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Simple Summary: The gut microbiome has been shown to play a role in carcinogenesis and the
progression of cancer, in part through its interaction with the host immune system. Research from nu-
merous clinical cohorts and preclinical models suggests that gut microbes contribute to response and
toxicity to cancer treatment—including chemotherapy, immunotherapy, and radiation. Furthermore,
disrupting the gut microbiome with broad spectrum antibiotics negatively impacts the outcomes
to cancer therapy. Studies have shown improved oncologic outcomes to immunotherapy and other
treatment in the setting of specific dietary patterns, such as a high fiber diet. Accordingly, therapeutic
strategies including fecal microbiome transplant, pre/probiotics, and dietary interventions have
emerged aiming to improve patient outcomes and are being tested in ongoing clinical trials. The aim
of the present work is to provide an update on the available evidence regarding how gut microbes
and other factors affect the response and toxicity to cancer therapy, with opportunities to target
these therapeutically.

Abstract: The gut microbiome comprises a diverse array of microbial species that have been shown
to dynamically modulate host immunity both locally and systemically, as well as contribute to
tumorigenesis. In this review, we discuss the scientific evidence on the role that gut microbes and diet
play in response and toxicity to cancer treatment. We highlight studies across multiple cancer cohorts
that have shown an association between particular gut microbiome signatures and an improved
response to immune checkpoint blockade, chemotherapy, and adoptive cell therapies, as well as
the role of particular microbes in driving treatment-related toxicity and how the microbiome can be
modulated through strategies, such as fecal transplant. We also summarize the current literature
that implicate high fiber and ketogenic diets in improved response rates to immunotherapy and
chemotherapy, respectively. Finally, we discuss the relevance of these findings in the context of
patient care, advocate for a holistic approach to cancer treatment, and comment on the next frontier
of targeted gut and tumor microbiome modulation through novel therapeutics, dietary intervention,
and precision-medicine approaches.

Keywords: gut microbiome; cancer immunotherapy; microbiome modulation; antibiotics; toxicity;
dietary interventions

1. Brief Introduction

The gut microbiome comprises a diverse and complex array of microbes that play
integral roles in regulating the immune system and maintaining human health. Alterations
in the composition and diversity of the gut microbiota are associated with a variety of
molecular and physiologic changes, and such alterations have been implicated in mul-
tiple disease processes, including cancer—specifically oncogenesis, tumor progression,
and response to therapy [1]. There is an emerging body of evidence that highlights the
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importance of the gut microbiome composition in the efficacy, as well as toxicity, of various
cancer treatments, including immunotherapy [2–9], chemotherapy [10–12], and targeted
and adoptive cell therapies [13,14]. Given these findings, there is significant interest in
modulating the gut microbiome to affect treatment responses. Several interventions, in-
cluding fecal microbiome transplant, prebiotic, probiotic, and antibiotic therapies, as well
as dietary intervention strategies, have emerged and shown promising results as strategies
for modulating the microbiome.

In this review, we will summarize the key findings to highlight the emerging rela-
tionship between the gut microbiome and response, resistance, and toxicity observed with
various cancer treatments. Further, we also outline the current and possible future strategies
that seek to modulate the gut microbiome to prospectively improve clinical outcomes to
existing therapies in future trials.

2. The Role of the Gut Microbiome in Response to Cancer Treatment
2.1. Immunotherapy

Gut microbes have been shown to modulate host immunity in multiple important
ways—locally at the level of the gut mucosa, via crosstalk between gut commensals and
mucosal immune cells, and systemically via immune cell priming, among other mecha-
nisms [15]. These gut resident microbes maintain a dynamic relationship with the host
immune system [16,17], and different microbiome compositions have been shown to effect
the host immune tone [18] and ultimately may affect the response to immunotherapy
in cancer.

Immune checkpoint inhibitors (ICIs) have proven to be highly effective against mul-
tiple solid tumors, including advanced melanoma, non-small cell lung cancer (NSCLC),
and renal cell carcinoma (RCC) [19–23]. However, resistance is observed in a substantial
portion of patients who do not achieve durable responses [24]. Thus, novel biomarkers
of response and resistance are critical for understanding the underlying mechanisms and
in devising novel therapies aimed at improving outcomes in future trials. Evidence from
several clinical cancer cohorts suggests that unique gut microbial taxa/signatures may
indeed characterize response and/or resistance to ICI.

Hallmark studies in melanoma first established such an association between the com-
position of the gut microbiome and the response to programmed cell death protein 1 (PD-1)
blockade [3,5]. In one study, 112 patients with metastatic melanoma treated with anti-PD-1
therapy observed that the gut microbiota of responders (n = 30) harbored significantly
greater compositional diversity when compared to non-responders (n = 13), with specific
enrichment of taxa from the family Ruminococcaceae [3]. These trends were also observed
in an independent cohort of hepatocellular carcinoma patients [3,8]. Ruminococcaceae and
Bacteroidaceae-dominated microbiomes were also associated with an improved response to
ICI in metastatic melanoma patients in Australia and the Netherlands [25]. Separately, in
another metastatic melanoma patient cohort (n = 42, overall response rate (ORR) = 38%) [5],
and two NSCLC cohorts [7,9], members of the Bifidobacteriaceae family, including Bifi-
dobacterium longum, were shown to be enriched in ICI-responders vs. non-responders.

Furthermore, in a study examining the ICI response in patients with NSCLC (n = 60)
and RCC (n = 40), researchers found that primary resistance to ICIs can be attributed to
an abnormal gut microbiome composition [2]; the commensal that was most significantly
associated with a favorable clinical outcome in their study (in both cancer groups) was
Akkermansia muciniphila, which was enriched in patients with the best clinical response and
longest progression-free survival prior to the initiation of treatment. A. muciniphila has also
been shown to be enriched in ICI responders in other cancer types, including hepatocellular
carcinoma, highlighting its particular importance in response to ICI across multiple cancer
patient populations [8].

However, the role of A. muciniphila as a definitive response promoting the gut microbe
is confounded by recent data that suggests that overdominance of the gut microbiome by
A. muciniphila could predispose poorer outcomes with ICI [6]. In a large cohort of advanced
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NSCLC patients treated with PD-1 blockade (n = 338), although a relative abundance of
Akkermansia (Akk+) was associated with a 10% improvement in ORR, an overabundance of
the Akkermansia (>77th percentile of Akk+ subgroup) was associated with shorter overall
survival. This highlights the potential utility of precise quantification of Akk relative
abundance to be used as a biomarker in this patient cohort for response to ICI.

A primary mechanism by which the gut microbiota modulate antitumor immunity
is via metabolite production. For example, inosine, the purine metabolite produced by A.
muciniphilia and Bifidobacterium pseudolongum, among other species, has been found to enter
systemic circulation and promote Th1 activation, thereby improving the efficacy of ICI [26].
Other gut microbe metabolites, including short-chain fatty acids and anacardic acid, have
also been shown to modulate antitumor immune responses [27].

The current research demonstrates that although microbes serve as important biomark-
ers, heterogeneity in response-associated signatures exists. This suggests that different
families of resident gut bacteria may converge at the level of the physiologic function and
ultimately exert their influence to promote ICI response through the secretion of metabolites
that serve key functions in immune system modulation.

2.2. Chemotherapy

Host microbes also influence the response to chemotherapy in a context-specific manner,
as different taxa have been shown to exert different effects on outcomes to chemotherapy.

On one hand, the presence of particular bacterial species in the intratumoral micro-
biome can undermine the effect of chemotherapeutic drugs by way of modification of the
active agent by prokaryotic enzymes [11,28,29]. For example, in an in vitro colon cancer
model, the presence of an intact intratumoral microbiome was sufficient to modify gemc-
itabine, an antimetabolite chemotherapy agent used to treat various cancer types, into its
inactive form to lower its cytotoxic potency. Subsequent mechanistic studies demonstrated
that this effect was remarkably dependent on the expression of a long isoform of the bacte-
rial enzyme cytidine deaminase (CDDL), which was expressed primarily by members of
Gammaproteobacteria. This axis of resistance was then validated in preclinical colon cancer
mouse models where the use of the antibiotic, Ciprofloxacin, reversed resistance to gemc-
itabine. Elegant findings from these studies thus confirmed and highlighted the important
roles played by the host microbiome in altering the response to chemotherapy [11].

Contrastingly, however, other preclinical studies have demonstrated that the gut mi-
crobiome may indirectly enhance the response to chemotherapy. Cyclophosphamide, an
alkylating anticancer agent, affects the composition of the small intestine microbiome via
reduction of the bacterial species of the Firmicutes phylum and promotes disruption of
the intestinal barrier with translocation of certain bacteria, including, but not limited to
segmented filamentous bacteria and Lactobacillus johnsonii, Lactobacillus murinus, Barnesiella
intestinihominis, and Enterococcus hirae, into secondary lymphoid organs, where these mi-
crobes strengthen immune priming and specific anti-tumor immunity by stimulating helper
T-cell function. Interestingly, treatment with broad-spectrum antibiotics (vancomycin and
colistin) resulted in developed resistance to cyclophosphamide with reduced frequencies
of tumor-infiltrating CD3+ T-cells and Th1 cells, thus highlighting the overall importance
of the gut microbiota in enhancing the response to chemotherapy [10,30].

In addition to directly affecting the outcomes to chemotherapy, the composition of
the gut microbiome may also serve as a prognostic indicator in the setting of treatment
with chemotherapeutic agents. A recent study of patients with epithelial ovarian can-
cer demonstrated that distinct signatures of gut microbiota characterize an exceptional
response and observed resistance to platinum-based chemotherapy. While the gut micro-
biome of non-responders showed reduced overall diversity and specific enrichment of taxa
such as Coriobacteriaceae and Bifidobacterium, an exceptional response to platinum-based
chemotherapy was associated with increased compositional diversity and enrichment of
lactate-utilizing microbes belonging to the Veillonellaceae family. These findings highlight
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the predictive/prognostic role of intestinal microbiota in evaluating and monitoring the
clinical response to ovarian cancer therapy [12].

2.3. Targeted and Other Therapies

With the growing incorporation of targeted therapies and adoptive cell therapy tech-
niques into cancer treatment, researchers have begun to investigate the role the gut micro-
biome may play in modulating responses to these alternative treatment modalities.

Chimeric antigen receptor (CAR) T-cell therapy directed against CD19 has shown
significant success in the treatment of B-cell leukemia and lymphoma [31–33]. A recent
study published by Smith et al. analyzed whether particular gut microbiome compositions
were associated with improved clinical outcomes after CD19 CAR T-cell therapy in patients
with B-cell malignancies; they found that selected bacterial taxa Ruminococcus, Bacteroides,
and Faecalibacterium were associated with day 100 complete response, whereas Veillonel-
laceae was found in higher abundance in patients with lower day 100 complete response
rates [13]. Another study focusing on patients with hematologic malignancies sampled
the fecal microbiome of over one thousand patients undergoing allogeneic hematopoietic-
cell transplantation at four centers and demonstrated that higher diversity of intestinal
microbiota at the time of neutrophil engraftment was associated with lower mortality [34].

It is increasingly becoming more common for early phase clinical trials to include
translational endpoints, including microbiome investigations. A phase Ib/II study of rego-
rafenib, a multi-kinase inhibitor of vascular endothelial growth factor (VEGF) receptors,
and toripalimab, an anti-PD-1 monoclonal antibody (mAb), in patients with metastatic
colorectal cancer demonstrated a relatively low objective response rate of 15.2%. Correl-
ative microbiome studies show a significantly increased abundance of Fusobactrium in
non-responders compared to responders, representing a potential target for treatment mod-
ulation in this population [14]. A full list of clinical trials examining the gut microbiome
and response to cancer treatment is available in Table 1.
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Table 1. Trials examining the gut microbiome and the response to cancer treatment.

Disease Stage/Disease
Characteristics

Year
Approved

Study Name/
NCT Number Type of Treatment Relevant Study Outcome

(Primary or Secondary) Status Results

Colorectal Cancer

Metastatic or irresectable 2019 GIMICC/
NCT03941080 CT +/− TT Response to therapy based on gut

microbiome signatures Recruiting NA

All stages 2021 NCT04804956 Multiple Correlation between mesorectal
microbial signatures and survival Recruiting NA

Stage IV 2016 NCT02960282 5-FU based CT or
anti-PD-1 IO

Correlate gut microbiome with best
tumor response

Terminated (slow
accrual) NA

Stage I-III 2022 NCT05368688 Multiple (SOC treatment)
Correlate Fusobacterium with

oncologic outcomes (recurrence,
metastasis, survival)

Recruiting NA

Unresectable, relapsed,
or metastatic 2019 NCT03946917 ICI + regorafenib Relationship between microbiome

diversity and IO response Unknown
Patients with high-abundance

Fusobacterium have shorter PFS (2.0 vs.
5.2 months, p = 0.002) [14]

Breast Cancer

Newly diagnosed,
HER-2 positive 2022 NCT05444647 NACT + trastuzumab Correlation between gut

microbiome and pCR Recruiting NA

Newly diagnosed TNBC 2018 NCT03586297 NACT Correlate gut and intratumoral
microbiomes with pCR Recruiting NA

Stage I-III 2018 NCT03702868 Adjuvant CT Relationship between gut
microbiome and DFS

Terminated (slow
accrual) NA

Metastatic, ER+ HER2- 2020 NCT04579484 Aromatase inhibitor +
CDK4/6 inhibitor

Correlate gut microbiome with time to
treatment failure Recruiting NA

Lung Cancer

Not specified 2018 NCT03688347 CT + ICI Correlate microbiome data (oral, nasal,
skin, and gut) with ORR Completed

Responders had increased
Clostridiales (p = 0.018) but reduced

Rikenellaceae (p = 0.016) in gut
microbiome [35]

Stage IIIB/IV NSCLC with 1
or 2 prior systemic therapies 2017 NCT03195491 Nivolumab (2nd/3rd line) Correlate gut microbiome signatures

with clinical outcomes Completed

- High alpha diversity (Shannon index
> 2.31)- improved PFS (HR 4.2 on

multivariate analysis)
- Alistipes putredinis, Prevotella copri,

and Bifidobacterium longum enriched in
responders [9]

Stage III NSCLC 2021 NCT04711330 Chemo/RT followed by
maintenance durvalumab

Correlate microbiome (throat and
stool) with cancer progression during

IO treatment
Recruiting NA

Stage IIIB-IV NSCLC 2021 NCT04954885 Pembrolizumab +/− CT Correlate gut microbiome
with OS and PFS Recruiting NA
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Table 1. Cont.

Disease Stage/Disease
Characteristics

Year
Approved

Study Name/
NCT Number Type of Treatment Relevant Study Outcome

(Primary or Secondary) Status Results

Inoperable stage III NSCLC 2021 PRECISION/NCT05027165 Chemo/RT followed
by durvalumab

Correlate gut/saliva microbiome with
12 and 24mo PFS Recruiting NA

Stage II-III NSCLC,
newly diagnosed 2019 NCT04013542 RT + combination ICI Correlate microbiome to clinical

outcomes (ORR, PFS, OS) Recruiting NA

Stage IV NSCLC 2021 NCT04909034 Pembrolizumab + MS-20 Correlate gut microbiome and
clinical outcomes Recruiting NA

Stage IV or recurrent NSCLC 2020 NCT04636775 ICI Microbiome differences between
responders vs. non-responders Recruiting NA

Metastatic NSCLC, failed at
least 1 prior treatment 2017 NCT03168464 RT + combination ICI Correlate microbiome

changes with ORR Completed NA

Pancreatic Cancer

Pancreatic ductal
adenocarcinoma 2021 PDA-

MAPS/NCT04922515 Not specified Associate intestinal and tumoral
microbiome with treatment response Recruiting NA

Gynecologic Cancer

Advanced or recurrent 2021 NCT04957511 IO
Examine whether the gut microbiome

is associated with the response to
cancer immunotherapy

Recruiting NA

Melanoma

Stage IV 2021 NCT05102773 ICI Correlate microbiome alpha-diversity
with response to treatment

Active, not
recruiting

Ruminococaceae associated with
development of a potential irAE

(p = 0.03) [36]

Stage III-IV 2018 PRIMM/NCT03643289 IO Correlate gut microbiome diversity
with response to treatment Recruiting

- Bifidobacterium pseudocatenulatum,
Roseburia spp. and Akkermansia

muciniphila associated with responders
- Limited reproducibility of

microbiome-based signatures across
cohorts with machine learning [37]

Stage III cutaneous melanoma 2016 OpACIN-
neo/NCT02977052

Neoadjuvant ipilimumab
+ nivolumab

Associations between gut microbiome
with response rates and toxicity

Active, not
recruiting

- Faecalibactrium prausnitzii,
Butyricicoccus pullicaecorum, and

Akkermansia muciniphilia significantly
enriched in responders

- Reduced F. prausnitzii associated with
severe irAEs [25]
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Table 1. Cont.

Disease Stage/Disease
Characteristics

Year
Approved

Study Name/
NCT Number Type of Treatment Relevant Study Outcome

(Primary or Secondary) Status Results

Glioblastoma Multiforme

Not specified 2018 NCT03631823 RT +/− CT (with
temozolomide) Correlate gut microbiome and PFS Unknown NA

WHO grade 4,
newly diagnosed 2022 THERABIOME-

GBM/NCT05326334 CT + RT Gut microbial composition in late
versus early progressors

Not yet
recruiting NA

Head and Neck Cancer

Unresectable locoregionally
advanced disease 2021 COMRAD-

HNSCC/NCT05156177 Definitive RT Compare fecal microbiome between
responders and non-responders Recruiting NA

Esophageal Cancer

Stage I-III SCC 2022 NCT05199649 NACT + Sintilimab
Correlate gut microbiome and

metabolic markers with
treatment efficacy

Recruiting NA

Multiple Cancer Types

Hematologic and
solid malignancies 2021 NCT05112614 Multiple, including SCT Correlate gut microbiome with

clinical response Recruiting NA

Stage III/IV NSCLC,
colorectal, TNBC, pancreas 2020 ARGONAUT/NCT04638751 CT and/or IO Correlate gut microbiome with

treatment response Recruiting NA

Advanced melanoma, RCC,
and NSCLC 2019 MITRE/NCT04107168 IO Correlate microbiome signature with

PFS of 1 year or greater Recruiting NA

Not specified 2020 ONCOBIOTICS/NCT04567446 Multiple (CT, HT, IO)
Define metagenomic signatures
associated with effectiveness of

anticancer therapies (ORR, PFS, OS)
Recruiting

In NSCLC cohort treated with ICI,
relative abundance of Akkermansia
associated with 10% improvement

in ORR. [6]
Melanoma, NSCLC,

RCC, TNBC 2021 NCT05037825 ICI Association between the gut
microbiota and ICI treatment efficacy Recruiting NA

Advanced solid tumors 2019 INSPECT-IO/
NCT04107311 IO combination Correlate gut microbiome with toxicity

and cancer outcomes Recruiting NA

Advanced solid tumors 2019 NCT04114136 ICI +/− metformin or
rosiglitazone

Differences in composition of oral and
stool microbiomes between responders

and non-responders
Recruiting NA

Advanced solid tumors 2019 NCT04204434 ICI Correlate gut microbiome with
response to treatment Recruiting NA

CT = chemotherapy. NACT = neoadjuvant chemotherapy. TT = targeted therapy. IO = immunotherapy. ICI = immune checkpoint inhibitor. HT = hormone therapy. SCT = stem cell
transplant. NSCLC = non-small cell lung cancer. TNBC = triple negative breast cancer. RCC = renal cell carcinoma. pCR = pathologic complete response. DFS = disease-free survival.
PFS = progression-free survival. OS = overall survival. ORR = overall response rate. SOC = standard of care. irAEs = immune-related adverse events. NA = results not published.
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2.4. Impact of Antibiotics

Antibiotic use among cancer patients has increased over time and while this may
contribute to decreased mortality from an infection standpoint, antibiotic use can impart
rapid and long-lasting effects on gut microbiota composition, leading to decreased alpha
diversity, metabolic capacity changes, loss of vital taxa, and impaired cytotoxic T-cell
response against cancer [38,39].

Preclinical studies have investigated the role of antibiotic treatment on cancer treat-
ment response via intermediary effects on the gut microbiome. In lymphoma, colon cancer,
and melanoma mouse models, the receipt of an antibiotic cocktail (vancomycin, imipenem,
and neomycin) resulted in a poor response to immunotherapy and platinum chemotherapy
secondary to poorly functioning myeloid-derived cells in the tumor microenvironment [40].

A number of clinical studies have also demonstrated negative effects of antibiotic use
on oncologic outcomes, with the most research surrounding the efficacy of ICI. One study
found that patients with advanced NSCLC or urothelial carcinoma who were prescribed
antibiotics (beta-lactam inhibitors, fluoroquinolones, or macrolides) within 2 months prior
to the initiation of treatment with PD-1/PD-L1 mAb, demonstrated significantly shorter
progression-free survival (PFS) and overall survival (OS) [2]. Another study in patients
(n = 196) with multiple cancer types (NSCLC, melanoma, and others) demonstrated worse
overall survival in patients who received broad-spectrum antibiotics prior to ICI therapy,
independent of tumor site, disease burden, and performance status [39]. Similar findings
have also been replicated in multiple tumor types for patients treated with ICI [41,42].
Specifically in urothelial carcinoma, in a post-hoc analysis of multiple clinical trials, an-
tibiotic use within 30 days of treatment initiation was associated with worse OS and PFS
with atezolizumab, but not chemotherapy, suggesting that the negative effect of antibiotics
may be specific to immunotherapies [43]. Similarly, analysis of a phase II clinical trial of
advanced renal cell carcinoma patients treated with nivolumab showed a reduction in the
objective response rate from 28% to 9% in patients who had recent antibiotic use, with a
significant effect on the microbiome composition [44].

Further studies are needed to examine the impact of antibiotics on cancer treatment
efficacy, especially in other non-immunotherapy treatment modalities, as this represents a
simple and feasible intervention that could vastly improve patient outcomes.

2.5. Modulating Gut Microbes to Improve Outcomes—The Use of Fecal Microbiome Transplantation

Modulation of the gut microbiome can be accomplished in a variety of ways, including
the introduction of antibiotics (as discussed above), probiotics and prebiotics, dietary
interventions, and fecal microbiome transplantation (FMT).

A number of preclinical studies in metastatic melanoma have demonstrated improved
oncologic outcomes following FMT [3,5]. Seminal work by Gopalakrishnan et al. demon-
strates that FMT in preclinical models using stool from ICI responders or non-responders
as donors imparts different effects on the local anti-tumor immunity and systemic inflam-
mation. Specifically, transplantation of a ‘favorable’ microbiome from ICI responders was
associated with a significant enrichment of the innate effector cells and CD8+ T-cells and
a concomitant decrease in the intratumoral frequency of suppressive myeloid cells when
compared to the tumor microenvironment (TME) of tumor-bearing mice receiving FMT
from ICI non-responders [3].

Furthermore, results from a first-in-human clinical trial to assess the effect of FMT
on the response to anti-PD-1 immunotherapy in a metastatic melanoma population were
recently published [45]. In this trial, the researchers used two FMT donors who had
achieved a complete response for at least one year after treatment with ICI monotherapy and
observed that three out of 10 recipients (patients who had previously progressed on at least
one line of anti-PD-1 therapy) demonstrated safe and objective clinical responses. These
clinical responses with FMT were also associated with favorable changes in the immune
cell infiltrates in the gut (increased lamina propria infiltration of CD68+ antigen presenting
cells) and in the TME (increased posttreatment intratumoral CD8+ T cell infiltration) [45].
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Together, these studies demonstrate that manipulation of the gut microbiome via FMT
has clinical promise as a strategic intervention to improve oncologic outcomes, especially
in patients receiving immunotherapy.

3. The Role of the Diet in Response to Cancer Treatment

Nutrition and diet can affect tumor growth via local effects within the tumor microen-
vironment, regional effects via modulation of the gut microbiome, and systemic immune
effects. Obesity, which has been found to be associated with many cancer types, represents
a systemic inflammatory condition characterized by increased production of interleukin
(IL)-17 and IL-21, which are strong inducers of Th17 cells, leading to a potential imbalance
of Treg and Th17 cells [46]. A number of observational studies have demonstrated both
decreased cancer prevalence and mortality associated with adherence to particular fiber-
rich diets, such as Mediterranean diets [47–51], which have been linked to lower systemic
inflammation and overall enhanced immune function of cytotoxic and T-helper cells [52].

3.1. Immunotherapy

There is growing interest in studying the role of the diet in response to cancer im-
munotherapy, given the proven impact of microbiome differences in this setting and the
knowledge that diet is one strategy to modulate the microbiome.

Recently, a landmark study by Spencer et al. demonstrated that increased dietary fiber
intake and probiotic use may have a significant impact on clinical outcomes in patients
with metastatic melanoma treated with ICI [53]. By concurrently studying fiber intake and
pathologic response to ICI in 128 patients with metastatic melanoma, the authors found
that patients who reported sufficient dietary fiber intake (defined as >20 g per day) demon-
strated improved odds of response to ICI and improved PFS over those with insufficient
dietary fiber intake (<20 g per day) (median PFS not reached versus 13 months), with every
5 g increase in fiber intake corresponding with a 30% lower risk of progression of disease or
death. Further, by only modifying the fiber intake of mice in follow-up preclinical studies,
the authors observed distinct gut microbiome profiles and significantly delayed tumor
growth on-treatment with ICI in mice that received a fiber-rich diet compared to mice
receiving a low-fiber diet. Importantly, these observations were microbiome-dependent,
as these beneficial effects were not recapitulated in germ-free mice. Furthermore, deep
immune profiling of the TME demonstrated that fiber intake was directly related to the
strength of the intratumoral interferon gamma (IFNγ)+ T-cell response which, although
warranting further investigation, highlights one associated mechanism through which such
dietary interventions might promote a response to ICI [53]. In another melanoma cohort,
the consumption of fiber and omega 3 fatty acids was associated with enhanced microbial
diversity and enrichment of genus Ruminococcaceae, which have both been associated with
an improved response to ICI therapy in other studies [25].

Another study that evaluated the effect of targeted dietary interventions on ICI re-
sponse specifically looked at oral supplementation with the polyphenol-rich berry camu-
camu (CC), also known as Myrciaria dubia, which has been shown to be protective against
metabolic disorders in mice through the enrichment of A. muciniphila and Bifidobacterium
in the gut [54,55]. In preclinical models, the authors observed delayed tumor growth in
mice (in sarcoma and breast cancer models) that were treated with combined CC and
α-PD-1 compared to mice that only received α-PD-1 treatment alone. In these studies, the
polyphenol castalagin was identified as the active anti-tumor ingredient in the berry [54].
Further investigation into the mechanism of the action of this specific compound in ICI
treated preclinical mouse studies and prospective human cancer trials is warranted.

Despite the limited number of published studies evaluating the role of the diet in
response to cancer immunotherapy specifically, this is an important area of research as we
work towards novel ways to modulate the microbiome composition to improve outcomes
for patients.
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3.2. Chemotherapy and Other Therapies

A number of preclinical studies have shown the synergistic effects of fasting and caloric
restriction on anticancer therapy, including radiation and chemotherapies, with slowed
tumor growth demonstrated in breast, colorectal, melanoma, and glioma cancer models [56].
Fasting before and after chemotherapy administration has been shown to be safe and
feasible in cancer patients [57,58]. A recent randomized phase 2 trial [59] investigated the
effect of a fasting mimicking diet (FMD) at the time of neoadjuvant chemotherapy for breast
cancer, based on in vitro and in vivo data that fasting renders cancer cells more sensitive to
cancer therapy [60,61]. The investigators randomized 131 patients with human epidermal
growth factor receptor 2 (HER2)-negative stage II/III breast cancer to FMD or a regular diet
and found that a radiologically complete or partial response occurred more often in patients
using the FMD. They also found a decrease in chemotherapy-induced DNA damage in
T-cells in the FMD group, with no significant difference in the toxicity between the two
groups. This study, although limited by suboptimal compliance of 33.8% of patients in the
FMD group at 4 chemotherapy cycles, provides the first randomized data regarding the
potential synergistic effect of fasting or a fasting mimicking diet during chemotherapy on
cancer outcomes.

Alternatively, the use of a ketogenic diet, which may be better tolerated in some pa-
tients compared to fasting, has a long history of safety as an epilepsy treatment and has
demonstrated safety in case studies of patients with gliomas [62]. The ketogenic diet has
been shown to sponsor, through multiple mechanisms, an unfavorable metabolic environ-
ment for cancer cell proliferation, selectively starving cancer cells [63]. Preclinical studies
utilizing murine models have demonstrated reduced tumor growth with a ketogenic diet,
with synergistic effects observed with the combination of a ketogenic diet and radiation
and/or chemotherapy in both glioma and lung cancer models [64–66]. In this regard, ongo-
ing trials such as the diet restriction and exercise-induced adaptations in metastatic breast
cancer (DREAM) trial (NCT03795493) aim to evaluate the therapeutic effect, measured
as a function of the change in tumor burden as a primary outcome, of a short-term, 50%
calorie-restricted and ketogenic diet combined with aerobic exercise during chemotherapy
treatment for patients with metastatic breast cancer [67].

Furthermore, multiple studies from investigators in Turkey have evaluated the use of
metabolically supported chemotherapy (MSCT), which involves a combination of fasting
and administration of pharmacological doses of insulin to induce hypoglycemia at the time
of standard chemotherapy, along with adherence to a ketogenic diet in advanced gastric,
pancreatic, and lung cancer [68–70]. These studies demonstrated remarkably high PFS and
OS rates, but notably did not include control groups. Therefore, controlled, comparative
clinical trials are warranted to further investigate these interesting findings.

3.3. Modulating Diet to Improve Outcomes

It is increasingly evident that diet plays a critical role in modulating the gut micro-
biome and has a significant and observable impact on the anti-tumor immune response to
immunotherapy. Based on the retrospective and preclinical data implicating the beneficial
role of a high-fiber diet, multiple prospective randomized controlled trials are underway to
attempt to demonstrate the efficacy of a high-fiber diet on improving the response and out-
comes to checkpoint inhibitors across multiple tumor types (NCT04645680, NCT04866810,
NCT04866810). Other studies are targeting specific diets, such as the ketogenic diet, for
its ability to alter the response to checkpoint blockade, for instance in advanced renal cell
carcinoma (NCT05119010) (Table 2).
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Table 2. Current trials in diet/supplements and probiotics/prebiotics in cancer and cancer therapy response.

Class of
Intervention Specific Intervention Type of Therapy Tumor Type Treated NCT Route Preliminary or Final Results

High fiber

High-Fiber Diet Pembrolizumab/Nivolumab Melanoma NCT04645680 NA NA
High fiber, exercise Anti-PD1 Melanoma NCT04866810 NA NA
High fiber, exercise ICB Multiple types NCT04866810 NA NA
High fiber, exercise ICB Multiple types NCT04866810 NA NA
High fiber, exercise ICB Multiple types NCT04866810 NA NA

Leafy greens and vegetables NA Prostate cancer NCT01238172 Oral

Behavioral intervention encouraging
leafy green and vegetable consumption
did not reduce the risk of prostate cancer

progression in men [71]

Diet intervention
Diet intervention Chemotherapy Breast cancer NCT03314688 NA NA
Diet intervention Endocrine therapy Breast Cancer NCT04079270 NA NA

NutriCare Plus: Meal
intervention

Surgery and/or systemic
therapy and/or radiation Lung cancer NCT04986670 NA NA

Ketogenic diet Ketogenic diet NA Mantle cell lymphoma NCT04231734 NA NA
Ketogenic Diet Ipilimumab/Nivolumab Renal cell carcinoma NCT05119010 NA NA

Fasting

Prolonged Nightly Fasting SOC ICB Head and neck squamous cell
carcinoma NCT05083416 NA NA

Intermittent Fasting NA
Chronic lymphocytic

leukemia/small lymphocytic
lymphoma

NCT04626843 NA NA

Prolonged Nightly Fasting ICB Head and neck squamous cell
carcinoma NCT05083416 NA NA

Other supplements

Vitamin D Neoadjuvant chemotherapy Breast cancer NCT04677816 Oral NA

Grape Seed Extract NA Prostate cancer NCT03087903 Oral

Preliminary results indicate that 300 mg
of daily grape seed extract may improve

PSA kinetics in patients with a rising
PSA after maximum local therapy [72]

Fermented Soybean Extract Pembrolizumab Non-small cell lung cancer NCT04909034 Oral NA
Resistant starch foods NA Colorectal cancer NCT03781778 Oral NA

Fish oil NA Colorectal cancer NCT01661764 Oral No difference in proliferative or
apoptotic markers in rectal mucosa [73]

Prebiotic
Prebiotic NA HSCT NCT04629430 Oral NA

Prebiotic + Probiotic Chemotherapy + radiation Anal squamous cell cancer NCT03870607 Oral NA

Probiotics

Probiotics NA Breast and lung cancer NCT04857697 Oral NA

Probiotics NA Colorectal cancer NCT03782428 Oral

Significant reduction in
proinflammatory cytokines among CRC

patients taking probiotics vs. placebo
[74]



Cancers 2023, 15, 777 12 of 25

Table 2. Cont.

Class of
Intervention Specific Intervention Type of Therapy Tumor Type Treated NCT Route Preliminary or Final Results

Probiotics PD-1 inhibitor Liver Cancer NCT05032014 Oral NA

Probiotics PD-1 inhibitor +
chemotherapy Non-small cell lung cancer NCT04699721 Oral NA

Probiotics PD-1 inhibitor Renal cell carcinoma NCT03829111 Oral NA

Probiotics EGFR inhibitor Non-small cell lung cancer NCT01465802 Oral
Probiotic did not have any impact

on adverse event profile after
treatment with dacomitinib [75]

Specific strains

Lactobacillus
Bifidobacterium V9 (Kex02) Carlizumab with platinum Non-small cell lung cancer NCT05094167 Oral NA

Lactobacillus rhamnosus GR-1,
Lactobacillus reuteri RC-14 NA Breast cancer NCT03290651 Oral NA
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The modulation of the gut microbiome balance utilizing pre- and probiotics is also
underway, with multiple trials attempting to show a benefit in the response to a checkpoint
blockade in a wide range of cancer types (NCT05032014, NCT04699721, NCT03829111).
While there has been a trial studying the efficacy of the probiotic VSL#3 (containing live
strains of Lactobacillus and Bifidobacterium) in improving the response to cancer therapy, this
was in the setting of treatment with the EGFR inhibitor dacomitinib in non-small cell lung
cancer [75]; to date, there has been no prospective trial evaluating the effect of probiotics
on immunotherapy response.

While the prospective data generated from these studies have not yet matured, the
next decade of translational research should see the transition of the field from multi-
omic microbiome analysis and hypothesis generation to targetable interventions in dietary
management for patients undergoing immunotherapy.

4. The Role of Gut Microbes and Diet in Toxicity

In addition to its impact on the response to cancer treatment, the gut microbiome and
diet have also been implicated in the modulation of toxicity to therapy. Given its known
ability to modulate the response to immune checkpoint inhibitors (ICI), the impact of the
gut microbiome on immune-related adverse events (irAE) in response to ICI have also been
explored in recent studies. irAEs are comprised of multiple different pathologies spanning
every organ system, and while they can vary in severity, they are quite common, with a
low grade irAE observed in over 90% of patients undergoing immune-modulating therapy
for cancer [76–78]. The ability to effectively mitigate the potentially fatal course of irAEs
have been hindered by an unpredictable time course and severity, the variability of irAE
seen with different ICI combinations, and a lack of effective treatment besides cessation of
therapy and initiation of high dose corticosteroids [76,79,80].

While the exact mechanistic underpinnings of irAE mediation remain incompletely
understood, there has been increasing interest in evaluating the gut and host microbiome
for both predicting irAEs and modulating toxicity to therapy. Seminal work in the setting of
combination ICI treatment in advanced melanoma patients demonstrated that there was an
upregulation of specific taxa such as Bacteroides within those who experienced significant
toxicity to therapy; furthermore, there was evidence of upregulation of IL-1β in patient
samples with immune-mediated colitis, as well as within preclinical models, suggestive
of a mechanism by which unfavorable gut microbiota enhance the constitutive cytokine
activation, which leads to irAEs [81].

There is also emerging evidence of gut microbe-mediated toxicity within treatment
with immune agonist antibodies (IAAs), which are often limited in clinical use due to
irAEs [82]. Preclinical models utilizing CD40 IAAs demonstrated that the presence of
diverse gut flora leads to a MyD88-dependent activation of the host immune system, es-
pecially macrophages, which results in the rapid production of inflammatory cytokines,
such as tumor necrosis factor alpha (TNFα), IL-6, and IFN-I and an acute induction of
macrophage- and neutrophil-dependent liver damage [83]. Interestingly, toxicity observed
with CD137 IAAs also appears to converge at the level of host MyD88 activation by gut mi-
crobiota, which results in a CD8+ T-cell-dependent liver damage and IFNγ driven systemic
inflammation. Importantly, toxicity to IAA therapy was reduced in germ-free or antibiotic-
treated mice in this model without a deleterious impact on antitumor immunity, suggesting
a potential roadmap for irAE modulation and prevention in the clinical setting [83,84].

Similarly, chimeric antigen receptor (CAR) T-cell therapy, while revolutionizing the
treatment of certain hematologic malignancies, has also been hindered by systemic inflam-
mation and specific irAEs (such as immune effector cell-associated neurotoxicity syndrome,
or ICANS) with few available biomarkers to predict the severity [85]. Recent work utilized a
retrospective review of patients with non-Hodgkin lymphoma (NHL) or acute lymphocytic
leukemia (ALL) treated with CD19 CAR T-cells and found that the administration of broad
spectrum antibiotics within four weeks prior to the first treatment was strongly associated
with shorter overall survival and increased incidence of ICANS [13]. A prospective smaller
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cohort of NHL or ALL patients with matched baseline microbiome profiling found that
enrichment of specific bacterial taxa such as Bacteroides, Ruminococcus and Faecalibacterium
was associated with not only response to therapy, but a toxicity-free status, further sug-
gesting the importance of gut dysbiosis as a predictor of toxicity to immune-mediated
therapies [13,86].

There is some evidence of the importance of a diverse gut microbiome within the
context of toxicity to traditional therapies such as chemoradiation; higher gut microbial
diversity has been associated with decreased toxicity to chemoradiation for cervical cancer,
as well as in the setting of pelvic radiotherapy alone [87,88]. Fecal microbiota transplanta-
tion (FMT) from healthy donors has been utilized with some success in the clinical setting
to improve toxicity to both cytotoxic therapy and to radiotherapy [89,90].

The gut microbiome has also been implicated in the modulation of graft-versus-host
disease (GVHD) in allogeneic stem cell transplantation (SCT) performed for the treatment
of hematologic malignancies. GVHD is mediated by the donor immune component (pre-
dominantly T-cells), which targets the host’s major histocompatibility complex, leading to
immune-mediated toxicities across multiple systems [91]. Multiple studies have implicated
gut microbial disturbances as a predictor of GVHD incidence and severity, with identifi-
cation of certain differential taxa as potential predictors of GVHD [92–94]. For instance, a
relative abundance of Ruminococcus and Lactobacillus has been associated with improved
outcomes, suggesting that the dynamic microbial balance and homeostasis are again what
drive immune-related toxicity.

Within the context of immunotherapy, early work demonstrated the potential impact
of certain gut microbial taxa such as Bacteroides to mitigate irAE, such as colitis, within
preclinical models in response to anti-CTLA4 therapy; when mice treated with broad
spectrum antibiotics underwent reconstitution with Bacteroides species associated with an
improved response, there was a reduction in the histopathological signs of immune colitis,
pointing to an efficacy–toxicity uncoupling effect mediated by Bacteroides [95]. Subsequent
work in a prospective group of melanoma patients treated with ipilimumab demonstrated
increased representation of the Bacteroidetes phylum correlating with resistance to immune-
mediated colitis, further supporting the hypothesis generated by the preclinical work [96].
Another prospective clinical study evaluating metastatic melanoma patients undergoing
ipilimumab therapy corroborated the correlation between Bacteroides species and protection
against immune-mediated colitis, though in this study Bacteroides was associated with a
worse response to therapy; in contrast, enrichment for the Firmicutis genera was associated
with an improved response and a concomitant increase in immune-mediated colitis [97].

The recent study involving a prospective profiling of the gut microbiome and di-
etary patterns of 103 patients in Australia and New Zealand undergoing treatment with
checkpoint inhibitors demonstrated that non-responders who had severe irAEs had lower
microbial diversity at baseline. Furthermore, a relative abundance of specific species, such
as Faecalibacterium prausnitzii, was reduced in patients with irAEs (and this effect was
strongest in the non-responders who developed severe irAEs), pointing again to specific
perturbations of the microbiota as the potential mediator of immune related toxicity [25].

While these studies highlight the likely importance of key bacterial taxa in mediation
of irAEs, the complex interplay between immune modulation and the gut microbiota have
been made clear, laying the foundation for effective microbiome modulation methods to
reduce irAEs in the clinical setting. Conversely, as new microbiome-based approaches are
tested to augment the response to ICI, their potential concurrent impact on promoting
treatment-limiting irAEs must also continue to be surveilled.

5. Intratumoral Microbiome—The Next Frontier in Microbiome-Based Interventions
for Cancer

It is now well appreciated that microbes have a significant impact across the entire
spectrum of human health and, as discussed in this review, elegant work by several groups
has now highlighted the specific mechanisms through which the host microbiome drives
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response, resistance, and toxicity to cancer immunotherapy [2,3,5,6,81]. This newfound
appreciation for the microbiome’s extensive influence in cancer progression and treatment
has accordingly prompted the inclusion of polymorphic microbes as a new hallmark of
cancer [98].

Although investigations into the anti- or pro-tumor effects of the intratumor micro-
biome are still in their infancy, recent investigations have now importantly challenged the
notion of a sterile TME by demonstrating the presence of robust microbial, fungal, and viral
communities within the TME [99–103] which may, independently or synergistically, have
a profound impact on the development and strength of local anti-tumor immunity [104].
In this regard, recent advancements in spatial-omics and their use in profiling tumor
specimens have unraveled new relationships between the intratumoral microbiome and
local immunity. In a recent study, Nino et al. demonstrated that, in a cohort of oral squa-
mous carcinoma and colorectal carcinoma patients, microbe-rich areas within the TME
were associated with a high expression of immunosuppressive proteins such as PD-1 and
CTLA-4, a greater density of monocytic/suppressor cells and fewer T-cell infiltrates, tumor
cells harboring greater chromosomal abnormality, and higher cell motility as compared to
regions of the TME with low microbial density [105]. Although future mechanistic efforts
are needed to prove the causality of these associations, these results nonetheless suggest
that the intratumor microbiome may have a dynamic effect on cancer progression, which
in itself opens new avenues for translational therapies.

Thus, mining and characterizing such intratumoral microbial signatures across cancer
types may have significant prognostic value in the future by helping distinguish between
(i) cancerous tissues from normal adjacent tissues, (ii) different stages of a particular type
of cancer, (iii) different types of cancer, and (iv) response or lack thereof to immunother-
apy [99–101]. Although identifying microbial signatures from historic transcriptional
datasets has proven challenging due to contamination and/or the selective enrichment of
human transcripts from bulk tumor tissues, several bioinformatic pipelines exist and are
now being developed [99,103,106] and applied to existing and/or prospectively collected
cancer genomic datasets to circumvent such challenges as they pertain to profiling the
intratumoral microbiome. The development of such decontamination and deconvolution
algorithms is expected to foster the creation of novel interventional/translational strate-
gies that can target or modify the intratumoral microbiome to augment the response to
immunotherapy in future trials. In this regard, preliminary studies [107] and early phase
human trials [108] altering the intratumoral microbiome have yielded encouraging results
by demonstrating safe, feasible, and effective anti-tumor responses using such microbe-
based approaches, thus setting the foundation for novel future trials aimed at improving
clinical outcomes to immunotherapy.

6. Towards a Holistic Approach to Treat, Intercept, and Prevent Cancer

Despite significant advances, practical applications of monitoring and modulating
the gut microbiome to facilitate an improved response to cancer treatment (and to im-
prove overall health) come with challenges that need to be addressed by individuals, as
well as by their treatment teams. This, however, presents an opportunity where monitor-
ing/modulating the gut microbiome can now become a part of the holistic care provided
during a lifetime—where factors such as diet, exercise, lifestyle choices, and antibiotic
stewardship are given special consideration. Below, we discuss a few such factors, and
anchor the impact of these factors on immunity, the microbiome, and the associated factors
over the continuum of the life cycle (Figure 1).
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6.1. Environment, Exercise, and Lifestyle

An individual’s location of residence is a critical determinant of their overall wellbeing.
During the early stages of life in utero, the immunity of the mother and fetus are lowered
to facilitate the tolerance of the pregnancy via expression of PD-L1 in the placenta, among
other mechanisms of immune tolerance [109]. During this time, the microbiome of the
fetus is shaped by the maternal microbiome, and perturbations such as exposure to broad
spectrum antibiotics (and other exposures) may negatively impact the microbiome and
associated immunity [110]. At the very beginning of life, the neonatal intestinal microbiome
is largely influenced by the mode of delivery [111]. The microbiome, immunity, and risk of
disease are further shaped by the means of feeding [112–114], with breastfeeding explaining
the greatest amount of variance in the gut microbiome composition from months 3 to 14 of
life [115]. The impact of diet and other factors on the microbiome and associated physiology
continue to evolve during childhood and early adulthood, though the gut microbiome
remains relatively stable once it is established, with perturbations attributed to exposure to
medications (such as antibiotics) and other factors [115,116].

Especially relevant in the context of cancer, residential racial and economic segrega-
tion has a significant impact on the incidence [117,118] and mortality rates of 10 of the
12 most commonly diagnosed cancers [119]. This segregation is affected by the underlying
policies that enable financial discrimination, redlining, and selective zoning to group popu-
lations based on racial and economic status [117]. These discriminatory practices further
alienate the deprived population, leading to a reduced quality of life/cancer incidence
of at-risk groups by way of increasing exposure to environmental carcinogens, such as
atmospheric particulate matter [120], increasing financial/physiological stress and systemic
inflammation [121], and reducing food security and access to transport and healthcare
infrastructure [122]. Together, these external factors may independently influence the
composition of the microbiome to promote disease/oncogenesis and/or prevent access
to therapeutic clinical interventions (such as immunotherapy or microbiome-based inter-
ventions) following a cancer diagnosis. Re-assessment and re-evaluation of the policies
and politics governing the zip code of an individual lie at the center of a possible solution
for this issue and will need to be addressed by all key stakeholders in the future to reduce
overall cancer incidence and mortality.

Physical inactivity and obesity are thought to be important contributors to the increas-
ing cancer incidence worldwide, particularly among younger patients receiving a cancer
diagnosis [123–125]. Although most of what is published in this area are cohort studies
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that correlate physical inactivity with cancer incidence, there are also a number of studies
that correlate physical inactivity with worsened oncologic outcomes. Physical activity has
been associated with a reduced risk of recurrence and improved survival in patients with
breast cancer, for example [126–128]. A large meta-analysis reported that patients who were
the most physically active had reduced cancer mortality both in the general population
and among cancer survivors. This was a dose-dependent response, as they found a 13%
reduction in cancer mortality for those who did moderate-intensity activity for at least
2.5 h per week and a 27% reduction for cancer survivors who completed 15 metabolic
equivalents of task (MET)-hours per week of physical activity [129].

In this regard, the use of wearable technologies to monitor physical activity dur-
ing/after treatment might factor as an important measure in the care provided for (pre-)
cancer patients. Indeed, such wearables are increasingly being used in early clinical trials
to track the data surrounding physical activity and sleep patterns and have demonstrated
promising feasibility and 60–100% adherence in solid tumor patients receiving antineo-
plastic treatment [130]. While questions remain on how best to implement wearables into
oncological practice, the rapid growth in the capabilities of such wearable technologies is
encouraging and suggests that they can reliably serve as a useful adjunct for monitoring
physical activity during cancer treatment in the near future.

6.2. Diet

Although current clinical dietary interventions have focused on high fiber [53] and
fasting/ketogenic diets [59] with a demonstration of improved outcomes for patients
undergoing immunotherapy and chemotherapy, respectively, there are other diet-related
factors that need to be considered. For example, Western dietary patterns, red meat intake,
low vitamin D intake, and excessive alcohol consumption have been linked to an increased
risk of early-onset colorectal cancer [131–134]. A Western-style diet in particular, defined
as a diet high in saturated fats, red meat, processed meat, sugar, and ultra-processed
foods, and low in fruits, vegetables, whole grains, and fiber, has also been found to be
associated with higher prostate cancer-specific and all-cause mortality [135,136]. In the
same study, a prudent diet, characterized by a higher intake of vegetables, fruits, fish,
legumes, and whole grains, was associated with lower all-cause mortality after a prostate
cancer diagnosis [136]. Although much of oncologic care focuses on treatment planning
and monitoring the disease response, oncologists now have an added responsibility to
consider complementary strategies, including discussions surrounding diet and exercise,
that have been shown to improve clinical outcomes and quality of life.

6.3. Systemic Inflammation

Dietary and other lifestyle interventions can alter the gut microbiota, and this is
thought to be modulated at least in part by systemic inflammation. This is supported by the
mounting evidence linking human microbiome dysbiosis to the development of an autoim-
mune disease in human and animal models [137,138]. Specifically, recent landmark studies
have shown that high-fiber diets were associated with improved outcomes in metastatic
melanoma patients treated with immune checkpoint blockade therapy, and that a dietary
fiber intervention resulted in an overall decrease in the systemic inflammatory parameters
with a corresponding increase in the microbiota alpha diversity [139]. Separately, another
study that examined a cohort of healthy men found that dietary fiber intake was associated
with increased Clostridiales, which have previously been shown to regulate both local and
systemic inflammation. In this study, fiber intake was also associated with significantly
reduced systemic C-reactive protein (CRP) in individuals without Prevotella copri, demon-
strating novel interactions between the microbiome, diet, and inflammation [140]. These
data suggest that dietary interventions and gut microbiome modulation can become key
strategies in mitigating chronic inflammation, which is a key factor in tumor development
and progression [141]. Future prospective data is needed to assess the markers of systemic
inflammation in relation to treatment response in cancer patients.
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6.4. Antibiotic Stewardship

Antibiotic use across the world has increased by almost 50% from 2000 to 2018 [142].
The use of antibiotics has been shown to be an independent risk factor for cancer occur-
rence [143] and is also associated with decreased response rates to ICI and other therapies,
largely through modulation of the gut microbiome [2,3,144–146]. Given this data and
the rise in antibiotic prescriptions globally, this is something that physicians as a whole
need to pay more attention to. Although antibiotic stewardship programs (ASPs) present
more challenges in the immunocompromised cancer patient, available studies indicate
that the benefits of ASPs in the general populations in which they have been studied are
applicable to oncology patients [147]. It is the responsibility of physicians to use sound
clinical judgement in antibiotic prescribing, always considering the risks and benefits of
administration with regards to the patient and oncologic outcomes.

7. Conclusions

Together, the gut microbiome, diet, exercise, and other factors shape overall immunity
and systemic inflammation, and contribute to states of health and disease, including
cancer. Though heritable genomic factors cannot be changed, there is tremendous plasticity
in gut microbes and the associated immunity that can be impacted intentionally (and
unintentionally). An understanding of these factors and how they impact immunity,
inflammation, and overall health/risk of disease is prudent in the emerging age of precision
medicine, with a holistic approach critical to cancer treatment. Certainly, with the use of
novel tools, such as wearable devices and immune monitoring strategies, we will be able
to realize optimal strategies to monitor and modulate gut microbes and diet to improve
overall health, to combat disease, and to more effectively treat (and hopefully ultimately
prevent) cancer.
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