognosis 8–17 years [11,12] 6–12 years [11,12]. 9–24 months [11,12] 9–24 months [11,12]

ATRX: X linked nuclear protein; CDKN2A/2B: cyclin-dependent kinase inhibitor 2A/2B homozygous deletion;
CIC: Capicua Transcriptional Repressor; FUBP1: Far Upstream Element Binding Protein 1; G-CIMP: cytosine-
phosphate-guanine (CpG) island methylator phenotype; EZHIP: Enhancer of Zest Homologs Inhibitory Protein,
H3: Histone 3, NOTCH: Notch homolog 1; IDH: Isocitrate dehydrogenase; PDGFRA: Platelet-derived growth
factor receptor A; TERT: Telomerase Reverse Transcriptase.

2. IDH Mutated Gliomas

Gliomas harboring IDH mutations exhibit better clinical outcomes than wild-type
IDH1/2 tumors. Indeed, the better prognosis is associated with lower histologic grade,
IDH mutation, and 1p19q codeletion [11,12]. In addition, the type of IDH mutation could
influence patients’ survival. Indeed, patients with non-canonical IDH mutation (IDH2 or
IDH mutations other than IDHR132H) have a longer survival as compared to patients with
canonical IDHR132H alteration [15–17]. Patients with IDH-mutant and 1p19q codeleted
gliomas (oligodendrogliomas) have a median OS of about17 years for grade 2 tumors and
11 years for grade 3, longer than survival outcomes reported in patients with IDH mutant
non-codeleted astrocytomas (mOS of approximately 8–9 years) [11,12,18–27].

Recent studies support the hypothesis of a progenitor stem cell differentiating to-
wards oligodendrocyte or astrocyte lineage depending on specific genomic alterations.
Despite all IDH-mutant gliomas seeming to originate from a shared progenitor [7,28],
oligodendrogliomas and astrocytomas differ according to morphological aspects, genetic
mutations, and TME composition, with subsequent differences in tumor behavior and
clinical outcomes.

From a histological point of view, oligodendrogliomas typically show rounded nuclei
and a clear perinuclear halo, globally resembling a honeycomb. Astrocytoma is charac-
terized by infiltrating tumor cells with oval to elongated nuclei, varying appearance of
cytoplasm, and fine fibrillar processes.

Genomic alterations characterizing astrocytomas include X-linked nuclear protein
(ATRX) loss (87%), cyclin-dependent kinase inhibitor 2A/2B (CDKN2A/2B) homozygous
deletion (10%), and TP53 mutation (94%). Amplification of platelet-derived growth factor
receptor (PDGFR) genes, CDKN2A/2B homozygous deletion, and PI3K (phosphoinositide
3-kinase) mutations have been recently associated with worse prognosis in grade 3 astrocy-
tomas [29]. Shifting to oligodendrogliomas (grade 2 and 3), key genetic alterations include
Telomerase Reverse Transcriptase (TERT) promoter mutation (96%), Capicua Transcrip-
tional Repressor (CIC) mutation (62%), Far Upstream Element Binding Protein 1 (FUBP1)
mutation (29%) and Notch homolog 1(NOTCH1) overexpression (31%) [5,12].

Although differences in TME have been described as potential contributors to different
biological behavior in IDH1/2 mutated gliomas, current knowledge on TME composition in
these glioma subtypes has yet to be enriched. Herein we will discuss various aspects of
TME in the context of IDH-mutated gliomas.

2.1. Microenvironment in IDH Mutated Gliomas

Interactions between glioma cells and TME contribute to cancer development and
progression, influencing prognosis and treatment response. The majority of non-neoplastic
cells infiltrating glioma mass are immune cells. Myeloid cells comprising microglia and
macrophages represent the predominant immune cell type and are important contributors
to disease progression [30,31] (Table 2).
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Table 2. The tumor-associated microenvironment in IDH-mutated and IDH-wt gliomas [7–9,32–34].

IDH Mutated Gliomas IDH Wildtype Gliomas
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lower microglia and macrophages
percentage.
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circulation [35,36]. Tumor-associated macrophages are plastic and can polarize to either
pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes. However, in the glioma
microenvironment, they mainly exhibit an immunosuppressive profile. Pro-inflammatory
M1 macrophages are involved in anti-tumorigenic effects, while immunosuppressive
M2 macrophages are associated with pro-tumorigenic mechanisms that promote tumor
growth, angiogenesis, and invasiveness. Different polarization states can coexist in gliomas,
and M1/M2 differentiation appears as a continuous spectrum rather than a bimodal
scheme [37].

Several studies show a positive correlation between the percentage of microglia/
macrophages and glioma grade and a negative correlation with survival. The percentage of
myeloid cells in low-grade glioma (LGG) has been estimated at 15–30%, compared with
10–15% in non-neoplastic brain specimens [38]. The degree of macrophage infiltration
rather than microglia infiltration in gliomas correlates with tumor grade: data from single-
cell RNA-sequencing of human gliomas showed a significant increase in blood-derived
macrophages but not an increase in microglia in GBM compared to LGG. Otherwise,
astrocytomas have a degree of microglia infiltration higher than both oligodendrogliomas
and GBM [39].

Globally, IDH-mutated gliomas have been associated with lower infiltration of immune
cells in the tumor microenvironment [33,40–43]. According to evidence of decreased
immune cells in IDH-mutated glioma, even IDH-mutant astrocytoma grade 4, previously
known as IDH mutant GBM, has been demonstrated to have a lower proportion of tumor-
associated microglia and macrophages than IDH-wildtype GBM, with predominant M1
polarization [44].

Shifting to the adaptive immune system, IDH mutation confers an immunologically
quiescent phenotype than wild-type counterparts, with fewer tumor-infiltrating lympho-
cytes (TILs) and reduced protein expression of programmed death ligand 1 (PD-L1). Con-
sistently, immune suppression in IDH-mutant gliomas reflects a reduced expression of
interferon-γ (IFN-γ) associated genes and CD8+ T cells (cytotoxic T cells and killer T
cells) [41]. Furthermore, it has been hypothesized that high levels of 2-Hydroxyglutarate
(2-HG) in IDH mutated gliomas indirectly prevent the recruitment of effector T cells (CD8+
cytotoxic and killer T cells, CD4+ helper T cells) by lowering C-X-C motif chemokine ligand
9 (CXCL9) and C-X-C motif chemokine ligand 10 (CXCL10) levels, another hypothesis is
that 2-HG accumulates and enters T cells altering CD8+ and CD4+ T-cell receptor (TCR)
signaling pathways, thus resulting in impaired T cell anti-tumor immunity [33]. The 2-HG
is secreted by tumor cells and imported by CD8+ T cytotoxic and CD4+ T helper cells by a
sodium-dependent dicarboxylate transport system and inhibits TCR by interfering with
the TCR—ATP dependent signaling and a polyamine biosynthesis pathway [42].

Recently, a deep analysis of immune gene profiles of LGG patients from The Cancer
Genome Atlas has led to the identification of three distinct immune subtypes—Im1, Im2,
and Im3—which differ in lymphocyte signatures, genetic alterations, and clinical outcomes.
Of note, Im1 and Im2 were enriched in IDH1 mutation and had lower immune infiltrate.
Im1 was characterized by higher infiltration of CD8+ cytotoxic T cells, Th17, and mast
cells; this profile was enriched in IDH1, 1p/19q codeletion, CIC, FUBP1, and NOTCH1
mutations. Im2 showed a high lymphocytic infiltrate, high M2 macrophage content, and
checkpoint gene expression, indicating an immune-hot but immune-suppressive TME. Im2
was enriched in mutations in driver genes, such as PTEN, EGFR, and NF1. Finally, Im3
displayed higher levels of T CD4+ helper cells, antigen-presenting cells, and macrophages;
this subtype was enriched in IDH1, ATRX, and TP53 mutations [45].

Beyond immune suppression, the accumulation of 2-HG due to IDH mutation deter-
mines epigenetic changes that modify the tumor microenvironment by inhibiting angiogene-
sis. Of note, 2-HG can stimulate prolyl-hydroxylases such as egl-9 family hypoxia-inducible
factor 1 (EGLN) which inhibits hypoxia-inducible factor 1, subunit alpha (HIF1α) [34].

Reduced HIF-1α levels in IDH mutant gliomas reflect epigenetic silencing of glycolytic
switch–related genes; on the contrary, IDH wt gliomas show a glycolytic phenotype. As
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a result, in IDH wt gliomas, TME is characterized by higher acidity and higher hypoxia
than in IDH mutant gliomas. In this way, metabolic reprogramming could affect tumor ag-
gressiveness. IDH mutant astrocytoma rather than oligodendroglioma has been associated
with the acquisition of a glycolytic phenotype, explaining the worse outcomes [46].

Interactions between neoplastic cells and neurons and normal glial cells in IDH mu-
tated gliomas are currently less explored than immune microenvironment. Neurons and
glial cells are supposed to display marked plasticity during tumor progression, which
could also be the reason for long pre-symptomatic periods in LGG. In addition, there is
increasing data that excitatory neurotransmitter glutamate secreted by glioma cells induces
hyperexcitability and excitotoxicity of peritumoral neurons playing a critical role in the
growth and spread of glioma cells. However, most evidence derives from studies on
high-grade gliomas [47].

2.2. Differences in Astrocytoma and Oligodendroglioma Tumor Microenvironment

Differences in tumor microenvironment composition among astrocytoma and oligo-
dendroglioma mainly emerge from studies on the immune microenvironment, as this is cur-
rently the most explored field. Available evidence suggests dissimilarities in innate immune
cell populations among IDH-mutated gliomas. Focusing on the microglia/macrophage
population, Venteicher et al. identified two different inflammatory signatures and pro-
vided a relationship with tumor grade and subtype. In astrocytoma, microenvironment
expression reflects a macrophage signature; oligodendrogliomas, instead, reflect a microglia
signature. Microglia signature was associated with a peculiar expression of C-X-C motif
chemokine receptor 1 (CX3CR1), Purigenic Receptor P2Y12 (P2RY12), and Purigenic Re-
ceptor P2Y13 (P2RY13), the second signature, identified as macrophage signature, was
characterized by high expression of CD163, Transforming Growth Factor-β1 (TGF-β1) and
coagulation factor XIII A chain (F13A1). Higher-grade tumors were associated with more
macrophage-like expression states. Macrophage signature rather than microglia signature
influenced angiogenesis and alterations of the blood–brain barrier. Mechanisms that deter-
mine macrophage-like and microglia-like expression states are still poorly characterized in
LGG. However, genetic alterations have been proposed to affect microglia/macrophage
signature balance [7].

While several publications describe increasing microglia/macrophages levels in dif-
fuse gliomas according to the WHO grade, a study assessing the immunohistochemical
expression of selected microglia and macrophage markers in grade 1–4 gliomas surprisingly
found a higher pan-macrophage markers expression and a marked M2 polarization in
pilocytic astrocytoma (WHO grade 1) compared to diffuse astrocytomas and GBM [48].

Despite astrocytoma and oligodendroglioma showing similar compositions in terms
of immune cells, when assessing tumor-associated lymphocytes in LGGs, astrocytomas
display a more immunosuppressive local microenvironment, with increased percentages of
PD-1 + CD8+ cytotoxic T cells, T-cell immunoglobulin and mucin-domain-containing-3 +
(TIM-3) CD4+ T cell subpopulations and regulatory CD4+ T cells (Tregs) [8].

In another study comparing data on LGGs from TGCA and Chinese Glioma Genome
Atlas (CGCA), 1p/19q codeletion has been associated with lower infiltrating levels of
immune cells and lower expression of immune checkpoint genes compared to 1p/19q
non-codeleted cohorts. Since chromosome 1p or 19q genes host several genes involved in
inflammatory pathways, such as TGFB1, JAK1, and CSF1, 1p/19q codeletion can result in an
altered infiltrating level of immune cells and expression of immune checkpoint genes [49].

Peculiar evidence on TME composition in LGG also comes from the study of tumor net-
works, an attractive research field. With regards to LGG, particularly oligodendrogliomas,
growth-associated protein 43 (GAP43) regulates microtube outgrowth and is linked to
tumor cells’ invasiveness and ability to recolonize the surgical site. A codeletion of both
chromosomal arms in oligodendrogliomas leads to less microtube formation and fewer
interconnected tumor cells [50].
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2.3. Pilocytic Astrocytoma Microenvironments

Pilocytic astrocytoma (PA) is classified as grade 1 lesions without significant prolifera-
tive potential and often without relapse after total curative resection [2]. The term pilocytic
refers to elongated projections visible after staging of glial fibrillary acidic protein in the
cytoskeleton of these cells [51,52]. The Rosenthal fibers are mainly composed of crystalline
α-β, hyaline structures without glial fibrillary acidic protein immunoreactivity observable
after thermic or oxidative shock [51,52]. Regarding molecular alterations, childhood Pas
often show alterations in the MAPK (mitogen-activated protein kinase) pathways, including
mainly BRAF mutations [53]. Of note, the fusion between BRAF and KIAA1549 gene is also
found in the majority of PAs [2,52].

There are very few studies assessing the composition of PAs microenvironment. In
2011, Yang I et al. compared immune cells’ microenvironment composition of glioblastoma
and PAs showing that GBM specimens had a significantly higher percentage of perivascular
CD8+ T cell, perivascular and intratumoral CD-56+ T cell (Natural Killer T cells), and
macrophages while there was no difference between CD3+ and CD 20+ T cells [54]. A more
recent study assessed the tumor methylome of PAs by generating whole genome bisulfite
sequence (WGBS) data from 9 PA patients [55]. The authors identified that the basic leucine
zipper (bZIP) transcription factors were an important positive regulator of the immune
response [55]. To date, no studies investigated differences between IDH-mutated gliomas
and PAs microenvironment composition.

3. IDH wt Gliomas

IDH wt gliomas are a heterogenous class of tumors, both on histological and molecular
levels. Glioblastoma is histologically defined as an infiltrating astrocytic glioma with
microvascular proliferation or necrosis characterized by a lack of mutations in IDH1, IDH2,
and histone H3 genes. The WHO CNS 5 2021 classification defined as molecular GBM
also diffuse glioma with TERT mutation and/or EGFR amplification and/or +7/−10
chromosome deletion [14].

Among IDH wt gliomas, the 2021 WHO classification recognizes novel tumor entities
characterized by histone 3 gene alterations [2]. The diffuse midline glioma is characterized
by H3 alterations, often resulting in lysine-to-methionine substitution at position 27 of
histones 3.1 and 3.3 (H3K27) [56]. Other molecular alterations leading to the development
of diffuse midline glioma have been described, including EZH inhibitor protein (EZHIP)
mutations [56].

Microenvironment in IDH wt Gliomas

Most studies aiming to describe TME in IDH wt gliomas effectively assessed the TME
composition of GBM (Figure 1).
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In recent years, single-cell RNA-sequencing (scRNAseq) studies have acquired a higher
relevance in the description of TME. Additionally, these studies uncover inter-patient to
intra-tumoral heterogeneity and come up with molecular information at a single-cell level.
With the scRNA seq technique, DNA sequencing and data analyses are performed on
genetic material derived from individual cells, physically isolated from each other. In
contrast with bulk methods, which provide an average estimation of gene expression across
all cells in a sample, scRNAseq allows the description of cellular subpopulations, including
rare cell phenotypes [57].

Reasons for dismal prognosis and lack of novel effective therapies in GBM are closely
related to biological features of this tumor: intra- and inter-tumoral heterogeneity, presence
of GBM stem cells (GSCs), and the interplay between cancer cells and TME. Glioblas-
toma cells communicate with each other and with the surrounding environment through
various mechanisms. Routes of communication include gap junctions, extracellular vesi-
cles, nanotubes, and microtubes. These mechanisms allow the translocation of genetic
elements, proteins, and other metabolites. One of the emerging research fields focuses on
neuron-to-brain tumor synaptic communication. This kind of synapse has been described in
low-grade and anaplastic astrocytomas, GBMs, and diffuse intrinsic pontine gliomas [58,59].
Synaptic communication is facilitated by specific neurotransmitter receptors on glioma
cells located in thin membrane tubes, called microtubes, similar to axonal and dendritic
neuronal outgrowths. Postsynaptic currents are mainly mediated by glutamate receptors of
the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) subtype, in particular
calcium-permeable AMPA receptors. Depolarization of the tumor cell membrane due
to short calcium transients activate downstream pathways. Preclinical studies show a
relationship between the activation of glutamatergic neuron-to-glioma synapses and the
invasiveness of glioma cells, in particular in the initial stages of tumor progression [58].
Recently, Venkataramani et al. reported that GBM is composed of both tumor cells that
form a network interconnected by microtubes and by other subpopulations that appear
unconnected. This latter subpopulation transcriptionally resembles neuronal-and neural-
progenitor-like cell states and seems to receive neuronal synaptic input and drive brain
invasion [60].

Paracrine signaling through soluble factors such as brain-derived neurotrophic factor
(BDNF), 78 kDa glucose-regulated protein (GRP78), and neuroligin-3 (NLGN-3) is another
route of communication in brain tumor networks. NLGN-3 is released by neurons and oligo-
dendrocyte precursor cells and activated after cleavage by the metalloproteinase ADAM10.
It binds on glioma cells leading to PI3K-mTOR signaling activation and promoting tumor
growth [50].

Apart from synaptic and paracrine, intercellular communication systems through
RNA transfer is one of the most challenging areas of research. A study investigating the
spectrum of cancer-derived extracellular RNAs (exRNAs) by tumor-derived cells from
GBM patients showed exRNA is enriched in small non-coding RNAs, such as microRNAs
(miRNAs) in exosomes, and tRNA and Y RNA fragments in extracellular vesicles (EVs) and
ribonucleoproteins (RNPs). The most common extracellular tRNA fragments are produced
by angiogenin, a multifunctional ribonuclease that regulates angiogenesis, cell proliferation
of cancer cells, neuronal survival, and stress response. Angiogenin is upregulated in GBM
and, in particular, in exosomes [61]. Another class of non-coding exRNAs, evolutionarily
conserved molecules involved in many cellular functions, is still poorly described. Finally,
miRNAs represent the most studied class of exRNA. In particular, microRNA-10b (miR-
10b) has been reported as the most upregulated miRNA in GBM across all subtypes and
is undetectable in normal brain tissues, thus appearing as a potential therapeutic target.
MiRNA-10b seems to promote cell cycle progression (S-phase and mitotic transitions),
migration, invasion, and survival of glioma cells. Analysis of GBM tumors using TCGA
suggested that miR-10b regulates E2F1-mediated transcription in GBM [62].

Regarding interactions between GBM cells and non-tumor cell populations, immune
cells are the most studied component. In particular, tumor-associated microglia and
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macrophages (TAMs) account for about 30–50% of the tumor mass. Globally, the percentage
of TAMs has been related to higher glioma grades and worse survival. IDH-wildtype GBM
and metastatic brain tumors are characterized by the highest influx of macrophages. While
in the early phases of tumor growth, infiltrating cells are mainly represented by microglia,
in advanced phases, macrophages, and myeloid cells are the most abundant ones. The
infiltration of peripheral immune cells, in particular bone marrow-derived monocytes
and macrophages, is favored by the disruption of the blood–brain barrier determined
by GBM itself and the release of cytokines and chemokines by glioma cells such as CC-
chemokine ligand 2 (CCL2), CCL7, glial cell line-derived neurotrophic factor (GDNF),
colony-stimulating factor-1 (CSF-1), granulocyte-macrophage colony-stimulating factor
(GM-CSF), hepatocyte growth factor (HGF), stroma cell-derived factor 1 (SDF-1). Once
recruited, monocytes and macrophages can acquire different phenotypes, ranging from
M1 (tumor-suppressive) and M2 (tumor-supportive) phenotypes. Indeed, GBM—released
factors drive the activation state of these cells. Overall, GBM cells suppress the immune
response against tumors, shifting the phenotype of surrounding immune cells toward an
immune-suppressive, tumor-supportive state. Subsequently, TAMs contribute to tumor
proliferation, supporting ECM remodeling and angiogenesis. Neutrophils and mast cells
are recruited by GBM cells and are involved in tumor growth in GBM [63–65].

Besides innate immune cells, also an adaptive immune response to brain tumors has
been described. Experiments conducted in mice models suggested that antigen-presenting
cells (APCs) move from the CNS to deep cervical lymph nodes, where they present brain
tumor antigens to T cells. Lymphatic vessels in the meninges constitute a direct drainage to
the cervical lymph nodes, and microvascular changes near the tumor allow immune cells to
enter CNS. Vascular abnormalities are a common hallmark of GBM, with hypermediated,
permeable vessels and highly elevated levels of vascular endothelial growth factor (VEGF)
in TME.

Although the ability of immune cells to enter the CNS, various immune escape mecha-
nisms make the GBM immune microenvironment “cold”. The TGFβ2 is a cytokine isolated
for the first time in GBM which contributes to T cell exhaustion through various mecha-
nisms such as suppression of IL-2 (Interleukin-2) dependent T cell survival and expression
of co-inhibitory receptors on CD4+ T helper and CD8+ cytotoxic T cells. Concurrently,
GBM cells show membrane-bound factors such as Fas antigen ligand (FAS-L) and pro-
grammed cell death ligand 1 (PD-L1), which are well-known co-inhibitory molecules. More
recently, SRY-Box Transcription factor 2 (Sox 2) and octamer-binding transcription factor 4
(Oct4) have been related to the downregulation of Th1 response, stimulation of Treg, and
expression of co-inhibitory molecules. Indeed, the co-expression of Oct4/Sox2 inhibits
the expression of the C-C Motif Chemokine ligand 5 (CCL5) and C-X-C Motif Chemokine
ligand 9, 10 and 11 (CXCL 9,10 and 11), which mediate CD8+ T cell attraction against tumor
cells [66]. Furthermore, Sox2/Oct4 mediates the expression of interleukin 8 and 6, which,
together with the signal peptide peptidase, mediate the shift of macrophage phenotype
toward an immune-regulatory profile inhibiting immune response against tumor cells [66].

These effects are mediated by a family of proteins named Bromodomain and extra
terminal motif (BET) proteins, which have lately been explored as potential pharmacological
targets [66,67].

Increasing evidence seems to confirm that prostaglandin E2 (PGE2) is abundant in the
GBM microenvironment and mediates tumor invasion and progression, while cyclooxyge-
nase (COX) inhibition is associated with reduced proliferation and tumor cell migration
in vitro [68–72]. Some studies assessed the role of COX inhibitors in GBM but, to date,
none of them have shown to significantly improve survival or other patients’ clinical
outcomes [73–77].

Among non-Immune cellular components, stem cells associated with GBM (GSCs)
have been recently studied, given their importance in the natural history of this tumor.
GSCs are located in a specific biological niche, perivascular niche, and can differentiate
either into cancer cells or normal cells. Little is known about pro-differentiative signals
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determined by TME. However, a recent study provided evidence that differentiation
towards oligodendrocyte lineage is sustained by tumor-infiltrated white matter in vivo.
Concurrently, other studies have demonstrated the ability of GSCs to differentiate into en-
dothelial cells and pericytes. Moreover, GSCs can directly respond to hypoxia-stimulating
VEGF—mediated neoangiogenesis [78,79]. Astrocytes greatly contribute to neoangiogen-
esis, enhancing tumor growth through the release of cytokines (such as TGFβ and Il-6)
and growth factors. Additionally, in vitro studies demonstrated their role in resistance
to chemotherapy. The crosstalk between glioma cells and tumor-infiltrating astrocytes
can lead to the transformation of astrocytes into neoplastic glioma cells [32]. As regards
oligodendrocytes, instead, they seem to exhibit an inhibitory function against GBM through
the activation of the WNT inhibitory pathway (Table 2).

4. Differences in IDH-Mutated and IDH-wt Tumor Microenvironment

The tumor microenvironment of IDH-wt tumors is composed of a higher percentage
of immune cells as compared to IDH-mutated gliomas [7,9] (Table 2). Indeed, IDH-mutated
tumors present a lower infiltration of microglia and macrophages as compared to IDH-wt
tumors (macrophage signature predominant in astrocytoma, while microglia signature
is most represented in oligodendroglioma) [7–9]. The percentage of tumor-associated
microglia and macrophages is correlated to tumor grade and is higher in glioblastoma,
in which macrophages drive extracellular matrix remodeling and angiogenesis [9]. The
2-Hydroxyglutarate inhibits angiogenesis in IDH-mutated tumors [33], while the neo-
vessels development is stimulated by macrophages and astrocytes recruited around IDH-
wt cells [34]. In IDH-wt tumors, the interactions between neoplastic and normal cells
(including gap junctions, extracellular vesicles, nanotubes, microtubes, paracrine signaling,
and extracellular RNA) play a critical role in stimulating the neoplastic transformation of
normal cells (astrocytes) [32], neoangiogenesis, tumor invasion, and progression [9]. These
same interactions have not been described in IDH-mutated tumors. Within IDH-mutated
tumors, astrocytoma rather than oligodendrogliomas often presents an increased percent-
age of PD-1+ and TIM-3+ T cells [8]. In glioblastomas, several factors (TGF β2, FAS-L,
PD-L1, Sox2, Oct4) secreted by the same innate immune cells contribute to developing a T
cell-exhaustion phenotype [9]. To date, there are data evaluating interactions between neu-
rons and IDH-mutated tumor cells. On the contrary, it seems that these same interactions
play a crucial role in IDH-wt tumor cells. Indeed, glutaminergic neurons seem to mediate
glioma invasiveness and progression [9].

5. Future Perspectives

To date, few treatment improvements have been documented for patients with gliomas.
Target therapies, including BRAF and NTRK inhibitors, showed promising clinical efficacy
in glioma patients with these molecular alterations [53,80–82]. The multi-tyrosine kinase in-
hibitor regorafenib, compared to lomustine, improved survival and other clinical outcomes
in patients with GBM in phase II randomized clinical trials. In a small percentage of cases,
glioma patients harbor fibroblast growth factor receptor (FGFR) mutations which make
them targetable from specific FGFR inhibitors [83], including infigratinib (NCT04424966,
NCT05222165) and pemigatinib (NCT05267106).

Recent research on novel treatments for gliomas comes from insights into the biology
of these tumors. Potential targets include the aforementioned routes of communication
between glioma cells and TME, as well as molecules directly involved in tumor-supportive
mechanisms.

Inhibitors of molecules involved in neuron-tumor and tumor-tumor networks have
been assessed in preclinical studies and early-phase clinical studies. Recent research details
glutamatergic neuro-glioma synapses as a target for glioma treatment. Neuron-glioma
glutamatergic synaptic transmission can be blocked by AMPA receptor inhibitors such as
talampanel or perampanel [84].
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Among attractive targets, the immune environment appears as the most promising
field both in IDH mutated and in IDHwt gliomas. Given the striking benefits reported
with checkpoint inhibitors in the treatment of various solid tumors, great interest has
been placed in this kind of therapy. Unfortunately, several trials of checkpoint inhibitors
have not been demonstrated to improve clinical outcomes in low-grade and high-grade
gliomas. This could be addressed to the typical immune suppressive signature and the
heterogenous composition of these tumors, with a variable expression of tumor-specific
antigens. Recently, results from phase III Checkmate548 showed that adding Nivolumab
to radiotherapy plus temozolomide did not improve survival in patients with newly
diagnosed GBM with methylated or indeterminate MGMT promoter [85]. A phase III study
is evaluating the efficacy and safety of nivolumab administered alone versus bevacizumab
in patients with recurrent GBM and the safety and tolerability of nivolumab alone or
combination with ipilimumab in recurrent GBM previously treated with different lines of
therapy (NCT02017717).

Increasing data suggest that Poly (ADP-ribose) Polymerase (PARP) inhibitors could be
active in patients with BRCA and homologous recombination deficiency (HRD) [86]; thus,
the combination between the PARP inhibitor Olaparib, the PD-1 inhibitor pembrolizumab
and temozolomide is currently under investigation in phase II clinical trial (NCT05188508).
At the same time, niraparib is currently under investigation in patients with recurrent IDH
wt and mutated gliomas (NCT05297864).

Selumetinib is an inhibitor of the mitogen-activated protein kinase (MEK) which
showed promising clinical efficacy on neurofibromatosis-1 (NF1) associated gliomas [86–89].
Two trials are investigating this agent in patients with glioma (NCT03871257, NCT04166409).

In IDH wt H3 altered gliomas, there is a novel promising agent targeting the Dopamine re-
ceptor 2(DRD2) as well as the proteolytic subunit of mitochondrial protease Clp (CIpP) [90–92].
This agent showed promising clinical activity, and other trials are currently investigat-
ing these compounds in patients with H3-altered IDH wt gliomas [13] (NCT05580562,
NCT04541082).

Of interest, novel trials are assessing combination strategies to target different immune
escape mechanisms simultaneously. Some trials are exploring the safety and efficacy of
combining chemotherapy, anti- PD1 inhibitors, or radiotherapy with inhibition of other
immune checkpoints, such as lymphocyte activation gene 3 (LAG 3) and indoleamine 2,3-
dioxygenase (IDO1) in GBM. Recently, killer cell lectin-like receptor subfamily B member
1 (KLRB1), encoding the T cell receptor CD161, has been identified in cytotoxic T cells in
gliomas and has been proposed as a novel potential target for immunotherapy in diffuse
gliomas [93,94].

Furthermore, immunological approaches have recently been enriched with novel tools.
Chimeric antigen receptor T cells (CAR-T) and chimeric antigen receptor macrophages
(CAR-M) [95] are recombined cells obtained from patients and activated in vitro against
specific antigens. GBM-specific cell surface antigens studied as potentially suitable targets
for CAR T cells include the B7 homolog 3 immunoregulatory protein (B7-H3), epidermal
growth factor receptor VIII (EGFR VIII), HER2, IL-13 receptor α chain 2, disialoganglioside
GD2. Recently, a preclinical study using patient-derived GBM cells confirmed GD2 antigen
as a potential target for the CAR T strategy [96]. Of note, GD 2 is highly expressed in GBM
cells while representing 1–2% of the total amount of gangliosides in the normal central
nervous system. Data from a phase I clinical trial in H3K27M-mutated glioma recently
reported clinical and radiographic improvement in three of four patients treated with GD2
CAR T cells [97].

Additionally, peptide vaccines and dendritic cell vaccines targeting H3K27M mutation
showed promising results in preclinical studies.

Vaccine injection has been studied in IDH-mutated gliomas, both in preclinical and
clinical trials. A first-in-human phase I trial with IDH1(R132H) specific peptide vaccine,
named NOA16 trial, was conducted in newly diagnosed grade 3 and 4 astrocytomas
carrying the specific mutation, with 93.3% of patients presenting an immune response
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and good safety profile [98]. IDH inhibition through molecules such as ivosidenib and
vorasidenib improved survival outcomes in early-phase trials. However, the relationship
between IDH inhibition and modification of TME must be clarified [99].

Immunotherapy through vaccine injection is currently under investigation in several
phase 2 and 3 trials in GBM. Among these, many studies are exploring treatment with
dendritic cell-vaccines (NCT03548571, NCT04277221, NCT04888611, NCT03688178). These
vaccines use DCs to deliver antigens and stimulate host immune activation against the
tumor. Recently, in a phase III nonrandomized controlled trial of 331 patients, adding
DCVax-L (lysate-loaded dendritic cell vaccination) to the standard of care demonstrated a
clinically and statistically meaningful improvement in median OS in patients with either
newly diagnosed or recurrent GBM [100]. The conjugate vaccine SurVaxM adopts surviving
as an antigen to stimulate a CD8 lymphocyte to mediate response against the tumor. In
a phase IIA study, this vaccine has been proposed after surgery and radiotherapy with
concurrent temozolomide in patients with newly diagnosed GBM. In this cohort, the vaccine
showed promising clinical efficacy in both methylated and unmethylated patients achieving
a PFS and OS of 11.4 and 25.9 months in the overall population [101]. In a phase 3 study,
DSP-7888, an immunotherapeutic cancer vaccine derived from the Wilms’ tumor gene 1
(WT1) protein, is under evaluation in combination with Bevacizumab versus Bevacizumab
alone in patients with recurrent or progressive GBM (WIZARD 201G, NCT03149003).
(Table 3).

Table 3. Ongoing phase III trials targeting tumor microenvironment in glioblastoma.

Trial Name Phase Experimental Compounds Setting

NCT03548571 II/III

Dendritic Cells transfected with
mRNA from autologous tumor

stem cells, survivin, and
hTERT [95]

Primary treated patients
with IDH wild-type,

MGMT-promotor
methylated GBM

NCT04277221 III Autologous Dendritic Cell/Tumor
Antigen (ADCTA-SSI-G1) Recurrent GBM

NCT03149003 III DSP-7888 Dosing Emulsion [102]
Recurrent or Progressive

GBM (secondary
GBMexcluded)

NCT02761070 III Dose-dense temozolomide
followed by Bevacizumab Recurrent GBM

NCT02017717 III Nivolumab +/− Ipilimumab Recurrent GBM

NCT02667587 III Nivolumab

Newly diagnosed
MGMT-promotor
methylated GBM

(secondary
GBMexcluded)

NCT00045968 III DCVax-L [103] Newly diagnosed GBM

NCT03025893 II/III Sunitinib Recurrent GBM
TME, tumor microenvironment; TERT, telomerase reverse transcriptase; MGMT, methyl Methylguanine-DNA
Methyltransferase; GBM: Glioblastoma.

Some phase II trials are focusing on targeting specific cytokines in TME: L19TNF, a
fully human fusion protein consisting of human tumor necrosis factor (TNF)-α fused to
the L19 antibody, induces apoptosis or necrosis in target cells, stimulates inflammation
and immunity (NCT04573192, NCT04443010), olaptesed pegol (NCT04121455) specifically
binds to SDF-1 thereby preventing the binding to its receptors CXCR4 and CXCR7.

The possibility of shifting TME composition favoring tumor regression and immune
response has led to the development of interesting novel approaches. It has been demon-
strated that immune-activating cytokines such as interferon α (INF α) and interleukin
12 can modify immune-cells composition on TME, favoring and restoring an immune re-
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sponse against tumors [104–106]. Unfortunately, systemic administration of these cytokines
is associated with significant and limiting side effects. Gene-and cell-based delivery of
cytokines may overcome these limitations. Tie2 (Tek tyrosine kinase receptor)-expressing
cells are a unique class of monocytes due to their ability to stimulate paracrine pathways
resulting in angiogenesis and tumor growth [107–110]. These cells have been assessed as a
candidate for cell-based delivery of cytokines in preclinical and early clinical studies. A
phase I/II study is currently assessing tamferon: an autologous hematopoietic progenitor
cell expressing TIE2 and exposed to a viral vector (lentiviral vector) encoding INF α gene
(NCT03866109).

Targeting angiogenesis is a current investigational field, with the humanized mono-
clonal anti-VEGF antibody bevacizumab being the most studied molecule and the only
FDA-approved treatment of recurrent GBM. Bevacizumab is, however, burdened by no
impact on overall survival due to resistance mechanisms determined by marked hypoxia
inside the tumor. Retrospective studies in GBM showed administration of inhibitors of the
renin-angiotensin system during standard treatment reduced peritumoral edema, lowered
dosages of steroids, and improved survival [111].

Ongoing clinical trials are testing bevacizumab in combination with additional agents,
such as immune checkpoint inhibitors and radiotherapy, in various settings. (NCT03452579,
NCT03661723, NCT03743662). (Tables 3 and 4). Apatinib is another specific VEGFR2
inhibitor that is currently under investigation in combination with temozolomide in patients
with newly diagnosed high-grade gliomas (NCT03741244).

Table 4. Ongoing phase III trials targeting tumor microenvironment in other gliomas. TME, tumor
microenvironment.

Trial Name Phase Experimental
Compounds Setting

NCT01236560 II/III Bevacizumab Newly diagnosed high-grade
gliomas in young patients

NCT00045968 III DCVax-L [103] Newly diagnosed grade IV
astrocytoma

NCT03149003 III DSP-7888 Dosing
Emulsion [102]

Grade 4 astrocytoma.
Recurrent or Progressive

disease.

NCT04532229 III Nimotuzumab Newly diagnosed diffuse
intrinsic pontine glioma

NCT05009992 III ONC201 [112] Midline glioma

6. Conclusions

In recent years molecular characterization of gliomas has provided more accurate tools
to differentiate glioma subtypes, thus explaining differences in natural history and response
to treatments. Studies on tumor microenvironments have revealed further mechanisms
useful to understand the biology of these tumors. Even if the majority of studies in the
literature focused on GBM, there is also growing evidence of IDH-mutated astrocytoma and
oligodendroglioma. The most promising field deals with the immune microenvironment,
reporting a relationship between higher tumor grade and marked immunosuppressive
signatures. IDH mutated gliomas have been associated with lower infiltration of immune
cells than IDH wt gliomas. Interactions of glioma cells along with immune cells appear to
be a challenging target for the development of new therapeutic strategies, such as CAR-T
and CAR-M. Vaccines recently showed their clinical efficacy also in GBM patients in early
settings of treatment. This enhances the importance of the immune-associated microenvi-
ronment and justifies further efforts toward the development of trials investigating agents
able to restore immune response against tumors.
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