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Simple Summary: Prostate cancer (PC) is the most common cancer in elderly men, but its prevention
by appropriate dietary interventions remains elusive. In this study, we show that the white blood
cells of PC patients presented more DNA damage than those of healthy controls and were more
prone to DNA damage induced by ionising radiation. Furthermore, our results indicate that this
excess of DNA damage can be explained by low levels of lycopene (a carotenoid found in some red
fruits such as tomatoes) and selenium (a mineral found in protein-rich foods such as beef and Brazil
nuts). The results of this study suggest that a higher intake of foods rich in lycopene and selenium
may help reduce the risk of prostate cancer and DNA damage caused by ionising radiation and/or
oxidative stress.

Abstract: Almost half of prostate cancer (PC) patients receive radiation therapy as primary curative
treatment. In spite of advances in our understanding of both nutrition and the genomics of prostate
cancer, studies on the effects of nutrients on the radiation sensitivity of PC patients are lacking. We
tested the hypothesis that low plasma levels of selenium and lycopene have detrimental effects on
ionising radiation-induced DNA damage in prostate cancer patients relative to healthy individuals.
The present study was performed in 106 PC patients and 132 age-matched controls. We found that
the radiation-induced micronucleus (MN) and nuclear buds (NBuds) frequencies were significantly
higher in PC patients with low selenium (p = 0.008 and p = 0.0006 respectively) or low lycopene
(p = 0.007 and p = 0.0006 respectively) levels compared to the controls. The frequency of NBuds was
significantly higher (p < 0.0001) in PC patients who had low levels of both selenium and lycopene
compared to (i) controls with low levels of both selenium and lycopene and (ii) PC patients with
high levels of both selenium and lycopene (p = 0.0001). Our results support the hypothesis that low
selenium and lycopene levels increase the sensitivity to radiation-induced DNA damage and suggest
that nutrition-based treatment strategies are important to minimise the DNA-damaging effects in PC
patients receiving radiotherapy.

Keywords: micronutrients; micronuclei; radiation sensitivity; prostate cancer (PC); DNA dam-
age biomarkers

1. Introduction

Prostate cancer is one of the most common non-cutaneous cancers and the fifth lead-
ing cause of cancer deaths among men worldwide [1]. It is worth noting that the bur-
den of the disease will soar due to aging and the economic boom [2]. Factors such as
ethnic background, family history and advancing age are associated with an increased
risk of this disease [3,4]. Therefore, it is important to identify high-risk individuals for
the precise management of the disease and develop better cancer biomarkers for timely
preventative interventions.

Selenium is an essential mineral and has antioxidant properties. Increased oxidative
stress due to the generation of reactive oxygen species (ROS) likely increases the adverse

Cancers 2023, 15, 979. https://doi.org/10.3390/cancers15030979 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15030979
https://doi.org/10.3390/cancers15030979
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-6477-9127
https://doi.org/10.3390/cancers15030979
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15030979?type=check_update&version=1


Cancers 2023, 15, 979 2 of 12

effects after radio- and chemotherapeutic management of the disease [5]. Dietary selenium
supplementation may protect the healthy tissues and reduce the side effects of genotoxic
treatments. In spite of its antioxidant and anti-carcinogenic properties, the results for
selenium are inconsistent and conflicting [6–10]. Recently, data from 15 prospective studies
showed some encouraging results that provided evidence of an association of high blood
selenium levels and with a reduced risk of aggressive prostate cancer [11].

Like selenium, lycopene also plays an important protective role in the prevention of
cancer, including prostate cancer, by inhibiting oxidative stress, apoptosis and inflammation
due to its anti-inflammatory, anti-oxidative and anti-proliferative properties [12–14]. The
lycopene levels in the blood are inversely associated with the risks of cardiovascular
disease, metabolic syndrome and cancer, including prostate cancer [15,16]. A double-blind
placebo-controlled study involving lycopene-rich juices showed a significant increase in
the serum lycopene levels, leading to a reduction in genome damage, the generation of
ROS and lessen disease burden [17]. It has been shown that the administration of lycopene
to newly diagnosed PC patients for three weeks, twice a week, resulted in lowering the
disease risk and the growth of PC cells [18]. It has also been shown that men with localised
prostate adenocarcinoma, receiving tomato sauce (lycopene, 30 mg/day for weeks), showed
(i) an increase in lycopene levels in the serum and prostate tissue, (ii) a reduction in PSA
concentration and (iii) lower DNA damage in the prostate gland and white blood cells [19].

The precision therapeutic treatment of patients undergoing radiotherapy remains
an aim of clinical testing to predict better outcomes prior to treatment. The impact of
genetics, epigenetics and life style factors including diet needs to be better understood to
achieve precise and desired outcomes after a therapeutic treatment [20]. In spite of the
molecular mechanisms involved in radio-biological processes being well understood, the
challenge still remains of how to better identify individuals at increased adverse therapeutic
risk [21]. Exposure to radiations during cancer radiotherapy results in increased toxicity,
oxidative stress and inflammation that can lead to genetic instability [22]. Chromosome
aberrations such as deletions and rearrangements are the main cancer-initiating events.
Therefore, it is important to identify people at increased risk of developing cancer by using
biomarkers of chromosome damage, such as micronuclei (MNi), nucleoplasmic bridges
(NPBs) and nuclear buds (NBUDs) [23–25]. MNi are small extra-nuclear bodies that contain
damaged chromosome fragments and/or whole chromosomes that were not incorporated
into the main nucleus after cell division [24]. MNi are a cancer-predictive biomarkers of
chromosome breakage and/or of the loss of whole chromosomes. NPBs are biomarkers
of dicentric chromosomes caused by DNA misrepair and/or telomere end-fusions, and
NBUDs are biomarkers of the elimination of amplified DNA and/or unresolved DNA repair
complexes [24]. A higher MN frequency reflects a higher genomic damage and may thus
be used as a marker for predicting the cancer risk [25]. The cytokinesis-block micronucleus
(CBMN) assay is one of the most important in vivo and in vitro cytogenetic assays [24,26].
It is a comprehensively validated and standardised method to evaluate in vivo the radiation
exposure of individuals working in healthcare (occupational exposure) and of accidentally
exposed individuals [27,28]. Keeping in view the antioxidant potential of both selenium
and lycopene, we tested the hypothesis that the peripheral blood lymphocytes of PC
patients have an aberrantly increased genomic instability and are susceptible to ionizing
radiation-induced (3 Gy) DNA damage due to low levels of selenium and lycopene.

2. Materials and Methods
2.1. Study Population

The prostate cancer project is a collaborative initiative undertaken by researchers
from Royal Adelaide Hospital and CSIRO. The Human Ethics Committees of Royal Ade-
laide Hospital and CSIRO approved the study design. All subjects including controls
provided written informed consent to participate in the project. All prostate cancer patients
(n = 103) at the time of recruitment were untreated, and the diagnosis was confirmed by
histopathological findings that included suspicious digital rectal examination (DRE) and
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significantly higher prostate-specific antigen (PSA; 0.08–45 ng/mL) levels in the blood.
The Gleason score [29] varied between 6 and 9 at the time of the diagnosis. Age-matched
controls (n = 132) who were healthy and prostate cancer-free (normal PSA levels ranging
between 0.0 and 3.0 ng/mL) at the time of recruitment and were not taking any medication
for life-threatening diseases were included in the study. We intended to match the cases
and controls with regard to their smoking status; however, it was not possible, due to the
difficulty in recruiting smokers in the control group.

2.2. Blood Collection and Irradiation of Lymphocytes

Blood samples were collected after overnight fasting in lithium heparin tubes from PC
patients and controls. An hour after blood collection, 500 µL of whole blood was mixed with
4.5 mL of pre-warmed RPMI-1640 culture medium (Thermo Trace, Melbourne, Australia)
supplemented with 10% foetal calf serum (FCS; Thermo Trace, Melbourne Australia). To
cause radiation-induced DNA damage in lymphocytes, the whole blood cultures were
exposed to 3 Gy γ-rays from a 137Cs source (Cis Bio IBL 437 C Blood Product Irradiator,
dose rate 5.34 Gy/min). The irradiation dose selected in the present study is known to
induce approximately a 100-fold increase in the micronucleated (MN) binucleated (BN)
frequency relative to spontaneous frequency in cultured lymphocyte using CBMN cyt
assay [28].

2.3. Cytokinesis-Block Micronucleus Cytome (CBMN Cyt) Assay for Lymphocytes Using Whole
Blood Cultures

The assay was performed as described previously [24] with slight modifications. The
whole blood cultures were set up in duplicate. For comparing the results, unirradiated
blood cultures were used as controls. Following radiation exposure (radiation-induced
damage), irradiated and unirradiated cultures were incubated for 1 h in a humidified incu-
bator at 37 ◦C containing 5% CO2. Following this incubation, 45 µL of phytohaemagglutinin
(PHA, 22.5 mg/mL; Jomar Diagnostics, Stepney, Australia) was added to each culture,
and the cultures were incubated for further 44 h prior to the addition of cytochalasin-B
(Cyto-B; Sigma, Macquarie Park, Australia) to a final concentration of 6 µg/mL. Following
the addition of Cyto-B, the cultures were incubated for another 24 h. The lymphocytes
were separated from these cultures by carefully overlaying the evenly distributed culture
contents with 1.5 mL Ficoll-Paque (Amersham BioSciences, Buckinghamshire, UK ) in TV10
tubes (Sarstedt, Mawson Lakes, Australia). The tubes were then centrifuged for 30 min
at 400× g at 20 ◦C. The isolated buffy lymphocyte layer (~200 µL) was transferred to an
another TV10 tube containing 600 µL of Hanks’ balanced salt solution (HBSS; Thermo Trace,
Melbourne, Australia) and centrifugated at 180× g at 20 ◦C for 10 min. The supernatant
was discarded, and the cells (lymphocytes) were re-suspended in 300 µL of RPMI-1640
culture medium containing 5.0 µL of dimethyl sulfoxide (DMSO; Sigma, Macquarie Park,
Australia) to facilitate the disaggregation of the cells. The cells were then transferred onto
slides using a cytocentrifuge (Shandon, Runcorn, UK). The air-dried slides were fixed and
stained using Diff-Quik (LabAids, Narrabeen, Australia). The slides were scored under
code for BN cells containing MN, NPB and NBuds, as per previously described scoring
criteria [24]. At least 1000 BN cells were scored per slide that consists of MN, NPB and
NBuds. Representative examples of these biomarkers are depicted in Figure 1.

2.4. Micronutrient Analysis and PSA Levels

The plasma concentrations of lycopene and selenium were measured using HPLC
at the CSIRO Human Nutrition laboratory [30]. Duplicate analyses (homogeneity of the
sample) were carried out for each sample. The PSA levels in blood were measured by a
certified medical diagnostics laboratory using an immunoassay in the healthy controls and
PC cases.
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Figure 1. Representative examples of various CBMN cyt assay markers. (A) Binucleated (BN) cell
without MN, NPB or NBuds, (B) BN cell with MN, (C) BN cell with NPB and (D) BN cell with NBuds.

2.5. Statistical Analysis

All data for these two nutrients and other parameters were analysed for Gaussian
distribution to determine whether to use parametric or non-parametric tests. We used
the χ2-square test if there were significant differences in the smoking status in both PC
patients and controls. The unpaired non-parametric Student’s t test was used to determine
the significance of the differences between the two groups with regard to age, PSA levels,
baseline and radiation-induced micronuclei, nucleoplasmic bridges and nuclear buds in
bi-nucleated cells. The results with respect to the DNA damage biomarkers were analysed
using one-way ANOVA in relation to high or low selenium and high or low lycopene
concentrations (high blood concentrations were >120 µmol and >0.25 µg/mL, and low
blood concentrations were ≤120 µmol and ≤0.25 µg/mL for selenium and lycopene,
respectively). These cut-off values were based on the median concentrations in healthy
controls. All analyses were performed using PRISM 9.0 (GraphPad software, San Diego,
CA, USA). All p values < 0.05 were considered statistically significant.

3. Results
3.1. Demographic and Clinical Characteristics of the Cohorts

Table 1 shows the demographic profiles of the PC patients as well the as the healthy con-
trols. There were no significant differences in the age of the cases (mean age 71.24 ± 7.18 years)
and the controls (mean age 69.07 ± 7.99 years). The number of smokers was significantly
higher (current and ex-smokers; p = 0.0001) in the patient group compared to the controls.
Similarly, the PSA levels were significantly higher (p = 0.0001) in the PC cases compared to
the controls.

Table 1. Comparison of prostate cases and controls by selected demographic, micronutrient and
clinical variables.

Characteristics Cases Controls p Value

Age (years; Mean ± SD) 71.24 ± 7.18 69.07 ± 7.99 0.88
Total plasma PSA (ng/mL;

mean ± SD) 9.5 ± 8.5 2.4 ± 2.45 0.0001 *

Gleason score 6–9 -

Smoking status
Current smokers 9 3

0.0001 *Ex-smokers 60 39
Non-smokers 25 54
Undeclared 24 36

Selenium (µg/L) 116.1 ± 1.59
(71.83–157.60)

125.6 ± 2.56
(79.17 –238.10) 0.002 *

Lycopene (µg/L) 0.184 ± 0.011
(0.013–0.655)

0.215 ± 0.009
(0.03–0.58) 0.008 *

* Chi-square test. Values given in the brackets represent the range.
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3.2. Association of Low Selenium Concentrations with DNA Damage Biomarkers at Baseline and
after a 3 Gy Radiation Challenge in Controls and Patients

The results indicated that the baseline MNi frequency was marginally higher in PC
patients with low or high selenium levels when compared to controls (Figure 2A), but
the difference was not statistically significant. Similar results were obtained for both
groups when the plasma selenium concentration was high. When the lymphocytes from
the controls and PC patients with low plasma selenium levels were irradiated with 3 Gy,
the MN frequency was significantly higher in the patients than in the controls (p = 0.008;
Figure 2B), whereas it was slightly higher (p = 0.7; Figure 2B) in the PC cases compared to
the controls in the presence of high plasma selenium levels.
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Figure 2. CBMN Cytome assay biomarkers in PC patients (red bars) and age-matched healthy
controls (green bars) stratified as per selenium concentration (LS: low selenium; HS: High selenium);
MN frequency at baseline (A) and after 3 Gy irradiation (B); NPBs at base line (C) and after 3 Gy
irradiation (D); NBuds at baseline (E) and after 3 Gy irradiation (F). N = 63, 69, 69 and 34, respectively,
from left to right for each bar. p values are only indicated for those comparisons that are significant.

The baseline frequency of NPBs was significantly higher in the PC cases with low
selenium than in the controls (p = 0.005; Figure 2C). Similarly, in the PC cases with high
selenium levels, the baseline frequency of NPBs was marginally significantly higher com-
pared to the controls (p = 0.05; Figure 2C). The radiation-induced frequency of NPBs also
showed a similar trend but did not reach significant level in both the PC cases and the
controls, with either low or high selenium levels (Figure 2D). The baseline frequency of
NBuds was not significantly different in the PC cases and controls with either low or high
selenium levels, though it was marginally higher in the PC group (Figure 2E). However, the
radiation-induced frequency of NBuds was significantly higher in the PC cases compared
to the controls with either low or high selenium levels (p = 0.0006 and p = 0.055 respectively;
Figure 2F).
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3.3. Association of Low Lycopene Concentration with DNA Damage Biomarkers at Baseline and
after a 3 Gy Radiation Challenge in Controls and Patients

The baseline MN frequency was not significantly different in the PC cases and controls
with either low or high lycopene levels (Figure 3A), though it was marginally higher in the
PC cases. However, the radiation-induced MN frequency was significantly higher in the
PC cases than in the controls with low lycopene levels (p = 0.007; Figure 3B), whereas it
was marginally higher in the PC cases with high lycopene concentration.
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Figure 3. CBMN Cytome assay biomarkers in PC patients (red bars) and age-matched healthy
controls (green bars) stratified as per lycopene concentration (LL: low lycopene; HL: high lycopene);
MN frequency at baseline (A) and after 3 Gy irradiation (B); NPBs at baseline (C) and after 3 Gy
irradiation (D); NBuds at baseline (E) and after 3 Gy irradiation (F). N = 61, 67, 71 and 36, respectively,
from left to right for each bar. p values are only indicated for those comparisons that are significant.

The baseline frequency of NPBs was significantly higher in the PC cases with either
low or high lycopene levels compared to the controls (p = 0.002 and p = 0.01, respectively;
Figure 3C). The radiation-induced frequency of NPBs as marginally higher in the PC cases
compared to the controls, irrespective of the lycopene status (Figure 3D). The baseline
frequency of NBuds was marginally higher in the PC cases compared to the controls,
irrespective of the lycopene concentration (Figure 3E). The radiation-induced frequency of
NBuds was significantly higher in the PC cases compared to the controls with either low
or high lycopene status (p = 0.0006 and p = 0.05, respectively; Figure 3F). Generally, a low
lycopene concentration was associated with increased DNA damage biomarkers, especially
in prostate cancer cases.

3.4. Cumulative Effects of Low Selenium and Lycopene on DNA Damage Biomarkers at Baseline
and after a 3 Gy Radiation Challenge in Controls and Patients

The baseline MN frequency was significantly higher in both controls (p = 0.007) and
PC patients (p = 0.0002) with low selenium and lycopene levels compared to subjects
with high selenium and lycopene concentrations (Figure 4A). Similarly, the radiation-
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induced MN frequency was significantly higher in the controls (p = 0.0003) and PC cases
(p = 0.007) with low selenium and lycopene levels compared to subjects with high selenium
and lycopene levels (Figure 4B). The baseline and radiation-induced MN frequencies
were elevated in the PC cases compared to the controls, irrespective of the selenium and
lycopene concentrations. Similar results were observed with regard to the baseline and
radiation-induced frequencies of NPBs in the PC cases and controls, irrespective of the
selenium and lycopene concentrations (Figure 4C,D). The baseline frequency of NBuds was
not significantly different in the PC cases and controls, irrespective of the selenium and
lycopene status; however, it was slightly higher in the PC cases (Figure 4E). The radiation-
induced frequency of NBuds was significantly higher in the PC cases compared to the
controls when the selenium and lycopene concentrations were low (p < 0.0001; Figure 4F);
however, it did not reach a significant level when the selenium and lycopene levels were
high. The radiation-induced frequency of NBuds was significantly higher in the controls
(p < 0.0001) and PC cases (p < 0.0001) with low selenium and lycopene levels compared
to subjects with high selenium and lycopene concentrations (Figure 4F). The results of
samples with high/low or low/high selenium and lycopene levels were not significantly
different (Supplementary Figure S1).
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Figure 4. CBMN Cytome assay biomarkers in PC patients (red bars) and age-matched healthy
control (green bars) stratified as per selenium and lycopene concentrations (LS: low selenium; HS:
high selenium; LL: low lycopene; HL: high lycopene); MN frequency at baseline (A) and after 3 Gy
irradiation (B); NPBs at baseline (C) and after 3 Gy irradiation (D); NBuds at baseline (E) and after
3 Gy irradiation (F). N = 29, 34, 52 and 28, respectively, from left to right for each bar. p values are
only indicated for those comparisons that are significant.
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Our results indicate that a low selenium and lycopene status plays an important role
in aggravating the DNA damage in response to radiation, and its impact is significantly
pronounced in PC cases compared to healthy controls.

4. Discussion

Cancer is viewed as a progressively multistep process that involved the mutation
and selection of cells with increasing capacity for proliferation, invasion and accumulation
of genomic damage; there is evidence that cancer has a genetic basis [31,32]. PC is the
most common non-cutaneous solid malignancy in men worldwide. PC patients take
supplements and natural products including selenium and lycopene to improve cancer
outcomes as a chemo-preventive strategy; however, the evidence of a benefit from these
nutritional interventions so far is very limited; therefore, further research is required to
fully understand the role of these nutrients in improving cancer outcomes [33–35].

The CBMN cytome assay endpoints provide information about chromosome breakage
and rearrangements as well as gene amplification in cultured peripheral blood lympho-
cytes [24,26,36,37]. The lymphocytes circulate in the human body, can accumulate genetic
damage and are exposed to a variety of tumour-derived substances as well as to altered
tissue microenvironments. Therefore, acquired chromosome aberrations in these cells
are important biomarkers of genomic instability that can predict an increased cancer
risk [38–41]. In the present study, it was shown that cultured peripheral blood lymphocytes
from PC patients with low selenium and lycopene blood levels exposed to 3 Gy radiation
showed increased chromosome instability, as indicated by the increased frequencies of
MN and NBuds compared to those measured in the controls. We reported previously
that the frequency of radiation-induced NBuds was significantly higher in PC patients
than in controls, whereas those of MN and NPBs were not significantly different in these
groups [42].

It was also reported that the radiation-induced (3 Gy) MN frequency predicted in-
creased gastrointestinal (GI) and genitourinary (GU) morbidity [43]. However, in our
previous report, only the spontaneous MN frequency was found to be linked with the
worsening of GI symptoms, significantly correlated with lower plasma concentrations of
selenium and α-tocopherol [44]. These different findings were perhaps due to fact that
the confounding effects of various nutritional factors including selenium and lycopene
on the expression of the radiation-sensitivity phenotype (measured by the CBMN assay)
were not examined in the previous study [43]. Therefore, based on the available data, it
is plausible that patients who consume a diet deficient in selenium and lycopene may be
more prone to a high radiation-induced DNA damage. The present results support the
above hypothesis that people with low blood selenium and lycopene levels are sensitive
to radiation-induced DNA damage and that this damage is significantly pronounced in
PC patients. It has also been suggested that new dietary strategies should be diligently
pursued to further understand the mechanisms associated with the progression of this
disease [45].

Radiotherapy induces an arrest in the cell cycle in a p53-dependent manner in re-
sponse to genetic damage induced by ionizing radiation, which can lead to the generation
of free radicals that can attack the sugar-phosphate backbone of DNA [46,47]. Selenium
is an integral part of extracellular and cellular metalloenzymes, glutathione peroxidase,
thioredoxin reductase and other selenoproteins that have anti-inflammatory and/or antiox-
idant properties [48]. Recent in vitro and in vivo studies and findings from an umbrella
review [48] have shown that lycopene has antioxidant [49], anti-inflammatory [50], anti-
carcinogenic and cardio-protective properties [51], suggesting that it plays a protective role
in chronic diseases including cancer [52]. Lycopene in association with selenium could
lower oxidative stress, decrease lipid peroxidation, reduce the level of reactive oxygen
species and scavenging free radicals generated following exposure to ionizing radiation,
thereby reducing DNA damage. Inflammation is induced by exposure to radiations that
can cause tissue damage due to the generation of ROS and to persistently high ROS levels
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as a consequence of damaged mitochondria and activated NADPH oxidases [53]. ROS
are released from the mitochondria via the classic ATM–p53–bax DDR mechanism [54].
Many toll-like receptors (TLRs; important mediators of inflammatory pathways), RIG-
1 (RNA sensing) and cGAS/cGMP/STING sensors connect the DNA damage response
(DDR) to activate pro-inflammatory responses as a result of cellular stress by engaging
NF-kB and TKB1/IRF3 pathways, thus promoting positive and negative feedback loops
triggering senescence and cell death [55]. Radiation-induced DNA damage can lead to
the activation of cytosolic DNA (extra-nuclear DNA present in micronuclei) sensing path-
way mediated by the stimulation of interferon genes (STING) of the cGAS/cGMP/STING
pro-inflammatory pathway.

To further understand how these nutrients, either alone or in combination, provide
protection against radiation-induced DNA damage, it is important to understand their
general metabolism that involves the following: (i) release from the food matrix, (ii) uptake
by intestinal cells, (iii) secretion into the blood and circulation, (iv) tissue uptake and
retention and (v) role of various proteins involved in these physiological processes. It is
also important to understand the role of various genes including p53 [56], their variation
in influencing the metabolic processes as wells as their precise role and mechanism(s) in
eliciting the DNA damage response and efficient DNA repair.

5. Conclusions

In conclusion, the results of our study provide important evidence that prostate cancer
patients who are deficient in selenium and/or lycopene may be more prone to DNA damage
induced by ionising radiation. These observations provide a strong basis for future studies
that test the feasibility of reducing DNA damage in PC patients by administering selenium
and lycopene supplementation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15030979/s1, Figure S1. CBMN Cytome assay biomarkers in
PC patients (red bars) and age matched healthy control (green bars) stratified as per selenium and
lycopene concentration (LS: low selenium; HS: High selenium; LL: low lycopene; HL: High lycopene);
MN frequency at baseline (A) and after 3 Gy irradiation (B); NPBs at base line (C) and after 3 Gy
irradiation (D); NBuds at baseline (E) and after 3 Gy irradiation (F); N = 24, 21, 27 and 20 respectively
from left to right for each bar.
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