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Simple Summary: Patients who are diagnosed with multiple myeloma are given an initial sequence
of treatments that usually, for those who are young and fit enough, includes high-dose melphalan
followed by autologous stem cell transplantation. This has contributed to the improvement in
survival seen over the past 30 years. However, high-dose melphalan has significant limitations,
including short-term side effects and longer-term issues such as an increased risk of developing
secondary hematologic malignancies including leukemia. There are now numerous highly efficacious
combination regimens for initial treatment that result in increasingly large proportions of patients
achieving deep responses with no evidence of minimal residual disease. Moreover, large, randomized
studies using these regimens have shown no benefit in overall survival after receiving high-dose
melphalan with stem cell transplantation. There is thus a growing rationale for selected eligible
patients to defer receiving high-dose melphalan and stem cell transplantation until potentially needed
in a subsequent line of treatment.

Abstract: The standards of care for the initial treatment of patients with newly diagnosed multiple
myeloma (NDMM) who are eligible for high-dose melphalan and autologous stem cell transplantation
(HDM-ASCT) include highly active triplet and quadruplet regimens based on proteasome inhibitors,
immunomodulatory drugs, and monoclonal antibodies. These regimens are resulting in improved
outcomes and increasingly high rates of minimal residual disease (MRD)-negative responses without
HDM-ASCT as part of the upfront therapy. Furthermore, recent randomized studies have shown that,
while transplant-based approaches as a frontline therapy result in significantly longer progression-
free survival compared to non-transplant approaches, this has not translated into an overall survival
benefit. Given these developments, and in the context of the treatment burden of undergoing HDM-
ASCT, in addition to the acute toxicities and long-term sequelae of HDM, which are associated with
the genotoxicity of melphalan, there is an increasing rationale for considering deferring upfront
HDM-ASCT in select transplant-eligible patients and saving it as a treatment option for later salvage
therapy. Here, we review the latest clinical trial data on upfront or deferred HDM-ASCT and on
the activity of quadruplet induction regimens, including rates of MRD-negative responses, and
summarize emerging treatment approaches in the upfront setting such as the use of MRD-directed
therapy and alternatives to HDM-ASCT.

Keywords: autologous stem cell transplantation; genotoxicity; high-dose melphalan; minimal residual
disease; multiple myeloma; newly diagnosed; quadruplets; transplant-eligible; treatment personalization;
triplets
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1. Introduction

Multiple myeloma (MM) is the second most common individual hematologic malig-
nancy [1,2], with an estimated global incidence of almost 180,000 new cases and 120,000 deaths
in 2020, comprising approximately 1% of the global cancer burden [1]. The disease more
commonly affects males (~56% of cases) and is generally a disease of the elderly, with the
median age at diagnosis in the United States being 69 years [3]. MM exhibits substantial
heterogeneity at diagnosis and throughout the disease course associated with multiple
disease-related and patient-related characteristics including disease stage [4,5], cytogenetic
abnormalities [6], age, and frailty [7,8], providing the context for the drive to develop
personalized treatment approaches [9–11]. Overall survival (OS) has increased markedly
over the past four decades, with the 5-year survival rate in the United States more than
doubling to 59.8% [3] and the median OS in younger, fitter patients reaching approximately
10 years [12]. This is associated with the introduction and widespread adoption of high-
dose melphalan plus autologous stem cell transplantation (HDM-ASCT) as a frontline
therapy in eligible patients and, more importantly, the more recent development and use
of numerous highly active novel agents and regimens throughout the disease course in
multiple lines of therapy [13,14]. Such progress is rapid and ongoing, as evidenced by the
recent approvals by the United States Food and Drug Administration (FDA) in 2021–2023
of the chimeric antigen receptor (CAR) T cell therapies idecabtagene vicleucel (ide-cel) and
ciltacabtagene autoleucel (cilta-cel) [15,16], and of the bispecific antibodies teclistamab,
elranatamab, and talquetamab [17–19].

Current Treatment of Newly Diagnosed MM (NDMM) and the Role of HDM-ASCT

The current standards of care for the treatment of NDMM are based on three classes of
agents: the proteasome inhibitors (PIs; bortezomib, carfilzomib, ixazomib), the immunomod-
ulatory drugs (lenalidomide, pomalidomide, thalidomide), and the monoclonal antibodies
(mAbs; anti-CD38 mAbs daratumumab, isatuximab; anti-SLAMF7 mAb elotuzumab) [13,20].
These agents are administered in combination—typically with dexamethasone—as triplet and,
increasingly, quadruplet induction therapies, and as single-agent or doublet maintenance
regimens as part of frontline therapy [13,20]. Post-induction consolidation therapy depends
on a patient’s eligibility for HDM-ASCT, which remains the standard approach for patients
aged ≤ 65–70 years without contraindicating comorbidities [13,20].

The use of HDM-ASCT as a standard in transplant-eligible patients was initially estab-
lished based on randomized trials versus chemotherapy in the era prior to novel agents,
in which transplant resulted in improved progression-free survival (PFS) and OS [21,22].
More recently, large phase 2 and phase 3 studies incorporating triplet novel-agent induc-
tion, with or without consolidation, and maintenance therapy have further demonstrated
that the addition of HDM-ASCT confers a highly significant PFS benefit [23–28]. For ex-
ample, the DETERMINATION phase 3 trial showed that the addition of HDM-ASCT to
lenalidomide-bortezomib-dexamethasone (RVd) induction, plus lenalidomide maintenance
to progression, resulted in a nearly 2-year median PFS benefit (67.5 vs. 46.2 months) and a
35% reduction in the risk of progression (RVd-alone vs. RVd + ASCT hazard ratio [HR]
1.53) [24]. The Intergroupe Francophone du Myélome (IFM) 2009 phase 3 trial, which had a
similar design but administered lenalidomide maintenance for 1 year only, also showed a
substantial PFS benefit with the addition of a transplant (median PFS 47.3 vs. 35.0 months,
HR 1.43), although this was markedly less than the duration of disease control seen in both
arms of DETERMINATION [23].

However, the importance and feasibility of the personalization of therapy is growing [9–11].
In the context of increasingly active quadruplet induction regimens [29–32] and our grow-
ing understanding of the mutagenic effects of melphalan [24,33–36], as well as no OS
benefit having been demonstrated with HDM-ASCT in recent studies [23–26,37], the role of
HDM-ASCT as a standard approach for all-comers in transplant-eligible NDMM is being
challenged. Indeed, several treatment guidelines and recommendations are including
deferred HDM-ASCT as a possible option for select patients in the frontline setting (Table 1).
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In this review, we explore the drivers behind the increasing use of deferred HDM-ASCT
and a more tailored approach to therapy, as well as evaluating future treatment approaches
for NDMM based on minimal residual disease (MRD) status and the incorporation of the
next generation of novel immune-based therapies.

Table 1. Recent treatment guidelines and recommendations for NDMM including early or deferred
HDM-ASCT.

Publication Year
Published Early HDM-ASCT Deferred HDM-ASCT

EHA-ESMO Clinical
Practice Guidelines [20] 2021

“For patients <70 years without
comorbidities, induction therapy

followed by HDM and ASCT is the
recommended treatment”

Not included

BSH/Myeloma UK
guidelines [38] 2021 “Recommended for younger, fitter

patients”

“Lack of OS benefit . . . likely to be largely
due to the use of delayed ASCT . . .

supports the use of deferred ASCT as a
clinical option. . . [the fact that] patients in
the non-ASCT arm of the IFM 2009 study

were unable to receive ASCT at relapse due
to disease refractoriness reinforces the

benefit of upfront ASCT where feasible”

ASTCT Clinical Practice
Recommendations [39] 2022

“The panel recommends early
autologous transplantation as a

consolidation therapy in eligible,
newly diagnosed myeloma patients

after 4–6 cycles of induction”

“The panel recommends mobilization and
storage of peripheral blood stem cells in
newly diagnosed myeloma patients not
undergoing autologous transplantation

after first line of therapy for future use as a
treatment at first relapse”

Rajkumar, update on
diagnosis,

risk-stratification and
management [40]

2022 “ASCT should be considered in all
eligible patients”

“In standard-risk patients responding well
to therapy, ASCT can be delayed until first
relapse provided stem cells are harvested

early in the disease course”

mSMART guidelines [41] 2023
Preferred for standard-risk patients

[t (11;14), t (6;14), trisomies],
recommended for high-risk patients

An option for standard-risk patients

ASCT, autologous stem cell transplantation; ASTCT, American Society for Transplantation and Cellular Therapy;
BSH, British Society of Haematology; EHA, European Hematology Association; ESMO, European Society for
Medical Oncology; HDM, high-dose melphalan; mSMART, Stratification for Myeloma and Risk-adapted Therapy;
NDMM, newly diagnosed multiple myeloma.

2. The Challenge of Comparing Upfront Versus Deferred HDM-ASCT

It is important to acknowledge that directly comparing outcomes with upfront or
deferred HDM-ASCT is challenging due to multiple potential confounders. For example,
there is an inherent immortal time bias towards patients who receive deferred HDM-ASCT
as a second-line therapy, because these patients must have already received frontline
therapy and must still be young and fit enough to undergo HDM-ASCT as part of their
second-line treatment [42]. Early analyses suggested that there were no differences in
OS between the two approaches, and this may have been due, in part, to such potential
bias [42–44]. However, there is the potential for bias in the opposite direction too if
the group receiving deferred ASCT largely includes patients with an earlier need for
second-line therapy following failure of their front-line regimen, i.e., those with more
aggressive relapses. Moreover, in the context of the rapidly expanding range of highly active
treatment options for relapsed/refractory MM (RRMM), a PFS benefit with upfront HDM-
ASCT versus a non-transplant approach could result in a delayed need for second-line
therapy, during which time additional novel, active treatment options might be approved
in this setting.
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Furthermore, for such comparisons, trials with a lengthy follow-up are required in
order to evaluate outcomes through both first- and second-line therapy, which may be
substantial for transplant-eligible patients in the modern era [12]. The IFM 2009 and
DETERMINATION trials provide valuable data in this regard, as both trials recommended
HDM-ASCT as second-line therapy following RVd alone [24,25]. In IFM 2009, with a
median follow-up of 7.5 years, 262/350 (74.9%) and 217/350 (62.0%) patients on the RVd-
alone and RVd + ASCT arms, respectively, required second-line therapy, with 201/262
(76.7%) versus 49/217 (22.6%) of them having received ASCT as part of that treatment.
As in earlier studies of early versus later transplant, no difference in OS (8-year rate:
60.2% vs. 62.2%) was seen between arms [23], suggesting that deferred ASCT as part
of the second-line therapy represents a reasonable clinical option. This is supported
by several studies demonstrating substantial efficacy with HDM-ASCT in the RRMM
setting [14,45,46]. Interestingly, however, in DETERMINATION no difference in OS (5-year
rate: 79.2% vs. 80.7%) was seen between RVd alone and RVd + ASCT after a median
follow-up of almost 6.5 years [24], despite only 78/279 (28.0%) RVd-alone patients who had
discontinued protocol therapy having received subsequent HDM-ASCT. These findings, in
the context of the large PFS benefit with RVd + ASCT, suggest the possibility of competing
risk impacting OS.

3. The Rationale for Deferring HDM-ASCT

In addition to the absence of an OS benefit to date with RVd + ASCT versus RVd-
alone in the IFM 2009 and DETERMINATION trials, several other factors contribute to
the rationale for deferring HDM-ASCT and the design of treatment protocols by which to
do so.

3.1. Acute Adverse Impacts of High-Dose Melphalan

HDM-ASCT may be associated with an increased risk of certain acute toxicities,
which are important to bear in mind when considering upfront or deferred HDM-ASCT
approaches. While treatment-related mortality rates are now low [24,25,47], HDM neverthe-
less results in the prolonged suppression of bone marrow function and significantly higher
rates of severe hematologic toxicities than induction therapy alone, notably neutropenia [48],
along with an associated increased risk of infection. For example, in DETERMINATION,
the overall rate of any hematologic adverse events (AEs) over the course of treatment
was 89.9% on the RVd + ASCT arm compared with 60.5% with RVd alone, with rates
of febrile neutropenia (9.0% vs. 4.2%) and pneumonia (9.0% vs. 5.0%) also higher with
RVd + ASCT [24]. Similarly, the incidence of grade 3/4 neutropenia (92% vs. 47%) and
grade 3/4 infections (20% vs. 9%) was higher with RVd + ASCT versus RVd alone in the
IFM 2009 study [25].

HDM is also associated with gastrointestinal disorders, including high rates of diarrhea,
nausea, and vomiting, as well as esophageal, gastric, and colonic mucosal injury [49–51].
Grade 3/4 gastrointestinal AEs were reported in 28% versus 7% of patients receiving
RVd + ASCT versus RVd alone in IFM 2009 [25], and the rate of treatment-related gastroin-
testinal AEs was similarly higher (19% vs. 8%) in DETERMINATION [24]. Moreover, HDM
is specifically also associated with oral mucositis [52], with no such AEs reported in the
RVd-alone arm of DETERMINATION [24].

The acute toxicities and the treatment burden of HDM can have a marked adverse
impact on patients’ quality of life (QoL) associated with the transplant procedure, although
QoL measures subsequently recover and may further improve compared to a pretreat-
ment baseline [53]. Transient but clinically meaningful decreases in QoL were seen in
the RVd + ASCT arm in both DETERMINATION [24] and IFM 2009 [54], with subsequent
recovery during medium-term follow-up. These included transient worsening of the Global
Health Status, Physical Functioning, and Role Functioning domain scores of the European
Organisation for Research and Treatment of Cancer (EORTC) QoL Questionnaire–Core
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30 module (QLQ-C30) and of the Side Effects score of the EORTC-QLQ Myeloma-specific
module (MY20) [24,54].

3.2. Long-Term Sequelae of HDM

The potential for long-term sequelae of HDM associated with the genotoxicity of
melphalan [33] is an important consideration when potentially deferring transplant. MM
evolution and progression has been shown to be characterized by a number of mutational
processes, including the melphalan-specific single-base substitution (SBS)-MM1 mutational
signature [35,55–57], and it has been demonstrated that HDM exposure results in a sig-
nificantly increased overall mutational burden in residual MM at the time of relapse [34].
Consequently, there is an increased risk of second primary malignancies (SPMs) in MM
patients following HDM-ASCT—data from the United States National Cancer Institute
Surveillance, Epidemiology, and End Results (SEER) Program showed that the risk of
acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) in MM patients is
5–10 times the background rate in the general population, while an analysis of data from the
Center for International Blood and Marrow Transplant Research (CIBMTR) demonstrated
relative risks of 10–50 for AML and ~100 for MDS in a cohort of MM patients who received
HDM-ASCT [36]. This is supported by recent clinical trial data from DETERMINATION,
which showed a significantly higher rate of secondary AML/MDS in the RVd + ASCT
versus RVd-alone arm (2.7% vs. 0%, p = 0.002) in the context of continuous lenalidomide
maintenance post-ASCT/induction [24].

As highlighted in a recently published analysis of CIBMTR registry data, the risk of
SPMs is an important survivorship issue for MM patients who underwent HDM-ASCT
followed by lenalidomide maintenance [58]. On multivariate analysis, the CIBMTR data
showed that having any SPM was associated with significantly shorter PFS (HR 2.62)
and OS (HR 5.01), an association that appeared stronger for hematologic SPMs (PFS HR
3.85, OS HR 8.13) [58]; thus, SPMs may be a competing risk contributing to the lack of
OS benefit with transplant-based versus non-transplant-based front-line therapy [23,24].
Similar findings were reported from an analysis of MM patients in the Netherlands Cancer
Registry, in which the development of an SPM was associated with a greater mortality
risk [59]; notably, these data showed a significant increase in the risk of AML/MDS SPMs
over time, from 1994–2000 to 2001–2007 and 2008–2013, coinciding with the increasing use
of HDM-ASCT for MM [59].

Other long-term survivorship issues post-HDM may include an increased risk of
hematologic complications with subsequent therapies—an analysis reported at the 2022
Annual Meeting of the American Society of Hematology (ASH) showed that a prior history
of ≥1 HDM-ASCT was correlated with poor hematologic recovery after CAR T cell therapy,
which, in turn, showed a possible association with subsequent MDS [60]. Furthermore, an
analysis of 630 MM patients who had survived for >2 years following HDM-ASCT showed
that, compared with sibling controls, MM patients treated with HDM-ASCT had 40%
greater odds of developing severe and/or life-threatening chronic health conditions (CHCs),
with a 10-year cumulative incidence of 58% [61]; these included venous thromboembolism,
subsequent neoplasms, and, cataracts. A recent analysis of long-term survivors at a median
of 4 years post-transplant also found that around a third of patients had clinically significant
distress (per the Cancer- and Treatment-Related Distress [CTXD] instrument), most notably
in the domain of ‘Health Burden’ [62]. These findings indicate the need for long-term
monitoring to help manage subsequent morbidity and complications post-transplantation.

3.3. Personalization of Treatment and Patient Preferences

The current treatment armamentarium for MM contains a large number of highly
active salvage therapy options and so, in the modern era and in regions with access
to these multiple options, an upfront PFS benefit may no longer translate into an OS
benefit due to the activity of subsequent lines of treatment [24,47,63]. In this context, real-
world aspects of care, including patients’ preferences for treatment and their personal
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circumstances, are important when considering frontline therapy choices. For example,
HDM-ASCT represents an intensive treatment approach that can place a substantial burden
on patients in terms of the need for a period of hospitalization and recovery that will
typically last a number of weeks—this may not be feasible for some patients, depending
on their circumstances (e.g., dependents, work), and so they may prefer to select a more
convenient and tolerable non-transplant option with less impact on their daily lives [11].

Furthermore, given the range of different options, and the goal of the personalization
of treatment, it is important to explore the benefit of treatment modalities in patients with
specific demographic, biologic, or disease-related characteristics. Indeed, subgroup data
from the DETERMINATION trial support the idea that ‘one size does not fit all’—with RVd
alone versus RVd + ASCT, HRs for PFS ranging from 0.96 to 3.40 were seen across patient
subgroups defined by race, body mass index (BMI), disease stage, and cytogenetics [24].
Preliminary analyses have shown that there may be a differential impact of prognostic
factors between the non-transplant RVd-alone and RVd + ASCT treatment approaches [64],
suggesting that some factors, such as race, BMI, disease stage, and cytogenetics, may be as-
sociated with a greater or lesser benefit from these therapies. For example, with RVd alone
versus RVd + ASCT in DETERMINATION, median PFS was 44.3 versus 67.2 months (HR
1.67) in white patients but was not reached versus 61.4 months (HR 1.07) in African Amer-
ican patients [24]. Similarly, in patients with a BMI of <25, median PFS was 33.6 months
versus not reached (HR 2.60) with RVd alone versus RVd + ASCT, but the magnitude of
benefit was notably lower in patients with a BMI of 25 to <30 (median PFS 52.3 versus
64.3 months, HR 1.24) or ≥30 (median PFS 45.8 versus 64.4 months, HR 1.41) [24]. PFS
and OS benefits with RVd + ASCT also varied according to cytogenetics. Among patients
with high-risk cytogenetic abnormalities [del17p, t (4;14), t (14;16)] receiving RVd alone
versus RVd + ASCT, median PFS was 17.1 versus 55.5 months (HR 1.99) and 5-year OS
was 54.3% versus 63.4% (HR 1.25), suggesting an emerging OS benefit; these benefits
appeared particularly pronounced in patients with t (4;14), with PFS and OS HRs of 2.72
and 1.39, respectively, but less so in patients with del17p (PFS and OS HRs of 1.44 and
1.03, respectively). By contrast, in patients with standard-risk cytogenetics, median PFS
was 53.2 versus 82.3 months (HR 1.38) and 5-year OS was almost identical at 86.2% versus
86.0% (HR 0.99) [24]. Further research into patient and disease characteristics and other
biomarkers with an association with outcome is warranted to inform tailored treatment
approaches in the future.

3.4. Depth of Response and Rate of MRD Negativity with Quadruplet Induction

One prognostic marker that is already emerging as a potentially important way of
guiding treatment escalation or de-escalation, including the use of deferred HDM-ASCT,
is MRD status. Achieving MRD negativity has been demonstrated to be one of the key
prognostic factors for long-term PFS and OS in patients with NDMM and a potential
surrogate for outcomes [65–69]. Moreover, achieving sustained MRD negativity is highly
correlated with prolonged PFS and OS [70–74] and is associated with better prognosis
than simply achieving MRD-negative status; for example, an analysis of 23 patients with
NDMM who were receiving lenalidomide maintenance following HDM-ASCT (n = 10)
or induction therapy (n = 13) showed that patients who lost or were unable to obtain an
MRD-negative status during the first year of maintenance were 14 times more likely to
have disease progression than those with a sustained MRD-negative status for 1 year [70].
Notably, the immune milieu in patients with a sustained MRD-negative status who did not
undergo HDM-ASCT was correlated with that in the bone marrow from healthy (non-MM)
individuals [70]. The threshold for defining MRD-negative status (e.g., 10−5 or 10−6) also
impacts its prognostic value, with MRD negativity resulting from more sensitive evaluation
(i.e., 10−6 vs. 10−5) having greater prognostic value [67,75]; therefore, achieving MRD
negativity at 10−5 sensitivity may not be optimal compared with 10−6.

Importantly, the prognostic value of MRD-negative status is independent of treat-
ment [65–68], with a similar PFS seen in MRD-negative patients receiving transplant or
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non-transplant approaches [24,28]. For example, in preliminary data from DETERMINA-
TION, among the 39.8% and 54.4% of patients in the RVd-alone and RVd + ASCT arms
who were evaluated for MRD status at the start of maintenance and were MRD-negative,
the 5-year PFS rates were 59.2% and 53.5%, respectively [24]. Thus, patients who achieve
an MRD-negative response to treatment prior to planned transplant may be appropriate
for a deferred HDM-ASCT approach.

Rates of MRD negativity have been increasing substantially with the use of modern
triplet and, notably, quadruplet induction and consolidation regimens, either in conjunction
with HDM-ASCT or alone. As shown in Table 2, MRD rates of up to 81% have been achieved
with frontline treatment comprising quadruplet regimens plus HDM-ASCT [76], with MRD
rates increasing throughout the course of frontline therapy from induction to transplant to
consolidation to maintenance [77]. However, similarly high rates have also been seen with
non-transplant approaches, with an MRD-negative response rate of 71% reported in the
MANHATTAN trial of daratumumab plus carfilzomib-lenalidomide-dexamethasone [30].
Collectively, these data suggest that a substantial proportion of transplant-eligible patients
may be able to defer HDM-ASCT if they achieve sustained MRD negativity with their
induction therapy.

Table 2. High rates of MRD negativity reported with quadruplet regimens in NDMM, with or without
HDM-ASCT.

Study Induction/Consolidation MRD-Negative Rate Outcomes

GMMG-HD7 [78] Induction: 3 × Isa-RVd
6-week cycles Post-induction: 50% NR

IFM 2018-01 [79]

Induction: 6 × Dara-IRd
(3-week cycles)

ASCT
Consolidation: 4 × Dara-IRd

(4-week cycles)

10−5/10−6 sensitivity
Post-induction: 28%/6%

Post-ASCT: 34%/29%
Post-consolidation: 51%/40%

2-year PFS: 95.2%

IFM 2018-04 [80]
Patients with high-risk

cytogenetics

Induction: 6 × Dara-KRd
ASCT

Consolidation: 4 × Dara-KRd
(4-week cycles)

Post-induction: 62% (10−5)
18-month PFS: 92%
18-month OS: 96%

GMMG-CONCEPT [81]
High-risk MM

Induction: 6 (TE)/8 (TIE) × Isa-KRd
ASCT (TE)

Consolidation: 4 × Isa-KRd
(4-week cycles)

Post-consolidation (10−5):
TE: 68%; TIE: 54%

NR

CASSIOPEIA [31]

Induction: 4 × Dara-VTd
ASCT

Consolidation: 2 × Dara-VTd
(4-week cycles)

100 days post-ASCT (10−5):
64%

18-month PFS: 93%

GRIFFIN [77]

Induction: 4 × Dara-RVd
ASCT

Consolidation: 2 × Dara-RVd
Maintenance: DR

10−5/10−6 sensitivity
Post-induction: 22%/1%

Post-consolidation: 50%/11%
Post-1-year-maintenance:

59%/21%
End of study: 64%/36%

4-year PFS: 87.2%
4-year OS: 92.7%

MANHATTAN [30]
Induction: 8 × Dara-KRd

(4-week cycles)
No ASCT

10−5: 71%
1-year PFS: 98%
1-year OS: 100%
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Table 2. Cont.

Study Induction/Consolidation MRD-Negative Rate Outcomes

MASTER [76]

Induction: 4 × Dara-KRd
(4-week cycles)

ASCT
Consolidation: 0, 4, or 8 ×

Dara-KRd

Post-consolidation
(10−5/10−6):

81%/71%

0/1/2 HRCA
3-year PFS: 91%/87%/51%
3-year OS: 96%/91%/75%

NCT02969837 [82]
Induction: 12—24 × Elo-KRd

(4-week cycles)
No ASCT

10−5/10−6 sensitivity
After 8 cycles: 63%/51%
Best response: 70%/60%

3-year PFS: 72%
3-year OS: 78%

SKylaRk [83]

Induction: 4 × Isa-KRd (4-week
cycles)

Optional ASCT
If ASCT deferred: 4 × Isa-KRd

(4-week cycles)

10−5/10−6 sensitivity
Post-cycle 4 (n = 28):

43%/32%

1-year PFS: 97.9%
1-year OS: 97.9%

ASCT, autologous stem cell transplantation; d, dexamethasone; Dara, daratumumab; Elo, elotuzumab; HRCA,
high-risk cytogenetic abnormalities; I, ixazomib; Isa, isatuximab; K, carfilzomib; MM, multiple myeloma; MRD,
minimal residual disease; NR, not reported; OS, overall survival; PFS, progression-free survival; R, lenalidomide;
T, thalidomide; TE, transplant-eligible; TIE, transplant-ineligible; V, bortezomib.

4. Discussion and Future Perspectives

In the context of the ongoing development of highly active quadruplet frontline
regimens, and the increasingly high rates of MRD negativity being achieved, prospective
clinical trials incorporating MRD-adapted therapeutic approaches for NDMM are underway
to evaluate the feasibility of deferred HDM-ASCT in patients who achieve MRD-negative
status following induction therapy. For example, the phase 3 MIDAS trial (NCT04934475;
IFM 2020-02) is evaluating MRD status in patients following six cycles of quadruplet
induction therapy with isatuximab, carfilzomib, lenalidomide, and dexamethasone (Isa-
KRd); those who achieve MRD negativity at a sensitivity of 10−5 are then randomized to
receive either a further six cycles of Isa-KRd or another two cycles of Isa-KRd plus HDM-
ASCT, both followed by lenalidomide maintenance for 3 years. The primary objective of
the study is to compare the rates of MRD negativity at 10−6 sensitivity achieved with these
two approaches at various time-points during treatment.

Similarly, in the phase 2 ADVANCE study (NCT04268498), patients are being ran-
domized to receive daratumumab plus KRd (Dara-KRd) or KRd alone for eight cycles,
followed by the option for ASCT in MRD-positive patients or proceeding straight to
lenalidomide maintenance for ≥2 years in MRD-negative patients. The MASTER-2 study
(NCT05231629) is also stratifying patients by MRD status following daratumumab-based
quadruplet induction—in this case, six cycles of daratumumab, bortezomib, lenalidomide,
and dexamethasone (Dara-RVd)—with MRD-negative patients then being randomized
to receive a further three cycles of Dara-RVd or HDM-ASCT, followed by maintenance
therapy with daratumumab plus lenalidomide. Meanwhile, the PERSEUS phase 3 study
(NCT03710603) of Dara-RVd versus RVd is using a different approach, with patients on
the Dara-RVd arm receiving Dara-lenalidomide maintenance and stopping the Dara com-
ponent upon achieving sustained MRD negativity (with the opportunity to then restart
Dara upon recurrence of MRD). Results from these studies and others are awaited with
interest to see whether outcomes are similar with a deferred HDM-ASCT approach in
MRD-negative NDMM.

Furthermore, novel consolidation therapies are being explored as potential alterna-
tives to HDM-ASCT. For example, the phase 3 CARTITUDE-6 trial (NCT05257083) [84] is
comparing the use of the CAR T cell therapy ciltacabtagene autoleucel with HDM-ASCT
in conjunction with six cycles of Dara-RVd and lenalidomide maintenance for 2 years, to
determine which approach is superior in terms of PFS and sustained MRD-negative CR
rate. Meanwhile, a number of studies are being developed to explore the use of bispecific
antibodies such as teclistamab, talquetamab, and elranatamab as alternatives to HDM-



Cancers 2023, 15, 5709 9 of 14

ASCT—for example, the phase 2 GEM-TECTAL study (NCT05849610) is investigating
intensification therapy with teclistamab plus daratumumab, with or without subsequent
talquetamab plus daratumumab, in patients with high-risk NDMM.

With such studies in progress, it is likely that the treatment algorithm for patients
with NDMM, particularly those who are transplant-eligible, will evolve and become more
complex in the future. As shown in Figure 1, pending data from current and planned
studies there may be multiple available treatment pathways for transplant-eligible patients
including the use of deferred HDM-ASCT or its replacement with alternative intensification.
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5. Conclusions

Based on the latest data from randomized clinical trials in patients with NDMM and
given the context of there being numerous highly active novel treatment options and the
need for a personalized approach to treatment, incorporating a longer-term strategic view of
patient outcome, especially in the era of immune therapy, deferred HDM-ASCT is emerging
as a standard-of-care approach for select transplant-eligible patients. With no OS benefit
being seen in multiple randomized studies [23–26,37] of transplant versus non-transplant
approaches for NDMM, the increasingly high rates of MRD negativity achieved with
quadruplet induction regimens, and the development of MRD- and risk-adapted treatment
approaches, NDMM therapy is evolving from a one-size-fits-all approach of upfront HDM-
ASCT to a response-adapted, risk-modified and strategic therapeutic paradigm, with the
aim of further improving outcomes for patients and enhancing quality of life.
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