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Simple Summary: Metastasis, the hallmark of cancer, is accountable for about 90% of cancer-related
deaths. Long noncoding RNA (lncRNA), a subset of the noncoding RNAs, has exhibited involvement
in various processes, including immune evasion, cell proliferation, migration, and invasion, across
multiple human diseases, notably cancer. The objective of our study was to identify a metastasis-
associated lncRNA in lung cancer and elucidate the underlying mechanisms. Our findings indicate
that Linc01703, which is notably downregulated in metastatic lung cancer cells, effectively suppresses
lung cancer metastasis in vivo. Interestingly, Linc01703 does not directly impact the proliferation
and invasion capabilities of lung cancer cells but rather inhibits cancer metastasis by promoting the
secretion of CD81+ exosomes through the Rab27a/SYTL1/CD81 transport complexes. Consequently,
our observations provide new insights into the potential clinical application of CD81+ exosome-based
cancer therapy.

Abstract: Metastasis, a major cause of cancer-related mortality worldwide, frequently occurs early
in the diagnosis of lung adenocarcinoma (LUAD). However, the precise molecular mechanisms
governing the aggressive metastatic behavior of LUAD remain incompletely understood. In this study,
we present compelling evidence indicating that the long noncoding RNA linc01703 is significantly
downregulated in metastatic lung cancer cells. Intriguingly, in vivo experiments revealed that
Linc01703 exerted a profound inhibitory effect on lung cancer metastasis without discernible impact
on the in vitro proliferation or invasion capacities of LUAD cells. Mechanistically, Linc01703 enhanced
the interaction between Rab27a, SYTL1, and CD81, consequently promoting the secretion of CD81+

exosomes. These exosomes, in turn, suppressed the infiltration of immune cells within the tumor
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microenvironment, thereby impeding LUAD metastasis. Importantly, our analysis of lung cancer
tissues revealed a correlation between reduced CD81 expression and an unfavorable patient prognosis.
Collectively, our findings suggest that Linc01703 functions as a metastasis suppressor by facilitating
the secretion of CD81+ exosomes through the formation of the Rab27a/SYTL1/CD81 complex.

Keywords: exosomes; long noncoding RNA; metastasis; lung cancer; CD81

1. Introduction

Lung cancer is the leading cause of cancer-related mortality and one of the most
generally diagnosed cancers in the world [1]. Lung adenocarcinoma (LUAD) and lung
squamous cell carcinoma (LUSC) are the two main subtypes of non-small cell lung cancer
(NSCLC), which account for approximately 85% of all lung cancer cases. Metastasis is the
primary cause of death among LUAD patients [2], with approximately 70% of patients
being diagnosed at an advanced stage with local or distant metastasis [3,4]. The patients
with distant metastasis have a survival time of only about 8 months [3,4]. Despite some
clinical advancements, the survival time and quality of life for LUAD patients remain
poor [5,6]. Therefore, understanding the mechanisms underlying LUAD metastasis and
exploring novel clinical treatment methods are of utmost importance.

The tumor microenvironment (TME) consists of various cellular and acellular com-
ponents that significantly influence tumorigenesis, metastasis, and clinical outcome [7,8].
Exosomes, extracellular vesicles (EVs) with an average diameter of 100 nm, play a crucial
role in intercellular communication by transporting proteins, lipids, and nucleic acids [9].
Tumor-derived exosomes, in particular, have been implicated in the initiation and pro-
gression of different cancer processes, including tumor metastasis [10]. The generation of
exosomes involves intricate intracellular trafficking steps, such as inward budding of the
plasma membrane to form early endosomes, which then give rise to late endosomes and
multivesicular bodies (MVBs) that fuse with the plasma membrane for exosome release [11].
Rab family members, particularly Rab27a and Rab27b, which are RAS-related protein (RAB)
GTPases, are essential for exosome secretion [11,12]. Rab27a is involved in the docking of
exosomes and the rearrangement of the submembrane actin cytoskeleton, while Rab27b
regulates the movement of exosomes toward the plasma membrane [12,13]. However,
the specific exosome subtype involved in lung cancer metastasis and how to target these
exosomes to suppress tumor metastasis remain unknown.

Several tetraspanin (TSPN) family members, including CD9, CD81, and CD63, are
major constituents of exosomes and serve as canonical markers [14]. CD81, in particular,
is tightly regulated in physiological and pathological processes, including inflammation,
pathogen infection, cell adhesion, and tumor development [15–18]. Interestingly, decreased
CD81 expression has been associated with increased metastatic capacity in liver cancer and
bladder cancers [19,20], while the knockdown of CD81 has been shown to decrease cell
motility and metastasis in melanoma and breast cancer [21–23]. These findings suggest that
CD81 expression plays a crucial role in tumor development and may serve as a prognostic
target for tumor therapy. However, it remains unclear whether CD81 is transmitted to
target cells through exosomes and then exerts tumor-promoting or tumor-inhibiting effects
in lung cancer.

Long noncoding RNAs (lncRNAs), a newly discovered class of noncoding RNAs, are
commonly defined as RNA molecules that are more than 200 nucleotides in length [24]
and have been shown to play essential roles in exosome generation, secretion, and cancer
metastasis [25–27]. In this study, we focus on a lncRNA called LincRNA01703 (Linc01703),
which is significantly suppressed in metastatic LUAD cells. However, the functions and
downstream mechanisms of Linc01703 in LUAD metastasis, particularly its role in regulat-
ing metastasis-related exosomes, have not been investigated. Our current study identified
Linc01703 as a metastasis-inhibiting lncRNA in LUAD that promotes the secretion of
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CD81+ exosomes through the formation of the Rab27a/SYTL1/CD81 transport complexes.
Mechanistically, Linc01703 enhanced the interaction between these proteins, leading to
the increased secretion of CD81+ exosomes and modulation of immune cell infiltration.
Additionally, we observed decreased CD81 in lung cancer tissues, which correlates with a
poor prognosis in patients. Overall, our findings highlight the significance of Linc01703 in
LUAD metastasis and its role in regulating CD81+ exosome secretion through the formation
of the Rab27a/SYTL1/CD81 complex.

2. Materials and Methods
2.1. Clinical Specimens

This retrospective study was carried out using the case series of the First Affiliated
Hospital of Sun Yat-sen University. All of the clinical tissue samples and histopathologi-
cally determined diagnoses were obtained from the First Affiliated Hospital of Sun Yat-sen
University. The tumor–node–metastasis (TNM) classification from the Union for Inter-
national Cancer Control (UICC) was used to evaluate the histological characteristics and
clinicopathologic staging of the tumor samples. Nearby noncancerous lung samples were
collected from neoplastic tissues that were excised from LUAD patients at a standard
distance of 3 cm.

2.2. Animal Models

Female BALB/c-nu mice (5–6 weeks of age, 18–20 g) were housed in specific pathogen-
free (SPF) facilities under a 12 h light/dark cycle at a temperature of 18–22 ◦C and humidity
of 50–60%. To investigate the effects of Linc01703 and CD81 on LUAD metastasis, the
indicated cells were inoculated via the tail vein or spleen. Metastasis was monitored via
bioluminescence imaging (BLI). Briefly, mice were administered D-luciferin (150 mg/kg i.v.,
10 min before imaging), anesthetized (2.5% isoflurane), and imaged with the Xenogen IVIS
Spectrum Imaging System. Images were analyzed with Spectrum Living Image Software
(Version 4.2). At the designated experimental endpoints, the mice were anesthetized and
sacrificed, and the tumors were resected. All animal studies were approved by the SYSU
Institutional Animal Care and Use Committee.

2.3. Cell Culture

LUAD cell lines, including the A549, NCI-H1975 (H1975), and noncancerous HEK293T
(293T) cell lines, were obtained from the Cell Bank of Shanghai Institutes of Biological
Sciences (Shanghai, China) or ATCC. The cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% peni-
cillin/streptomycin (penicillin 100 U/mL and streptomycin 10 µg/mL) at 37 ◦C in 5% CO2
in a humid atmosphere.

2.4. Plasmids, Virus Production, and Transfection

For the depletion of CD81, two single guide RNA sequences were cloned and inserted
into PX458M pSpCas9-2A-GFP-MCS. For the depletion of Rab27a and SYTL1, two hu-
man shRNA sequences were cloned and inserted into pSuper-retro-puro retroviral vectors
(Addgene, Watertown, MA, USA). Sequences of sgRNAs and shRNAs are listed in Supple-
mentary Table S1. The full length of Linc01703 was cloned and inserted into pcDNA3-puro
lentiviral vectors (Addgene), and the open reading frames (ORFs) of Rab27a, Rab27b,
SYTL1, SYTL2, SYTL3, and CD81 was cloned and inserted into pSin-EF2-puro lentiviral
vectors (Addgene). Stable cell lines for the overexpression of Linc01703 and the silencing
of Rab27a and SYTL1 in A549 and H1975 cells were generated via lentiviral or retroviral
infection using 293T cells and selected with puromycine (Sigma, St. Louis, MO, USA)
antibiotics. After 2 weeks, the total mRNA and protein of the indicated tumor cells were
collected and validated using real-time PCR and Western blotting assays. The transfection
of the plasmids used in function assays and protein and RNA analysis was performed
using a Lipofectamine 3000 reagent (Invitrogen, Waltham, MA, USA).
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2.5. RNA Extraction and Real-Time PCR

Total RNA was isolated from cultured cells using a TRIzol reagent according to the in-
structions. cDNA was synthesized from 2 µg of total RNA with random primers using gene
expression assays (Vazyme, Nanjing, China) and analyzed using Bio-Rad CFX Manager
software (Version 3.0). The expression of Linc01703 and the indicated target mRNAs was
assessed based on the threshold cycle (CT), and after normalization to GAPDH or β-actin ex-
pression, relative expression levels were calculated as follows: 2−[(Ct of mRNA) − (CT of β-actin)].
The sense and antisense primers that were used for quantitative reverse transcriptase PCR
are listed in Supplementary Table S2. The experiments were performed at least three times,
with triplicate replicates.

2.6. 5′ and 3′ Rapid Amplification of cDNA Ends (RACE)

Total RNA was extracted from human A549 cells with the TRIzol reagent. 5′ and 3′

RACE assays were carried out to determine the transcriptional initiation and termination
sites of Linc01703 using a RACE Kit. The 5′ and 3′ RACE primers for Linc01703 are
listed below:

5′RACE-1: 5′-CTTCACCCACTCGGCAGGAT-3′;
5′RACE-2: 5′-GCTCACCCACTTCGCACCGT-3′;
3′RACE-1: 5′-ATCCTGCCGAGTGGGTGAAG-3′;
3′RACE-2: 5′-CCTGCCGAGTGGGTGAAGCG-3′.

2.7. Cell Nucleus/Cytoplasm Fraction Isolation

Cell nucleus/cytoplasm fraction isolation was performed using a Nuclear and Cy-
toplasmic Extraction Kit (AM1921, Thermo Fisher, Waltham, MA USA) according to the
supplier’s recommendation.

2.8. Western Blotting (WB) Analysis

In this study, WB analysis was performed according to a standard method. The pri-
mary antibodies that were used for WB analysis included anti-CD9 (Proteintech, Wuhan,
China, 60232-1-Ig, 1:2000), anti-CD63 (Proteintech, 67605-1-Ig, 1:2000), anti-CD81 (Protein-
tech, 66866-1-Ig, 1:2000), anti-P84 (Proteintech, 10920-1-AP, 1:2000), anti-HA (Proteintech,
51064-2-AP, 1:5000), and anti-Flag (Proteintech, 20543-1-AP, 1:5000) antibodies. Blotted
membranes were stripped and reblotted with anti-β-Actin (Proteintech, 20536-1-AP, 1:5000)
antibodies used as loading controls. For exosomes from cancer cells, Ponceau S staining
was used as a loading control.

2.9. TRSA RNA Pull-Down Assay

In order to explore the interaction between Linc01703 and Rab27a, Rab27b, SYTL1,
SYTL, and CD81, we performed tRSA RNA pull-down assays (Thermo Fisher, 20164) as
previously described [28,29]. Briefly, the Linc01703 and Linc01703 antisense were reverse-
transcribed via PCR with T4 RNA polymerase using the RNA 3′ End Desthiobiotinylation
Kit (Thermo Fisher, 20163), and then the labeled RNAs were purified using the RNA
Purification Kit (Thermo Fisher, K0731). Then, 50 pmol of biotein-labeled RNAs were
mixed with the cell lysis of 293T cells and incubated for 3–4 h at 4 ◦C. After incubation,
streptavidin magnetic beads were added to each binding reaction and further incubated
at 4 ◦C overnight. Then, the proteins that did not bind with beads were washed with
wash buffer five times. Finally, the beads were boiled in a loading buffer, and the binding
proteins of Linc01703 were resolved via a Western blotting assay.

2.10. Wound Healing, Invasion Assays, and MTT Assay

Tumor cells were plated in 6-well plates at 1 × 106 cells per well for wound healing
assays. After 24 h of the indicated treatment, the cells were scratched with a pipette tip.
At the designated times, cell migration was observed and captured on a camera. For cell
invasion assays, Transwell chambers were used. The indicated cells were subsequently
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trypsinized and resuspended in FBS-free DMEM. The lower chambers of the Transwell
plates were then filled with 500 µL of DMEM supplemented with 10% FBS as a chemoat-
tractant, and the cells were plated in the upper chambers. Cells that had crossed to the
bottom side of the inserts were fixed, stained with 0.1% Crystal violet (Sangon, Shanghai,
China, A600331), photographed, and quantified by counting the cells in 5 random fields
after a 24 h incubation period. A total of 2000 tumor cells were seeded in 96-well plates for
the MTT experiment. Then, 20 µL of the MTT solution (Sigma) was added to each well after
24 h of the indicated treatment, and the wells were then incubated for 4 h at 37 ◦C in 5%
CO2 in a humid environment. After the MTT reagent was discarded, 150 µL of dimethyl
sulfoxide (DMSO, Sigma) was added to each well to completely dissolve the crystals. The
absorbance values of each well were measured at OD490nm.

2.11. Exosome Isolation and Nanoparticle Tracking Analysis (NTA)

For exosome isolation, the indicated cells were plated in 100 mm Petri dishes at
1 × 106 cells and cultured for 24 h in DMEM and for 48 h in exosome-depleted DMEM. Two
days later, the supernatant from each dish was collected and processed via centrifugation,
ultrafiltration, and ultracentrifugation. Briefly, to remove cell fragments, the medium
was centrifuged at 300× g for 10 min, 2000× g for 10 min, and 12,000 rpm for 20 min.
Subsequently, the centrifuged supernatant was concentrated using an ultrafiltration tube
(Millipore, Burlington, MA, USA, UFC9100). After ultrafiltration, the concentrate was re-
suspended in 9 mL of phosphate-buffered saline (PBS) in an ultracentrifuge tube (Beckman,
Brea, CA, USA, 326823) and centrifuged twice at 120,000× g for 2 h and 70 min. Finally, the
exosome pellets were resuspended in 200 µL of PBS for the following experiments. The
concentration of the exosomes in A549-Vector and A549-Linc01703 were analyzed using a
NanoSight NS300 (NanoSight Technology, Malvern, UK) equipped with a 488 nm laser at a
camera level of 10 and a detection threshold of 7. The expression of the exosome markers
CD81, CD9, and CD63 was measured via Western blotting after the protein concentration
of the exosomes was measured using the BCA protein assay kit (Thermo Fisher, 23225).

2.12. Flow Cytometry Analysis

Subcutaneous tumor tissues were dissociated into single cells using a mortar to evalu-
ate the effect of CD81+ exosomes and Linc01703 on immune cells infiltrating the TME. PBS
was used to wash and suspend the cells from the tumor tissue before they were stained
for 30 min with anti-CD11b, anti-Ly6G, anti-B220, anti-CD86, anti-CD3, anti-CD49, and
anti-CD80 antibodies. The CytExpert software (Version 2.3)was used to collect data on
Cytoflex (Beckman Coulter) and evaluate it.

2.13. RNA Sequencing

Total RNA samples from A549-Vector and A549-Linc01703 cells were extracted for
RNA sequencing, which was carried out commercially by the Berry Genomics Corporation
following standard Agilent protocols. The RNA sequencing data are in Supplementary Ta-
ble S3, which includes the mRNA expression profiling of A549-Vector and A549-Linc01703
cells and the 199 up-regulated genes in A549-Linc01703 cells.

2.14. Statistical Analysis

Except for the sequencing data, all statistical analyses were performed using GraphPad
Prism 8, version 8.3.0 (GraphPad Software, San Diego, CA, USA). Comparisons between
two groups were performed using a two-tailed t-test, whereas two-way ANOVA tests
were used for comparing multiple treatments with a control group. All error bars show
the mean ± SD derived from three independent experiments. In each case, p < 0.05 was
considered statistically significant.
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3. Results
3.1. Linc01703 Expression Is Decreased in Metastatic Lung Cancer Cells

To investigate the process of LUAD metastasis, we utilized an in vivo three-stage se-
lection strategy [30] to establish a LUAD metastasis model and derived a highly metastatic
subpopulation from A549 cells, referred to as A549-highly metastatic cells (A549-HM3).
Compared with the parental (A549-PR) cells, A549-HM3 exhibited significantly enhanced
metastatic potential, as evidenced by bioluminescence imaging (BLI) analysis in mice
(Figure 1A). Impressively, we observed a significant reduction in the expression of Lin-
cRNA01703 (ENST00000656201.1, Linc01703) in A549-HM3 cells compared to A549-PR
cells (Figure 1B). Cellular fractionation assays revealed the presence of Linc01703 in both
the cytoplasm and nucleus of A549 cells (Figure 1C). Furthermore, the rapid amplification
of cDNA ends (RACE) experiment confirmed the full-length sequence of Linc01703, which
consisted of 1159 nucleotides and a 3′ polyA tail (Figure 1D–F). Importantly, an analysis
of the coding potential strongly suggested that Linc01703 lacks protein-coding capacity
(Figure 1G). Collectively, these data provide compelling evidence that Linc01703 is sig-
nificantly downregulated in metastatic LUAD, prompting further investigation into its
potential role in LUAD metastasis.
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Figure 1. Linc01703 expression is decreased in metastatic lung cancer cells. (A) Indicated A549
cells (1 × 106) were injected via ventricle, and representative bioluminescent images of metastasis
are shown. (B) Relative fold change of Linc01703 in A549-PR and A549-HM cells. (C) The relative
expression of U6 (nuclear control) and β-Actin (cytoplasmic control) and the expression of Linc01703
were analyzed by using qRT-PCR in the nuclear and cytoplasmic fractions. (D) The images of
PCR products from the 5′-RACE and 3′-RACE procedures. (E,F) The sequence of the full length of
Linc01703. Blue: C, Black: G, Red: T, Green: A. (G) The full length of Linc01703 was cloned into
pLenti with an ATG-start codon and a C-terminal Flag peptide in three expression patterns. An
anti-Flag antibody was used to probe transcribed proteins. The uncropped blots are shown in File S1.
PTEN with a Flag tag served as a positive control. Results are presented as mean ± SD, ** p < 0.01.



Cancers 2023, 15, 5781 7 of 16

3.2. Linc01703 Inhibits Lung Cancer Metastases In Vivo

To investigate the role of Linc01703 expression in LUAD metastasis, we established sta-
ble Linc01703-overexpressing cell lines in A549 and H1975 (Figure 2A). The overexpression
of Linc01703 in A549 and H1975 cells did not significantly affect the proliferative and inva-
sive capabilities of LUAD cells in vitro, as shown by MTT, Transwell, and wound healing
assays (Figure 2B–D). However, in the mouse metastasis model, injection of Linc01703-
overexpressing A549 cells via the lateral tail vein or spleen resulted in significantly reduced
colonization and metastasis in the lung (Figure 2E,F) and liver (Figure 2G–I) of mice com-
pared to A549-Vector cells. Taken together, these data demonstrate that Linc01703 acts as
an inhibitor of LUAD cell metastasis in vivo.
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Figure 2. Linc01703 inhibits lung cancer metastases in vivo. (A) Relative fold change of Linc01703
in Vector and Linc01703-overexpressing cells of A549 and H1975. (B) MTT assay of A549-Vector
and A549-Linc01703 cells. (C) Representative graphs and quantification of indicated cells analyzed
via Transwell assays. Scale bar: 100 µm. (D) Representative graphs and the statistical results of the
wound healing assay in A549-Vector and A549-Linc01703 cells. Wound closures were photographed
at 0 and 24 h after wounding. Scale bar: 100 µm. The percentage of wound closure was based on
statistics in Image J. (E) Indicated A549 cells (1 × 106) were injected via tail vein (E,F) or spleen (G,I),
and representative bioluminescent images (BLI) (E,G), tumor picture (F upper panel; H upper panel),
H&E staining (F lower panel; H lower panel, Scale bar: 100 µm), and liver weight (I) of metastasis
are shown. (n = 5 per group). Results are presented as mean ± SD derived from three independent
experiments, * p < 0.05, ** p < 0.01.
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3.3. Linc01703 Promotes the Release of CD81+ Exosomes

To further understand the mechanism by which Linc01703 inhibits metastasis, we per-
formed RNA sequencing and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses on A549-Linc01703 and A549-Vector cells. The analysis revealed
that the most enriched annotations among the 199 upregulated genes in A549-Linc01703
cells were related to extracellular exosomes (Figure 3A,B). We also observed a positive
correlation between the expression of Linc01703 and extracellular exosome genes in the
Cancer Genome Atlas (TCGA) lung cancer datasets (Figure 3C). Furthermore, we isolated
and analyzed exosomes from A549-Linc01703 and A549-Vector cells and found unchanged
extracellular nanoparticle counts (Figure 3D). However, the expression of CD81, a major
constituent of the exosome, increased, while the expression of other exosome markers,
like CD9 and CD63, remained unchanged (Figure 3E). Considering the heterogeneity of
exosome subtypes and marker expression, this increase in CD81 could potentially reflect
an increase in the number of CD81+ exosomes and suggest that Linc01703 promotes the
release of CD81+ exosomes instead of increasing the concentration of exosomes.
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Figure 3. Linc01703 promotes the release of CD81+ exosomes. (A,B) Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the 199 upregulated genes in
A549-Linc01703 compared with A549-Vector genes. (C) Gene set enrichment analysis (GSEA) of
the correlation between Linc0170 and extracellular exosome genes using the TCGA lung cancer
database. (D) Concentration of exosomes in A549-Vector and A549-Linc01703 cells. (E) The effect of
Linc01703 overexpression on CD9, CD63, and CD81 in whole cell lysis (WCL) and exosome (EXO).
The uncropped blots are shown in File S1. ** p < 0.01.

3.4. Linc01703 Inhibits Lung Cancer Metastasis and Affects Immune Cell Infiltration through
CD81+ Exosomes

To investigate the functional significance of the CD81+ exosome in the Linc01703-
mediated inhibition of metastasis, we silenced CD81 in A549-Vector and A549-Linc01703
cells (Figure 4A). Notably, silencing CD81 reversed the metastasis-suppressive effect of
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Linc01703 in a tail vein injection mouse model (Figure 4B). Moreover, we next studied the
roles of exosomes derived from the indicated A549 cells in lung cancer cell metastases. Mice
were caudally injected with exosomes 2 weeks before a caudal injection of A549-Vector
cells, and cellular metastasis was evaluated with a mouse BLI assay (Figure 4C). Moreover,
we found that exosomes derived from A549-Linc01703 cells reduced the metastasis of
lung cancer cells compared to the exosomes from A549-vector cells. However, when CD81
was silenced, the inhibitory effect of Linc01703 on metastasis was abolished (Figure 4C).
Additionally, we observed that the exosomes from A549-Vector cells altered immune cell
infiltration in the tumor microenvironment by reducing the proportions of neutrophils
(CD11b+Gr-1+) and NK cells (CD3-CD49+) and increasing the proportion of CD86+ B cells
(B220+CD86+) and CD80+ B cells (B220+CD80+) compared with PBS treatment (Figure 4D).
In particular, the administration of exosomes from A549-Linc01703 cells restained the infil-
tration of CD86+ B cells, while silencing CD81 reversed these effects induced by Linc01703
(Figure 4D). CD86+ B cells, a physiologic B cell subset, have been shown to be increased
in the tumor microenvironment of gastric cancer [31,32], colorectal cancer [33], and head
and neck squamous cell carcinoma [34] patients. Therefore, these data suggest that the
inhibition effect of Linc01703 in LUAD metastasis may be dependent on the infiltration of
CD86+ B cells via CD81+ exosomes.
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exosomes. (A) The expression of CD81 in the indicated cells. The uncropped blots are shown in File S1.
(B,C) Indicated A549 cells (1 × 106) were injected via tail vein, and representative bioluminescent
images of metastasis are shown (n = 5 per group). (D) Percentage of CD11b+Gr-1+, B220+CD86+,
CD3−CD49+, and B220+CD80+ cells in the tumor microenvironment after exosome treatment. Results
are presented as mean ± SD derived from three independent experiments, * p < 0.05, ** p < 0.01, ns:
no significance.
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3.5. Linc01703 Promotes the Formation of Rab27a/SYTL1/CD81 Transport Complexes

Previous studies have extensively shown that lncRNAs perform their functions by
physically interacting with their binding proteins. To explore the molecular mechanism
by which Linc01703 promotes the release of CD81+ exosomes, we investigated the inter-
action proteins of Linc01703. Among the genes related to exosome release, we found that
synaptotagmin-like 1 (SYTL1) was upregulated in A549-Linc01703 cells (Figure 5A,B). In-
terestingly, SYTL1 has been shown to specifically bind to Rab27a, a GTPase involved
in exosome release [35,36]. We confirmed the interaction of Linc01703 with Rab27a,
SYTL1, and CD81 using RNA pull-down and Western blotting assays. And we found
that Linc01703 could bind with Rab27a and SYTL1 (Figure 5C). Furthermore, the overex-
pression of Linc0703 enhanced the interaction of Rab27a with CD81 and SYTL1 (Figure 5D).
Moreover, the inhibition of Rab27a or SYTL1 reversed the increased release of CD81+

exosomes induced by Linc01703 in A549 cells (Figure 5E). Additionally, we observed
an increase in intracellular calcium (Ca2+) levels near the membrane in A549-Linc01703
cells, which is known to be involved in the release of exosomes (Figure 5F). Thus, we
investigated the treatment of Nexinhib 20, an inhibitor of Rab27a-SYTL1 protein—protein
interactions, and intracellular calcium chelators (BAPTA-AM and BAPTA), which signifi-
cantly reduced the expression of CD81 in the exosomes derived from A549-Linc01703 cells
compared with the control-treated group (Figure 5G). Taken together, our data indicate that
Linc01703 promotes the formation of Rab27a/SYTL1/CD81 transport complexes through
the upregulation of SYTL1 in LUAD cells.
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Figure 5. Linc01703 promotes the formation of Rab27a/SYTL1/CD81 transport complexes. (A) Gene
set enrichment analysis (GSEA) of the correlation between Linc01703 and extracellular exosome
genes using genes in A549-Linc01703 and A549-Vector cells. (B) Relative fold change of exosome
release genes in A549-Linc01703 and A549-Vector cells. (C) RNA pull-down assay and Western blot
assay validation of the binding of Rab27a, Rab27b, SYTL1, SYTL3, and CD81 with Linc01703. (D) The
effect of Linc01703 on the binding of Rab27a with CD81 and CD81. (E) The effect of silencing Rab27a
or SYTL1 on the expression of CD9, CD63, and CD81 in WCL and EXO. (F) Fluo-4 AM staining of
indicated cells depicts intracellular calcium. Scare bar: 50 µm. (G) The effect of Nexinhib 20 (the
inhibitor of Rab27a-SYTL1 binding), BAPTA-AM (Ca2+ chelator), or BAPTA (Ca2+ chelator) on the
expression of CD9, CD63, and CD81 on the WCL and EXO of the indicated cells. The uncropped
blots are shown in File S1. Results are presented as mean ± SD, * p < 0.05, ** p < 0.01.

3.6. CD81 Is Decreased in Lung Cancer Tissues and Correlates with Better Prognosis of Patients

To further investigate whether the above findings were clinically relevant, we exam-
ined the expression of CD81 in clinical LUAD tissue samples and determined its correlation
with patient prognosis. As shown in Figure 6A,B, we found that CD81 expression was
significantly decreased in LUAD tumor tissues, especially in tumor tissues with local
or distant metastasis. CD81 protein levels were also downregulated in eight LUAD tis-
sue samples in the Western blotting assay, as shown by weak immunostaining in LUAD
tissue specimens compared with adjacent benign lung tissue specimens through immuno-
histochemical (IHC) assay (Figure 6C,D). Additionally, low-level CD81 expression was
associated with shorter overall survival (OS), especially in stage I and II patients (Figure 6E).
The cutoff value for distinguishing high versus low expression was selected using receiver
operating characteristic (ROC) curve analysis. Together, these clinical data reveal that CD81
is significantly downregulated in LUAD tissues and may play an essential role during
LUAD metastasis.
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Figure 6. CD81 is decreased in lung cancer tissues and correlates with a better prognosis for patients.
(A) Analyses of the expression levels of CD81 in patients and control using the TCGA LUAD dataset
(two-tailed paired Student’s t-test). (B) Analyses of the expression levels of CD81 in paired LUAD
and adjacent non-tumor tissues (n = 59) using the TCGA dataset (two-tailed paired Student’s t-test).
(C) A Western blot assay shows the expression of CD81 in paired LUAD and adjacent non-tumor
tissues (n = 10). The uncropped blots are shown in File S1. (D) Representative images of IHC from
LUAD patients show the protein expression level of CD81. Scale bar: 20 µm. (E) Kaplan–Meier
analyses of overall survival (OS) based on the KMPLOT LUAD dataset on CD81 expression. Results
are presented as mean ± SD, ** p < 0.01.

4. Discussion

Recent research has highlighted the involvement of lncRNAs in various tumorigenic
processes, including tumor cell proliferation, invasion, metabolism, and immunological
function in the tumor microenvironment (TME) [37,38]. However, the link between lncR-
NAs and the regulation of exosome secretion from tumor cells remains poorly understood. In
the current study, we investigated the role of Linc01703, a downregulated lncRNA in metastatic
lung cancer cells, in promoting exosome secretion and inhibiting LUAD metastasis.

We first performed GO, KEGG, and GSEA analyses to analyze the RNA sequencing
data from A549-Linc01703 cells. These analyses revealed an enrichment of genes related
to exosome secretion in A549-Linc01703 cells. Furthermore, nanoparticle tracking analy-
sis (NTA) and Western blotting analyses confirmed that the overexpression of Linc01703
promoted the release of CD81+ exosomes by LUAD cells, indicating a positive correla-
tion between Linc01703 and CD81+ exosome secretion. Moreover, our study suggests a
correlation between LUAD metastasis and the downregulation of Linc01703, which may
be influenced by TGF-β and hypoxia. The functional mechanisms of lncRNAs are often
determined by their subcellular location. It has been demonstrated that lncRNAs can
regulate tumorigenic processes by interacting with RNA-binding proteins (RBPs). As
Linc01703 was localized in both the cytoplasm and nucleus of A549 cells, we hypothesize
that cytoplasmic Linc01703 may interact with Rab27a and SYTL1 to enhance the secretion
of CD81+ exosomes, while the role of nuclear Linc01703 remains unknown and requires
further investigation.
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Exosome secretion is a complex process involving the transport of multivesicular
bodies (MVBs), docking, and fusion with the plasma membrane and is regulated by
various molecules and pathways [9,39]. We investigated the mechanism underlying the
secretion of CD81+ exosomes in LUAD cells, focusing on the role of Linc01703. The
Rab family, including Rab5 [40], Rab7 [41], Rab11 [42], Rab27a [43,44], Rab27b [43,44],
and Rab35 [45], has been demonstrated in previous studies to have essential roles in
controlling MVB transport and affecting exosome release. Our results demonstrated that
Linc01703 upregulated the expression of SYTL1, an effector of Rab27a [46]. Moreover, the
overexpression of Linc01703 induced the interaction between Rab27a, SYTL1, and CD81,
while silencing Rab27a or SYTL1 decreased the release of CD81+ exosomes induced by
Linc01703. These findings suggest that Linc01703 regulates the release of CD81+ exosomes
by modulating SYTL1 expression and the formation of Rab27a/SYTL1/CD81 complexes.

Indeed, extracellular vesicles, including microvesicles and exosomes, have been shown
to play unique roles and mechanisms in intercellular communication and the tumor mi-
croenvironment [11,47]. In breast cancer, CD81+ exosomes released by fibroblasts have
been implicated in promoting the migration of breast cancer cells through the interaction of
CD81 and Wnt11 [23]. Similarly, in our study, we found that CD81, which is abundant in
the exosome derived from A549-Linc01703 cells, can be secreted and play a biological role
in the tumor microenvironment. Previous studies have shown that CD81 is involved in the
activation of immune cells, including B cells [16,48,49], T cells [50,51], and NK cells [52],
leading to an enhanced antitumor immune response. Interestingly, we observed that the
exosomes derived from A549-Linc01703 decreased the infiltration of CD86+ B cells in the
tumor microenvironment, while CD81 silencing reversed it. Additionally, the reduced
expression level of CD81 in LUAD patients with metastasis and its correlation with a better
prognosis further highlight the clinical relevance of the CD81+ exosome. Considering the
important role of Linc01703-induced CD81+ exosome release, our findings provide new
insights into the potential clinical application of CD81+ exosome-related cancer therapy.

In summary, our study provides evidence that Linc01703 promotes the formation of
the Rab27a/SYTL1/CD81 complex, leading to the increased secretion of CD81+ exosomes.
These exosomes subsequently reduced the proportion of infiltrating immune cells in the
lung tumor microenvironment and impaired LUAD metastasis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15245781/s1, File S1: Full pictures of the Western blots;
Table S1: Oligos used for knockdown or knockout genes; Table S2: Sense and antisense primers used
for qRT-PCR; Table S3: Original data for RNA seqencing.
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