
Citation: Gogoshin, G.; Rodin, A.S.

Graph Neural Networks in Cancer

and Oncology Research: Emerging

and Future Trends. Cancers 2023, 15,

5858. https://doi.org/10.3390/

cancers15245858

Academic Editor: Dania Cioni

Received: 23 October 2023

Revised: 9 December 2023

Accepted: 14 December 2023

Published: 15 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Graph Neural Networks in Cancer and Oncology Research:
Emerging and Future Trends
Grigoriy Gogoshin * and Andrei S. Rodin *

Department of Computational and Quantitative Medicine, Beckman Research Institute, and Diabetes and
Metabolism Research Institute, City of Hope National Medical Center, 1500 East Duarte Road,
Duarte, CA 91010, USA
* Correspondence: ggogoshin@coh.org (G.G.); arodin@coh.org (A.S.R.)

Simple Summary: Graph Neural Networks are emerging as a powerful tool for structured data
analysis, and predictive modeling in massive multimodal datasets. In this review, we survey recent
applications of graph neural networks in the setting of cancer and oncology research. We iden-
tify currently predominant research areas, and compare graph neural networks with non-graph
deep learning methods as well as probabilistic graphical models. We conclude by highlighting
emerging trends and pressing challenges, such as developing independent and comprehensive
benchmarking frameworks. This review is aimed at cancer and oncology researchers, clinicians and
physician-scientists who are interested in applying graph-centered secondary data analysis methods
to structured multimodal data.

Abstract: Next-generation cancer and oncology research needs to take full advantage of the multi-
modal structured, or graph, information, with the graph data types ranging from molecular structures
to spatially resolved imaging and digital pathology, biological networks, and knowledge graphs.
Graph Neural Networks (GNNs) efficiently combine the graph structure representations with the
high predictive performance of deep learning, especially on large multimodal datasets. In this
review article, we survey the landscape of recent (2020–present) GNN applications in the context
of cancer and oncology research, and delineate six currently predominant research areas. We then
identify the most promising directions for future research. We compare GNNs with graphical models
and “non-structured” deep learning, and devise guidelines for cancer and oncology researchers or
physician-scientists, asking the question of whether they should adopt the GNN methodology in
their research pipelines.

Keywords: graph neural network; GNN; deep learning; cancer; oncology; graphical model;
Bayesian network

1. Introduction

Next-generation cancer research is increasingly moving towards the full integration of
big data, machine learning (ML) approaches (including deep learning, DL), and computa-
tional systems biology methods, with the latter concentrating on constructing, curating,
interpreting, and validating various multimodal biological network models [1]. One of the
primary challenges in ongoing and future computational cancer and oncology research
is the appropriate selection and integration of the many complementary yet overlapping
high-dimensional multiscale analysis and modeling methods, usually vaguely gathered
together under the umbrella of “AI”. A practitioner, be it a cancer researcher, a clinician, or
a physician-scientist, is often overwhelmed by the sheer repertoire of the AI/ML/network-
centered analysis and modeling methodology at their disposal. Moreover, this repertoire
is growing daily, and, while presenting an enormous opportunity, such a methodological
cornucopia is also a challenge, requiring a clear understanding of the scope, applicability,
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and limitations of the computational algorithms and tools. This is exacerbated by the
frequently equivocal terminology, reflecting parallel research progress in computer science
and AI, multivariable statistics, and graph theory and network science.

One of the most interesting, and promising, recent developments in DL has been the
advent of graph neural networks (GNNs). Although combining graph structures with
DL was codified as early as 2005–2009 [2–4], GNNs did not attract broad attention in the
bioinformatics, computational biology, and computational chemistry communities until
2019–2020 (following the general explosion of DL, and DL applications in life sciences).
A recent (October 2023) MEDLINE/PubMed search query (“graph neural network” OR
“graph neural networks”) AND (“oncology” OR “cancer”) generated 151 results (4 in 2020,
26 in 2021, 59 in 2022, 67 in 2023), suggesting an emerging trend. Dissecting this trend is
the principal goal of this review.

The application of GNNs in cancer research and oncology holds an immediate appeal
because GNNs are intuitively understood as a synthesis of graph structures (naturally
representing, for example, multiscale biological networks, or molecular structures, or
knowledge graphs) and powerful DL approaches; however, there is a certain amount of
confusion about the relationship between GNNs and other, more “conventional” in the
life sciences context, network-centered methods—such as co-expression networks, gene
regulatory networks, network enrichment analysis, Bayesian networks, Markov networks,
etc. This confusion leads to the often-asked question: how are GNNs different from the
other network methods, and should they supersede the latter in a prototypical cancer
researcher’s computational systems biology toolkit? Concurrently, another question arises:
what is the added value that GNNs can bring to a cancer researcher, compared to the other
leading-edge DL techniques that can accommodate non-homogenous, structured data?
These two inquiries provided the original impetus for the present review.

In this review, we aim to specifically address the following questions:
1. What are the emerging trends in the application of GNN methodology to cancer and

oncology research? Are there any fields and sub-fields in which the GNNs are poised
to predominate? 2. Consequently, should cancer and oncology researchers consider
GNNs in addition to, or instead of, more established DL approaches? Furthermore, if
yes, under which scenarios and circumstances? What are the added benefits, if any?
3. Likewise, should the cancer and oncology researcher community reevaluate more
established non-DL network modeling approaches and consider augmenting or replacing
them with GNNs? The structure of the rest of this review is as follows: first, we introduce
the GNN methodology fundamentals, and compare them to graphical models. Then, we
survey the recent trends in GNN applications in cancer research and oncology and highlight
several fields in which the GNN approach appears to be the most efficacious. Finally, we
compare and contrast GNNs with non-graph DL and non-DL network-centered methods,
and conclude by identifying promising future trends and research directions.

It should be emphasized that this review is intentionally focused in its scope, namely
on the practical applications of GNNs in the context of cancer and oncology research.
As such, this review is aimed at practitioners asking a very specific question: should they
incorporate the novel GNN methodology in their cancer and oncology research pipelines?
To gain a broad and complementary perspective on AI/DL in cancer and oncology research
beyond the scope of this communication, we refer the reader to the recent reviews on
explainable AI in oncology [5], AI in lung cancer [6], interpretable DL in oncology [7],
DL in imaging/cancer diagnosis [8], GNNs in imaging/histopathology [9–11], GNNs in
bioinformatics [12], AI in cancer multiomics [1], DL in drug response prediction in cancer
cell lines [13], and DL in biological networks [14].

2. GNN Fundamentals

A graph, or network, is a data structure with high expressive power that consists
of nodes and edges (reflecting the relationships between nodes). In life sciences, such
networks can be very high-dimensional (-omics data) or very multimodal (from molecular
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data to clinical data to communities and social networks) or both. Merging graph repre-
sentation with DL can be achieved by adapting DL’s inputs and outputs to non-Euclidian
data, wherein various graph features (nodes, edges, sub-networks, or whole graphs) are
transformed into low-dimensional vectors in the process of graph embedding. However,
contextual topological information might be lost in encoding/embedding; a more “gen-
eralist” GNN approach iteratively updates node states in the graph via message passing
between the nodes in a manner similar to DL but with a local topology (i.e., a comple-
ment of neighboring nodes) taken into account. A variety of GNN models have been
proposed with some of the more prominent ones being spectral-based and spatial-based
GCNs (Graph Convolution Networks) [15,16], Graph RNNs (Graph Recurrent Neural Net-
works) [17], GATs (Graph ATtention networks) [18], and GAEs (Graph AutoEncoders) [19].
We refer the reader to the excellent recent reviews on GNNs [12,20,21] for technical details
and classification of different GNN approaches and implementations; here, we will only
note that, similar to non-DL network modeling methods, graph topology can be pre-set
(e.g., representing a molecular structure, a spatially resolved image, or expert knowledge
in the domain), or can be learned from data, via model selection. Likewise, the learning
tasks/outputs of GNNs are similar to those in the non-DL network analyses: node-level
(value of a node of interest), graph-level (property of the entire graph), and edge-level
(edge detection) predictions, with the latter generalizing to the aforementioned learning of
the (sparse) graph topologies from data. In summary, GNNs promise to combine the high
expressivity and inherent interpretability of graph structures (and their natural congruence
with many life science research and clinical data types) with the predictive/learning power
of DL.

3. GNNs and Graphical Models

GNNs are superficially similar to graphical models, in that both perform learning over
graph structures. Bayesian networks (BNs), or probabilistic directed acyclic graphs (DAGs)
learned from the data, are arguably the most popular graphical models in life science
applications. BNs can incorporate both data-driven learning and existing knowledge, and
allow for probabilistic reasoning and propagation over the DAGs. A major feature of BNs is
that they filter out superficial (transitive, non-direct) dependencies, thus arriving at sparse
DAGs suggesting directional causalities [22–24]. A question is often asked: what are the
principal differences between BNs and GNNs, especially from the life sciences application
perspective? Here, we compare the underlying fundamentals of a GNN (specifically, a
GCN) and a BN.

In many cases, a graph is simply an abstraction defined over another model that
can be written algebraically. This is the case for graphical models, such as BNs, where a
probabilistic model is the basis for its graphical representation. Additional constraints of
directionality and acyclicity are imposed on the graph representation by the underlying
probabilistic model (hence, a DAG), although, generally, not in a unique way. In addition
to the usual pairwise interactions, BNs are capable of modeling probabilistic dependencies
of very high-order and almost arbitrary depth. This is one of the reasons that BNs are
often perceived to stand in correspondence with causal structures. However, while causal
inference is certainly possible with BNs in some circumstances, the notion of causation
is usually much narrower than probabilistic dependency. BNs are well-equipped for
probabilistic reasoning in contexts with a high degree of uncertainty where little a priori
information about the nature of the interaction in question is available. Although BNs
do not expect temporal ordering required for causal inference, they can readily accept
causal constraints.

While both rely on graph representations, GNNs are quite different from BNs. Typ-
ically, a GNN relies on information diffusion techniques, e.g., graph convolution in the
case of a GCN (Figure 1), to accomplish a graph-relevant predictive task such as the classi-
fication of nodes. In the simplest configuration, a feedforward GCN, for example, maps
an aspect of a graph to a numerical scale of an appropriate dimension. A GCN with
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backpropagation (Figure 2) can approximate the mapping between certain aspects of a
graph and its class assignment from examples. From this perspective, a GNN is one of
many generic approximation methods that establish a relationship between a graphical
model and its implications.

Graph

Graph Convolution

Aggregation Activation

Recurrent GCN Layers

PredictionGraph Convolution

Aggregation Activation

Figure 1. Graph convolution in a GCN. Recurrent graph convolution layers of a GCN contain
aggregation and activation stages. An aggregation stage combines feature information from its
neighborhood. An activation stage applies a non-linear activation function to the result of the
aggregation stage. Recursive application of convolution layers agglomerates information across
distant neighborhoods enabling prediction of class labels for unlabeled nodes.

Graph

Graph Convolution

Aggregation Activation Pooling

Recurrent GCN and Pooling Layers

MLP

Residual

Feedforward Classification

Backpropagation

Figure 2. Graph classification via recurrent GCN layers combined with pooling layers. A convolu-
tional layer stacked with a pooling layer builds a more abstract coarsened graph representation of
the original graph. The final pooling layer encodes the graph into its most general representation,
followed by a graph classification in the fully connected layer (MLP, Multilayer Perceptron) with an
appropriate activation function. The output of the MLP layer constitutes class label assignment, which
places the graph into its destination category. The residual of checking label assignments against the
training data can be backpropagated through the model to update the weights in modifiable layers.

Conversely, a BN is a dependency model, or, more precisely, a way to specify the
probabilistic model for essential dependencies between various observables. A properly
defined BN contains all the information necessary to reconstruct the associated joint prob-
ability distribution and, therefore, makes node-wise prediction a matter of probabilistic
inference. Estimation of BN structure and parameters from observations constitutes an
inverse problem that can be approached in a variety of ways. Once a BN model is obtained,
the information contained therein can be interpreted directly, without the aid of additional
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methodological devices, and utilized for probabilistic inference as well as for construction
of classifiers, predictors, and other tools for a particular knowledge or problem domain.

GNNs and BNs serve largely complimentary purposes with little (but not insignificant)
instrumental overlap. Under some assumptions, a BN can be aided in its specification by a
GNN [25] in a way similar to classical parameter estimation methods [26]. However, once
a BN is completely specified, it is a more efficient stand-alone tool for any kind of inference
task over the problem domain, including prediction and classification. More importantly,
it makes the accumulated problem domain knowledge explicit and directly interpretable,
which enables the design of highly efficient problem-specific methods. In this, a multiscale
BN stands in contrast to the largely “black box” nature of a DL model, even one containing
GNN components.

An analogy that makes this difference (explicit domain knowledge and direct in-
terpretability vs. “black box” with or without ex post facto explainability) clear is the
approximation of a signal, or image, via expansion into a spectral basis as opposed to
conventional interpolation. Here, the basis may have domain-specific meaning, e.g., the
trigonometric basis in Fourier series representation. A more generic spline interpolation
may perform equally well or even better than spectral expansion, but it leaves out the ex-
plicit interplay of parameters that occurs in the frequency domain along with the possibility
of spectral manipulation. Thus, spectral methods offer a clear interpretational advantage.
A notable example is spectral CT (Computed Tomography) [27], where image enhancement
relies on the frequency-dependent or energy-dependent attenuation of different tissues.
Spectral information not only drastically enhances tissue differentiation, but also carries
domain-specific content that aids in identifying specific types of material [28], underscoring
the practical benefits of increased interpretability.

In summary, the application of BNs accentuates inference over the problem domain,
knowledge representation, and construction of narratives and hypotheses. Conversely, GNNs
are well-equipped to deal with generic approximation tasks in which the way this approxima-
tion can be achieved and how informative it must be are not the primary concerns.

We will discuss the practical considerations behind the choice between GNNs and
graphical models below in Section 5.

4. GNN Applications in Cancer Research and Oncology

In surveying the field, two major themes emerge: interpretability and multimodal-
ity. The graph structure representation underpinning GNNs is inherently interpretable in
contrast to the ex post facto explainability in DL (aka explainable AI, or XAI) [29], and can
naturally combine different modalities/data types within a single analysis framework. In
addition, and on different abstraction levels, graph representation is a natural fit with the
molecular structures and the image data types. These three advantages of GNNs—(i) in-
herent interpretability, or intelligibility (providing a potential pathway to causal discov-
ery); (ii) combining different modalities/data types/scales; and (iii) natural representation
of molecular structures and images—led to the recent and ongoing (2019–2023) cancer
and oncology research GNN-centered work. After manually curating and augmenting
151 publications resulting from the MEDLINE/PubMed search (see Section 1 above), we
identified 90 original use cases, representative of the current state-of-the-art research land-
scape, that concentrate predominantly in the following (partially overlapping) six major
areas of activity:

1. Using multimodal data (including imaging, histopathology, and digital pathology) for
cancer diagnosis, prognosis, survival, and therapy response prediction;

2. Cancer classification, subtyping, and grading;
3. Granular spatial approaches (including transcriptomics and proteomics);
4. Cancer drug selection, repurposing, and profiling; prediction of cancer drug interac-

tions and combinations, response, and resistance.;
5. Synthetic lethality prediction;
6. Prediction of ncRNA (miRNA, piRNA, lncRNA) and circRNA–cancer associations.
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Before proceeding to the description and analysis of use cases (Figure 3, Sections 4.1–4.7
below), it should be emphasized that, although intrinsic interpretability is a significant
pragmatic consideration, the actual performance (in prediction/classification, typically
summarily assessed in this setting via AUC-ROC, Area Under the Receiver Operating
Characteristic Curve, analysis) of GNN-based approaches often proves superior to con-
ventional DL approaches as well. This can be explained by the higher congruence of the
graph structure representations with the mechanistic/causal structure of the domain, thus
making the inputs’ encoding/embedding less prone to information loss (which occurs due
to the data type conversions and contextual information loss). In addition, just as with DL
in general, GNNs tend to perform better than “classic” ML on the large datasets.

While there are few, if any, independent and comprehensive cross-benchmarking
studies comparing GNNs with non-graph DL and non-DL ML in the cancer and oncology
research settings, there is a growing recent effort towards developing principled perfor-
mance benchmark frameworks attuned to GNNs [30,31] in the broader context. In parallel,
there is an ongoing effort to independently cross-benchmark GNNs in various areas of
computational chemistry [32,33] The overall preliminary conclusion is that GNNs tend
to perform as well as, or oftentimes better than, non-graph DL/ML on the predominantly
graph-level (and occasionally node-level and edge-level) tasks if the input data is structured.

MULTIMODAL DATA, OFTEN STRUCTURED

-omics data, imaging, histopathology, digital pathology, 
spatial (4.3) transcriptomics and proteomics. 

Cancer prediction, diagnosis, prognosis, survival. 
(4.1)

Prediction of ncRNA and circRNA -- cancer 
associations. 

(4.6)

Cancer drug selection, repurposing, profiling.
Prediction of drug interactions and combinations. 

(4.4)

Synthetic lethality prediction. 
(4.5)

Cancer therapy response.
(4.1)

Cancer subtyping, 
grading, classification. 

(4.2)

Prediction of drug response
and resistance.

(4.4)

Figure 3. Applications of GNNs in cancer and oncology research: major areas of activity. Indices
(4.1–4.6) refer to Sections 4.1–4.6 below.

4.1. Using Multimodal Data (Including Imaging, Histopathology, and Digital Pathology) for
Cancer Diagnosis, Prognosis, Survival, and Therapy Response Prediction

Early work in this area focused on using GCNs [34] and GATs [35] to predict cancer
phenotypes [35] and survival [34] from multimodal genetic, genomic, and clinical data, such
as available in The Cancer Genome Atlas (TCGA). These approaches showed incrementally
but significantly superior performance on prediction tasks compared to conventional ML
and DL methods. Gao et al. [36] and Kim [37] extended the basic framework to model
inter-patient groupings, “patient similarity networks”, likewise achieving performance
improvements in survival prediction on different cancer datasets. Liang et al. [38] incor-
porated topological features of pathway representation of the transcriptomic data into
the cancer survival prediction models for four cancers, taking advantage of the natural
pathway–graph structure mapping. Again, prediction performance was superior to that of
conventional ML/DL, with an added value of most predictive pathways’ delineation.
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Subsequent work gradually incorporated imaging, histopathology, and digital pathol-
ogy data—modalities that are particularly amenable to the graph structure representations.
Lian et al. [39] used GCN with CT imaging data to predict lung cancer survival, achiev-
ing superior generalization prediction accuracy. Lee et al. [40] used GAT with digital
pathology data (whole slide images, WSIs) to dissect features of the heterogeneous tumor
microenvironment and predict the prognosis for four different types of cancer; importantly,
the resulting models were interpretable at the contextual features level, underscoring the
conceptual advantages of GNNs over typical “black box” DL predictors. Lian et al. [41]
combined imaging data with clinical modalities in a transformer–GNN model to achieve
superior risk and survival prediction performance for the early stage non-small cell lung
carcinoma. Wang et al. [42] integrated multiplexed immunohistochemistry images into
GNN models, thus enabling precise (binary and ternary classes) survival prediction in
gastric cancer, with high multivariate prediction accuracy. Combining histopathology
with computed topological features in a GNN model led to a significant improvement
(0.956 average AUC compared to 0.911 average AUC for non-graph attention-based DL) in
the accuracy of differential diagnosis of pancreatic ductal adenocarcinoma, a notoriously
lethal human cancer [43].

Ding et al. [44] integrated CT data and clinical factors in a GAT model to achieve lymph
node metastasis prediction superior (0.872 AUC) to that of single-modality approaches
(0.797–0.853 AUC). Likewise, Hu et al. [45] developed a GNN forest model for highly
accurate lymph node metastasis prediction that combined CT imaging, clinical features,
and expert knowledge. An interesting aspect of this latter study was the medical experts’
involvement in the intermediate analysis stage (construction of the imaging-clinical super-
graph). The WSI-data-based GNN model for the abnormal (non-neoplastic and neoplastic)
endoscopic large bowel biopsy diagnosis developed by Graham et al. [46] also included an
iterative interaction between a human expert (pathologist) and purely data-driven decision-
making. To paraphrase a common witticism, the future might lie not in AI replacing human
experts, but rather in human experts augmented by AI outperforming those without.

Recently, more complex, specialized GNN architectures have been proposed in the con-
text of cancer prognosis/survival prediction. Fu et al. [47] developed a two-module GNN
model combining clinical features with highly multiplexed imaging data that improved
survival prediction on public breast cancer datasets. Zhu et al. [48] incorporated geometric
features into sparse DL architectures, thus devising “geometric” GNNs that demonstrated
high survival prediction accuracy on 11 different cancer types based on multiomic data.
Zhang et al. [49] proposed a complex feature generation/GNN architecture to improve
cancer prognosis prediction by combining multiomic data and molecular interactions in
biological networks. Li et al. [50] developed a convolutional neural network (CNN)–GNN
architecture for multimodal diagnosis of lung adenocarcinoma that used fused feature vec-
tors to localize information transmission patterns, thus improving explainability. Notably,
the four above studies demonstrate how a more complex, customized GNN/DL architec-
ture can outperform “out-of-the-box” GNN solutions, signifying an emerging trend and
suggesting that GNN applications in cancer and oncology research have reached maturity.
Another sign of this growing maturity is an increasing emphasis on inferring causality,
which naturally dovetails with the GNN paradigm. For example, Li et al. [51] set out
to disentangle causative and non-causative tumor features in the context of GNNs using
CT imaging data for early diagnosis of pancreatic cancer. Yet another direction for GNN
refinement is the training mode. Azher et al. [52] compared different pretraining strategies
for multimodal (methylation, expression, histopathology) GNN-based cancer prognostica-
tion and concluded that appropriate pretraining strategies might be more important than
innovations in model architectures for highly accurate prediction.

Prediction of cancer therapy response is another task that is well-suited for multimodal
GNN application. Wang et al. [53] utilized a CNN–GNN model to predict response to
neoadjuvant therapy in rectal cancer using digital pathology data (WSIs), achieving high
generalization prediction accuracy. Integrating multiple prior knowledge networks (gene–
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gene interaction graphs) in a GNN model enabled Zhao et al. [54] to attain superior
prediction accuracy (up to 0.85 AUC compared to 0.62–0.74 AUC for single modalities) for
immunotherapy (immune checkpoint inhibitor) response across different cancer types. The
latter study showcases GNNs’ ability to seamlessly incorporate prior knowledge (which is
often hard-coded in a graph structure form).

In summary, the application of GNNs to cancer diagnosis, prognosis, survival, and
therapy response prediction is now a mature field. The emphasis is shifting from the
straightforward implementations to various refinements of GNN architectures (and mul-
tistack DL architectures containing GNN modules) and training regimes, specific to the
cancer-related predictive features and modalities. Two additional emerging trends are:
(i) inferring causality, and (ii) an iterative human expert–AI predictor dialog, with both
drawing on the inherent interpretability of the GNN representation.

4.2. Cancer Classification, Subtyping, and Grading

Methodologically, these applications overlap with Section 4.1 above, and have evolved
in parallel. Early work [55] laid out the foundations for the typical analysis pipeline: use
a GCN in conjunction with high-resolution (revealing a microarchitecture) histology im-
ages to construct large cell-level graphs incorporating multilevel features for grading of
colorectal cancer. Likewise, Lu et al. [56] combined high-resolution digital pathology data
(WSIs) with a customized GNN architecture to predict HER2 status in breast cancer; thus
moving from the “patch” (wherein the large size WSI is subdivided into small tiles, or
patches, for parallel DL applications with subsequent pooling) to the “entire WSI” level.
This allowed the patch-level analysis shortcomings of limited visual context and absence
of labeled granular data to be overcome. Pati et al. [57] developed a multiscale, hierarchi-
cal “cell-to-tissue” GNN for histopathological image classification and comprehensively
surveyed early (2019–2021) work on graph structures (including GNN approaches) in
digital pathology. In a similar vein, Wang et al. [58] added another hierarchical level—“cell
communities” and their topological features—to the GNN analysis framework; emphasis
on the topological data analysis led to a higher performance on pathology image classi-
fication, and disease grading tasks with multiple cancer types. Going one step further,
Abbas et al. [59] developed a multicell type and multilevel graph aggregation architecture
that takes into account both local and global cell–cell interactions and outperforms both
CNNs and GNNs on cancer grading of digital pathology images.

Zhang et al. [60] used a different modality, distance-based features extracted from
limited CT samples, to develop a GNN predictor for pancreatic cystic neoplasm classi-
fication; the dataflow followed a by-now established scheme—use a CNN to generate
features and a GNN to complete the classification. Similarly, Ravinder et al. [61] combined
CNN and GNN to improve brain tumor type classification using MRI images. Whereas,
Ma et al. [62] proposed a dual GCN–GAT architecture for MRI brain tumor segmentation.
Yin et al. [63] used yet another modality, multiomics, to demonstrate a superior breast and
stomach cancer subtyping accuracy when integrating -omics in a GCN-based predictor.
Likewise, Kesimoglu and Bozdag [64] used multiomics data combined with other raw
features for GCN-based prediction of breast cancer subtypes. Interestingly, the derived
subtypes had consistently significant survival differences that were mostly more significant
than differences between the “ground truth” subtypes based on gene expression data, thus
providing additional evidence in support of the superiority of multimodal analyses.

Fittingly, the latest work in this area combines information from multiple multimodal
diagnostic disciplines in a single analysis scheme, taking advantage of GNN model repre-
sentation flexibility and inter-domain transfer learning. For example, Furtney et al. [65]
utilized radiographic images, genomics data, and other modalities to classify breast cancer
subtypes via personalized breast cancer patient graphs.

In summary, we observe two trends: multilevel digital pathology data analysis and a
broad, multimodal, approach to classification (that would ideally incorporate multilevel
digital pathology, multiomics, and other features). While the former appears to be suffi-
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ciently mature, the latter is an emerging and promising trend; both significantly benefit
from the ability of GNNs (often in cooperation with other DL modules) to combine different
data types/modalities in a unified framework.

4.3. Granular Spatial Approaches (Including Transcriptomics and Proteomics)

Here, we are primarily concerned with the spatial single-cell analysis, and spatial
heterogeneity, in tumor microenvironments. Early work in this area utilized “generalist”
GNN-based approaches to spatially resolved gene expression analysis [66]. For example,
Solorzano et al. [67] used GNNs for cell niche characterization in the glioma tissue. Sub-
sequently, more complex, dedicated GNN models were developed to be applied in the
cancer/oncology context. Zeng et al. [68] proposed a CNN–transformer–GNN architecture
to capture spatially resolved RNA-seq expression from histology images, demonstrating
high prediction accuracy for both gene expression and spatial region identification in cancer
vs. normal datasets. Chang et al. [69] used graph autoencoder/GNN for spatially resolved
transcriptomics in glioblastoma tissues, robustly classifying different regions. Qiu et al. [70]
combined a variety of prognostic biomarkers (including molecular types) to model an
“intratumor GNN” that captures spatial heterogeneity on different levels. The latter model’s
prognostic performance proved superior on a retrospective breast cancer dataset. Likewise,
Ding et al. [71] interwoven spatial profiles at different levels (WSI data, protein expression
profiles, mutational profiles) to construct “spatially aware” multilevel GNN models from
TCGA colon and rectum cancer data using a customized five-module GNN architecture.
The latter models demonstrated high cross-level molecular profiles’ prediction accuracy on
TCGA datasets. Wu et al. [72] used multiplex immunofluorescence imaging to show that a
GNN leveraging spatial protein profiles adequately models tumor microenvironment via
local subgraphs. Such subgraphs were found to be predictive for patient outcomes.

In summary, utilizing GNNs to “build the bridge” from cell-level spatial heterogene-
ity in tumor microenvironments to spatial region identification and cancer patient-level
prediction tasks is a novel but highly promising research direction. We expect GNNs
to play a crucial instrumental role in this area, as they are a seamless fit with multilevel
spatial representations.

4.4. Cancer Drug Selection, Repurposing, and Profiling; Prediction of Cancer Drug Interactions
and Combinations, Response, and Resistance

This broad area is especially amenable to GNN application due to the graph structures
being the naturally commensurate representations for the chemical structures, drug–drug
networks, and other multimodal networks incorporating diverse drug-relevant information.
It is, therefore, not surprising that some of the earliest work in cancer/oncology GNNs
was focused on graph models for drug and drug interaction representations. Cui et al. [73]
adapted a generalist GCN to the task of drug repurposing against breast cancer, merging
drug–drug networks with drug-exposure gene expression data. The resulting models
outperformed both “classic” ML and standard DL approaches. In a reverse scenario,
Gonzales et al. [74] used a GCN model to predict anticancer molecules within food (“su-
perfoods”) based on a graph (human interactome) drug representation similarities to those
of FDA-approved anticancer drugs, with the resulting models demonstrating both high
prediction accuracy and interpretability. In parallel, Gao et al. [75] utilized multilevel (from
atomic to molecule) drug structure graph representations to select candidate breast cancer
drugs; thereby underscoring the two-pronged (molecular structure and drug-relevant
networks) utility of GNN approaches.

Another prominent activity, complementing Section 4.1. above (therapy response
prediction), is the prediction of a patient’s response to anticancer drug therapy, or a can-
cer cell line response to a drug. Zuo et al. [76] combined molecular structure graphs
and gene features (expression, mutation) in a GNN–CNN model that showed superior
performance on the benchmark Genomics of Drug Sensitivity in Cancer (GDSC) and Can-
cer Cell Line Encyclopedia (CCLE) datasets. Zhu et al. [77] added a different modality,
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protein–protein-interaction (PPI) networks (from the STRING database), and combined PPI
and molecular graphs in a two-encoder GNN architecture for anticancer drug response
prediction; likewise demonstrating performance advantages over the baseline non-GNN
methods across different cancer cell line datasets. Liu et al. [78] added multiomics cancer
cell line profiles to a GNN model, achieving performance improvements as well. Narrow-
ing the focus to a specific group of drugs, Pu et al. [79] integrated genomics, biological
networks, inhibitor profiling, and gene–disease associations in a unified GNN model to
predict response to kinase inhibitors across various cancer tissues/cell lines. Similarly,
Singha et al. [80] integrated multiple heterogeneous data in a GAT model for evaluating
kinase inhibitors across different cancer cell lines. Emphasizing the interpretability of
GNNs, Shin et al. [81] incorporated expert/domain knowledge (on biological pathways)
in the multiple subgraphs–transformer model for anticancer drug response prediction,
demonstrating improved performance on the GDSC datasets. Wang et al. [82] focused
on the interpretability as well, applying a pruning mechanism to their multimodal drug
response prediction GNN-based model. In general, it appears that adding additional
heterogeneous information types to drug response prediction GNN models increases their
generalization performance. It is serendipitous that GNNs are especially well-suited to
such expansion.

An interesting variation on the theme was proposed by Peng et al. [83], wherein feature
representations of drugs and cell lines are directly integrated in a heterogeneous network
(instead of a bipartite graph). The latter model performed especially well on the GDSC and
CCLE datasets. In parallel, Liu et al. [84] proposed a novel GNN architecture constructed
around multiview graphs, with each input data type (various -omics, PPI) contributing a
separate “view” to the multimodal drug response prediction. Automated optimization of
GNN architectures in the cancer drug response prediction context is the latest trend in this
research area, pointing to its relative maturity. Recently, Oloulade et al. [85] developed
a framework for automated GNN hyperparameter/architecture optimization specifically
tailored to each particular drug sensitivity dataset that consistently outperformed baseline
methods from the first optimization epoch.

Moving on from single drugs to drug combinations, Wang et al. [86] used a GAT
model to predict drug–drug synergy on cancer cells from the feature embedding of drug
molecular structure and gene expression. Their model showed both high performance
(+16 percent predictive precision over non-GNN methods on the AstraZeneca independent
dataset) and interpretability. Notably, the latter led to gaining useful insights into the
chemical substructure of anticancer drugs; yet again illustrating the added value of GNNs
in contrast to “black box” methods. Bao et al. [87] also emphasized GNNs’ interpretability
aiding in identifying molecular substructures contributing to drug synergy. An interest-
ing additional aspect of this work was accounting for asymmetries in drug input, thus
increasing predictive performance. Dong et al. [88] took this approach one step further,
explicitly concentrating on identifying the mechanisms of synergy by dissecting the most
salient molecular substructures revealed in their GAT model. Conversely, Ren et al. [89]
constructed a GNN-based “biomedical knowledge graph” model with NLP (natural lan-
guage processing) drug sequence semantics input to predict drug–drug interactions. The
latter model showed high performance on cancer-related tasks.

In summary, GNNs’ ability to combine both molecular-structure-level and network-
level data in interpretable models bodes well for significant further progress in this domain.
Two particularly promising research directions are: (i) automated GNN hyperparame-
ter/architecture optimization for each particular drug sensitivity dataset, and (ii) identifica-
tion of molecular substructures most salient for anticancer drug synergism.

4.5. Synthetic Lethality Prediction

Synthetic lethality (SL) is a situation in which defects in two genes impair cell viability,
but a defect in a single gene (of a pair) does not. If one gene is a cancer-specific defective
gene, then targeting the other gene will lead to cancer cell death, while sparing non-
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cancerous, normal cells. Thus, in silico SL prediction emerged as one of the most effective
methods for anticancer drug identification. Cai et al. [90], Wang et al. [91], and Lai et al. [92]
pioneered the application of multimodal GCN to SL prediction and demonstrated superior
performance on the human SL datasets compared to the non-graph-representation in silico
SL prediction methods. Liu et al. [93] added features extracted from multiomics data to the
GNN framework, thus expanding gene representation for SL prediction. Notably, the latter
work exploited the interpretability of the graph representation to explain the SL mecha-
nism. Likewise, Zhu et al. [94] focused predominantly on gene-related knowledge graph
interpretability (without losing the predictive performance). Most recently, Fan et al. [95]
developed a more complex, multiview GCN architecture, incorporating five biological
modalities in a high-performance SL predictor.

In summary, SL prediction with gene graph representation is a relatively young but
highly promising research area. We expect future research to concentrate on: (i) refinement
of GNN architectures beyond “vanilla” GCNs, (ii) dissection of the SL mechanisms, en-
abled by the GNN’s interpretability, and (iii) integration of additional modalities in gene
graph representations.

4.6. Prediction of ncRNA (miRNA, piRNA, lncRNA) and circRNA–Cancer Associations

Prediction of ncRNA–disease associations is a robust and well-established computa-
tional biology research field. GNNs can efficiently represent the interplay between ncRNA
similarity networks and disease similarity networks. This potential was recognized early
in the emergence of GNNs [96–99]. Subsequent and recent work in the context of cancer
included using GNN models for miRNA–cancer association prediction [100–106], piRNA–
cancer association prediction [107], lncRNA–cancer association prediction [108–111], and
circRNA-cancer association prediction [112]. An interesting recent development is us-
ing multimodal GNNs to predict association not with disease but with anticancer drug
resistance—for example, Liu et al. [113] incorporated disease-related information into
the multimodal GNN predictor of circRNA–drug resistance associations, while Gao and
Shang [114] used a GAT model for identifying lncRNA–drug resistance associations.

In summary, applying GNNs to dissect ncRNA–cancer associations is a mature field.
We see future research progress as being largely incremental, with further architecture
refinements and extensions in the multivariate directions (e.g., identifying ncRNA–cancer
associations together with ncRNA–anticancer drug resistance associations, identifying
ncRNA–multi-disease associations).

4.7. Other Research Directions, Activities, and Modalities

There is a variety of innovative and promising GNN-based cancer and oncology
research situated outside of the above six categories (Sections 4.1–4.6). Some of the earliest
work in the cancer–GNN junction aimed at the prediction of cancer driver genes with
GCNs [115]. This was followed with a comprehensive study by Song et al. [116] developing
a robust multimodal (36 features plus PPI) GAT-centered framework for the identification
of driver genes across different cancers. Yang et al. [117] focused on a narrower problem
of identifying a small number of genes for a cancer-specific tumor mutational burden
estimation panel, essential for estimating the potential effectiveness of immune checkpoint
inhibitor therapy. On the subject of immunotherapy, Wu et al. [118] developed a multimodal
GAT-centered platform for neoantigen immunogenicity prediction. Combined with a
comprehensive database of experimentally validated neoantigens, this platform provides a
bridge to the clinical application of neoantigen-based cancer immunotherapy.

Chen et al. [119] used a GCN–SVM (support vector machine) architecture to combine
disease similarity networks with metabolite similarity networks in order to identify ovarian-
cancer-related metabolites. Fradkin et al. [120] developed a GAT model for molecule
carcinogenicity prediction, demonstrating high generalization prediction accuracy. These
two studies once again demonstrate the multilevel representation scope of GNN models,
from the ontology networks down to molecular structures.
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Several recent studies applied GNN representation and learning to radiotherapy
optimization and planning. Kafaei et al. [121] developed a GNN/reinforcement learn-
ing model for simultaneous beam orientation and trajectory optimization of Cyberknife,
achieving shorter treatment times without compromising the efficacy of radiotherapy.
Shao et al. [122] used a GNN representation (from a single onboard X-ray projection) of a
liver surface model that accurately translated, via real-time biomechanical modeling, to
liver tumor localization; thereby optimizing image-guided radiotherapy. Subsequently,
Shao et al. [123] incorporated surface imaging in the above framework. A clinical decision
support system for response-adaptive radiotherapy developed by Niraula et al. [124] used
GNNs to model inter-predictive-feature relationships and avoid nonphysical treatment
response, demonstrating performance improvements on clinical decision-making.

In summary, there are still many hitherto unexplored (or explored to a limited de-
gree, such as in the case of radiotherapy planning) areas of application of GNNs to cancer.
Broadly speaking, if the input data/information can be naturally represented in a graph
structure form, and if the dataset size/dimensionality suggests DL, investigators should
consider GNNs. Even if only one data type or modality fits better with a graph rep-
resentation, adding a GNN module to a complex DL architecture might improve both
overall performance and interpretability. Alternatively, oftentimes features generated from
non-graph modalities can best be integrated in a graph form. Higher interpretability and
multilevel or multimodal representation are the crucial added value that GNNs contribute
to the analysis pipeline.

5. Discussion
5.1. Pragmatic Considerations for GNN Deployment

The question of whether to use GNNs (as opposed, or in addition, to “vanilla” deep
learning) in the predictive analysis and modeling of cancer- and oncology-research-related
big data largely comes down to the data types and modalities. If one or more of the latter
are more naturally represented in a graph structure form, then GNNs are indicated. Such
data may include chemical structures, gene co-expression networks, PPI networks, drug-
drug networks, spatially resolved imaging data, digital pathology data, patient networks
in various clinical and epidemiological contexts, knowledge graphs, and multimodal
biological networks in general. The actual modus operandi might be a GNN used for feature
extraction followed by a DL predictor, or diffusion of information over a multimodal graph,
or incorporation of a knowledge graph in the DL architecture. Numerous, increasingly
sophisticated multicluster GNN-containing DL architectures are currently being developed
to address diverse cancer and oncology research problems in a customized fashion.

There are three major advantages to GNNs, with two of them largely self-evident:
intrinsic capability for multimodality (handling different data types in the same analy-
sis framework) and interpretability (graph structures are more intuitive than layers and
weights). The third advantage, higher predictive performance, is less immediately obvious,
but has been amply demonstrated across the different tasks (Sections 4.1–4.7), and can
probably be at least partially attributed to less contextual information loss in the GNN/DL
pipelines, and easier harmonization of different data types. It is important to remember that,
although higher interpretability and more natural data structure representations are always
desirable in and of themselves, the primary goal remains higher predictive accuracy—and
it is gratifying to observe that GNN-centered architectures are at least as high-performing
as more established baseline and state-of-the-art non-graph DL models.

The choice of GNNs vs. graphical models is less straightforward. Here, the two pri-
mary considerations should be the main activity (prediction vs. model selection/dissection,
respectively) and data dimensionality. GNNs, and DL in general, achieve high predictive
performance on large datasets, but their mechanistic and causal interpretability is still
limited (even in the case of GNNs) in comparison with probabilistic graphical models. A
big part of this is the ability of probabilistic graphical models, such as BNs, to propagate
probabilistic inference, and to model perturbations in silico. On a fundamental level, this
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reflects the principal difference in connectivity representation: belief propagation in proba-
bilistic graphical models vs. message parsing in GNNs. GNNs are more efficient learners
when the graph structures (topologies) are largely preset, such as when the networks
(chemical structures, gene co-expression networks, PPI networks, drug–drug networks,
hard-coded knowledge graphs, etc.) are imported from other analyses. Of course, GNNs
can also be used for the data-driven model (topology) selection, via edge-level tasks, just as
graphical models can be used for node prediction and graph-level tasks, but these are not
the primary motivations behind their respective applications.

To give a broad recommendation, if the features are well-defined, the datasets are
not gigantic, and the primary activity is the mechanistic model selection with subsequent
dissection/interpretation, graphical models might be a more natural choice. However, if
the investigators are more interested in high predictive accuracy, some of the topologies
are known or hard-coded (at least initially), and the data is big and features diffuse, the
GNN/DL approach appears to be superior (and faster). That being said, the latest work in
the field suggests a trend towards bridging the gap between graphical and causal models,
on the one hand, and GNNs, on the other. For example, Li et al. [51] used GNNs to infer
causative tumor features from CT data. More broadly, Vu and Thai [125] and Hua et al. [126]
elaborated on the probabilistic explainability of GNNs and potential GNN–probabilistic
graphical models synergies, with the ultimate goal being “probabilistic graphical models-
enhanced GNNs” or, conversely, “GNN-enhanced probabilistic graphical models”.

5.2. Challenges and Future Directions

We see two major interrelated challenges to the broader acceptance and deployment of
the GNN methodology in cancer and oncology research settings. First, the sheer novelty of
the technique(s)—it is unclear if the potential performance benefits over “traditional” big
data DL make it worthwhile to explore new and more complex architectures. To address
this concern, in this review we have demonstrated that GNNs tend to outperform non-
graph DL approaches across the board when the data types/modalities are amenable to
the graph representation, with the added benefit of interpretability. However, this brings
us to the second, more daunting, challenge: an absence of independent and comprehensive
realistic cross-benchmarking studies for many, if not most, cancer- and oncology-related
data analysis activities enumerated in Sections 4.1–4.7. Having such studies, augmented
with robust model evaluation metrics (beyond the standard AUC-ROC for classification
tasks) is customary in the more mature fields in computational biology and medicine,
ranging from phylogenetic analysis methods to gene regulatory network inference and
tumor imaging segmentation, to name just a few. Conducting similar studies in the cancer
and oncology research domain will go a long way toward the wider acceptance of GNNs.
Our intuition is that GNNs will indeed prove superior overall, but this remains to be
convincingly demonstrated to a broad audience. Such a demonstration should adopt and
utilize more sophisticated model evaluation metrics, applicable to the graph and network
structures. There is a wealth of appropriate well-established benchmark datasets and
“ground truth” knowledge in the domains covered in Sections 4.1–4.7, so we are optimistic
that the comprehensive independent cross-benchmarking studies are forthcoming. They
are sorely needed.

That being said, in our surveying of the field we have identified at least six sufficiently
mature research directions (Sections 4.1–4.6). In our opinion, the most promising future
methodological research directions for the next few years will be: (i) development of
“boutique” GNN-containing DL architectures specifically tailored to various combinations
of modalities and predictive tasks, (ii) automated optimization of said architectures and
training regimes, (iii) direct incorporation of human expertise into prediction and decision
pipelines, (iv) incorporation of additional modalities, on many levels, into multiscale graphs
and models, and (v) extension to multivariate predictions. As far as actual cancer and
oncology research tasks are concerned, we expect strong and growing research efforts in
the areas of: (i) cancer classification and subtyping using digital pathology augmented by
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other modalities, (ii) dissection of spatial heterogeneity in tumor microenvironments with
an eye towards patient-level predictions, (iii) identification of molecular sub-structures
most salient for anticancer drug synergism and synthetic lethality prediction, (iv) real-time
radiotherapy planning, and (v) multimodal prediction of immunotherapy response.

6. Conclusions

GNNs appear to be superior to non-graph DL approaches in many cancer and on-
cology research settings, particularly when the data is at least partially structured and
multimodal, and when interpretability is desired. We anticipate that the future availability
of independent and comprehensive cross-benchmarking studies will stimulate the broader
acceptance of the GNN methodology in the field. From a different perspective, GNNs
largely complement probabilistic graphical models, and we expect the increasing synergy
between these two groups of models in the future. Cancer and oncology researchers
and physician-scientists should consider GNNs as their principal secondary data analysis
and predictive modeling tool if the data is big, multimodal, and one or more of the data
types/modalities can be naturally represented as graph structures.
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