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Simple Summary: Hepatocellular carcinoma remains crucial due to its high prevalence and the
need for improved understanding and treatment options. This study utilizes extensive microarray
and RNA-seq data to identify key differentially expressed genes in hepatocellular carcinoma (HCC)
and FDA-approved novel druggable genes. We uncovered potential associations between metal ion
exposure and tumorigenesis, as well as the relevance of kinases in HCC. Topological analysis reveals
25 hub genes and their regulatory transcription factors, while computational drug repurposing
suggests several novel therapeutic candidates targeting key genes, highlighting potential avenues for
future experimental assays and clinical cohorts with HCC patients.

Abstract: Background: Drug repurposing is a strategy that complements the conventional approach
of developing new drugs. Hepatocellular carcinoma (HCC) is a highly prevalent type of liver
cancer, necessitating an in-depth understanding of the underlying molecular alterations for improved
treatment. Methods: We searched for a vast array of microarray experiments in addition to RNA-seq
data. Through rigorous filtering processes, we have identified highly representative differentially
expressed genes (DEGs) between tumor and non-tumor liver tissues and identified a distinct class of
possible new candidate drugs. Results: Functional enrichment analysis revealed distinct biological
processes associated with metal ions, including zinc, cadmium, and copper, potentially implicating
chronic metal ion exposure in tumorigenesis. Conversely, up-regulated genes are associated with
mitotic events and kinase activities, aligning with the relevance of kinases in HCC. To unravel the
regulatory networks governing these DEGs, we employed topological analysis methods, identifying
25 hub genes and their regulatory transcription factors. In the pursuit of potential therapeutic
options, we explored drug repurposing strategies based on computational approaches, analyzing
their potential to reverse the expression patterns of key genes, including AURKA, CCNB1, CDK1,
RRM2, and TOP2A. Potential therapeutic chemicals are alvocidib, AT-7519, kenpaullone, PHA-
793887, JNJ-7706621, danusertibe, doxorubicin and analogues, mitoxantrone, podofilox, teniposide,
and amonafide. Conclusion: This multi-omic study offers a comprehensive view of DEGs in HCC,
shedding light on potential therapeutic targets and drug repurposing opportunities.

Keywords: liver cancer; drug repurposing; druggable genes; reverse expression; bioinformatics

1. Introduction

Precision medicine is a patient-centric approach that leverages individualized genomic
information to inform drug treatment decisions, aiming to enhance clinical outcomes. In
recent years, various methods have emerged to decipher and interpret multi-omics data,
leading to the development of strategies for precise drug selection. These methods enable
the identification of specific genetic characteristics associated with drug sensitivity or
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resistance while also integrating genetic markers with gene ontologies and biological
networks to predict drug response on an individual level. Furthermore, by integrating
multiple data sources, these approaches hold promise for optimizing drug therapies for
personalized medicine [1].

Drug repositioning, or drug repurposing, involves the identification of novel uses
for approved or investigational drugs beyond their original intended targets. This drug
reprofiling approach offers a cost-effective and time-efficient process for drug develop-
ment compared to traditional de novo drug discovery, which often involves long and
expensive processes [2]. Among the numerous biological and medical applications that
can benefit from drug repositioning, the field of basic and clinical oncology stands out; a
quick and simple search in the Pubmed repository using the combination of “Cancer and
Drug Repositioning” yields over 1100 articles in the period of 2020–2023 (accessed on 28
June 2023).

In this scenario, bioinformatics has emerged as a powerful discipline, allowing for the
analysis and interpretation of large-scale biological data. With the advancement of high-
throughput methodologies, such as next-generation sequencing and omics technologies,
computational tools and algorithms have become crucial in the exploration of complex
biological processes, disease mechanisms, and the discovery of potential therapeutic tar-
gets [1,3]. In addition, bioinformatics approaches to the study of tumor events and processes
are providing insights into the underlying molecular mechanisms of the disease, which can
guide the selection of potential drugs for repositioning. Just to provide further context, the
combination of the terms “bioinformatics AND cancer” returned nearly 49,000 articles in
PubMed between 2020 and 2023 (accessed on 28 June 2023).

Among distinct types of cancers, hepatocellular carcinoma (HCC) is the most common
primary liver cancer and a leading cause of cancer-related mortality worldwide. It pre-
dominantly arises in the setting of chronic liver diseases, including hepatitis B and C virus
infections, alcoholic liver disease, non-alcoholic fatty liver disease, and cirrhosis. HCC is
characterized by aggressive tumor growth, high recurrence rates, and limited treatment
options, necessitating a comprehensive understanding of its molecular pathogenesis and
the development of effective therapeutic strategies. In this context, it is undeniable that
significant progress has been made in the treatment of HCC with multiple drugs and
combinations. Available drugs such as sorafenib, levantinib, regorafenib, cabozantinib, ra-
mucirumab, nivolumab, and pembrolizumab, either alone or in combination, have proven
to be effective in phase I/II studies and prolong survival in phase III randomized controlled
trials. However, the limitations of these chemotherapeutics involve common side effects,
including hypertension, weight loss, hand-foot skin reactions, fatigue, liver injury, and
bleeding [4]. These side effects highlight the need for ongoing research and innovation
in the field of oncology to address these limitations and improve the overall therapeutic
experience for HCC patients.

The integration of genomic, transcriptomic, and epigenomic data has led to the identifi-
cation of molecular signatures and biomarkers associated with HCC diagnosis, progression,
and prognosis [5,6]. Molecular markers not only aid in early detection but also provide
valuable insights into the underlying molecular mechanisms and heterogeneity of HCC,
paving the way for personalized treatment approaches. To evaluate HCC through the use of
bioinformatic approaches, distinct studies have proposed gene signatures for HCC [7–12].
Notably, Zhang et al. [13] identified intrinsic associations between HCC and specific genes,
including CCNA2, CCNB1, CDC20, CDK1, PTTG1, and TTK, elucidating their relevance to
HCC-related events. Conversely, Wang et al. [14] pointed out that the signature composed
by MARCO, CLEC4M, FCGR2B, LYVE1, TIMD4, STAB2, CFP, CLEC4G, CLEC1B, FCN2,
FCN3, and FOXO1 reflects altered genes that may contribute to the pathogenesis of HCC,
deserving a deep exploration. The disparities observed in these gene signatures are asso-
ciated with different and diverse carcinogenic events. These events encompass various
biological processes, such as mitotic events and stress responses to specific metal ions.
Additionally, they pertain to molecular functions involving immune system responses,
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carbohydrate and peptide binding capacities, heme interactions, and microtubule-related
activities. Moreover, these signatures implicate crucial pathways, including MAPK, FoxO,
VEGF signaling, and detoxification of inorganic compounds. Consequently, it becomes
evident that the ongoing debate regarding the selection of pertinent genes remains an open
and intricate subject of discussion.

In part, the discrepancies found in different studies can be explained by the fact that
cells from healthy (non-tumor) tissues and cells collected from tissues adjacent to the tumor
(frequently referred to as adjacent-normal tissue) differ in their genetic and expression
profiles [15]. Furthermore, most of the studies rely on a few microarray datasets, thus
limiting their investigative outcomes.

The efficacy of a drug to reverse cancer-associated gene expression has already been
proven efficient and able to be tested in subsequent experimental procedures [16]. The
success of drug repositioning for the development of anti-tumoral strategies heavily relies
on the availability and utilization of bioinformatic tools and resources. These tools facilitate
the analysis of diverse tumoral biological data types, such as genomic, transcriptomic,
proteomic, and metabolomic data, enabling the identification of potential drug-disease
associations. Herein, we used distinct bioinformatics approaches to identify hub genes and
TFs that are linked to HCC and discuss possible drugs that can be repurposed in order to
achieve the most effective therapeutic option for patients with liver cancer.

2. Materials and Methods
2.1. Data Mining and Processing

In the initial phase, we conducted an active and manual search in the public reposi-
tory GEO (Gene Expression Omnibus, available at https://www.ncbi.nlm.nih.gov/geo/
(accessed on 10 May 2023)) to locate microarray gene expression datasets containing sam-
ples of HCC that could be compared with non-tumor tissue samples. For data processing,
we utilized the R language through the R Studio platform [17]. Data processing, statistical
analyses, and graphical representations were performed using R, unless explicitly stated.
We followed the R script presented at https://sbc.shef.ac.uk/geo_tutorial/tutorial.nb.html#
(accessed on 20 May 2023) with few adaptations to scrutinize the GEO Series (GSE) datasets;
in cases where genes required normalization and resulted in a significant number of missing
values (NAs or NANs), they were excluded from the study.

Our workflow was conducted based on the following inclusion criteria: (I) GSE
datasets with a minimum of 10 tumor and non-tumor samples that include gene symbols
or minimum information to find gene symbols; (II) the species Homo sapiens; and (III) access
to raw data were permitted. Each dataset was individually analyzed using a univariate
statistical approach with the lmFit and eBayes functions of the R package limma [18],
resulting in lists of differentially expressed genes (DEGs) with log2 fold change (log2FC)
and adjusted p-values. The threshold values log2FC > 2.0 and p-value < 0.05 indicated
up-regulated DEGs, while log2(FC) < −2.0 and p-value < 0.05 indicated down-regulated
DEGs. We filtered out genes without concurrent Ensembl, Entrez, and HCNG identifiers,
which were gathered using hgnc [19], biomart [20], and org.Hs.eg.db [21] packages. In
the cases where genes had multiple probes, we chose the probe with the highest absolute
log2FC value. The gene distribution was visualized using Volcano plots created with the
EnhancedVolcano package [22].

Our primary objective was to illustrate the differences between DEGs in tumor ver-
sus adjacent-tumor tissue samples and those in normal (healthy) patients versus HCC
samples. For the sake of simplicity, from now on, we will refer to the “adjacent group”,
the DEGs comparing adjacent tumor and tumor tissue, and to those genes that differ
between healthy and tumor tissue as the “normal group”. We aimed to identify DEGs
shared between these two conditions using Venn diagrams [23]. We also searched for DEGs
obtained from RNA-seq analysis by comparing the TCGA database (https://www.cancer.
gov/ccg/research/genome-sequencing/tcga (accessed on 1 June 2023)) and the GTEx
project (https://gtexportal.org/home/ (accessed on 1 June 2023)); those genes comprise
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the “TCGA group”. To obtain TCGA/GTEx DEGs, we used the R script described in [24],
which involved the UCSCXenaTools [25] and edgeR [26] packages. The parameters used
were TCGA TARGET GTEx and TCGA Liver Cancer. For TCGA samples, we selected
forPrimarySiteTCGA = “Liver,” forHistologicaltype = “Hepatocellular Carcinoma,” and
forSampleType = “Primary Tumor.” For healthy tissue samples in GTEx, the parameters
parastudy = “GTEX”, forPrimarysiteGTEx = “Liver,” and forPrimaryTissueGTEx = “Liver”,
were chosen. The same thresholds were applied to the TCGA group: an adjusted p-value of
0.05 and a fold change of 2.0.

2.2. Functional Enrichment and Pathway Analysis

To propose a robust profile of HCC-associated DEGs, we applied a final filtering step.
We selected only DEGs that appeared in at least 5 GSEs in the adjacent group and in at least
2 GSEs in the normal group. The final profile comprised the genes that were also present in
the TCGA group.

For gene enrichment analysis, we used Gene Ontology (GO) to define DEGs and
their RNA or protein products and to determine the unique biological properties of tran-
scriptomic and genomic data. The Kyoto Encyclopedia of Genes and Genomes (KEGG),
Reactome pathway and Wiki pathways, which represent a collection of databases that deal
with genomes, drugs, diseases, chemical materials, and biological pathways, were also
consulted [13]. Enrichment analysis was carried out using enrichR [27], and the results
were visualized using the ggplot2 library [28].

2.3. Identification of Hub Genes and Transcription Factors and Protein–Protein Interaction
Network Elaboration

To propose a HCC signature, we elaborated a PPI Network and identified hub genes
by analyzing the centrality of nodes (genes) using the CytoNCA plugin version 2.1.6 [29].
Four centrality measures, namely eigenvector centrality (EGC), degree centrality (DC),
betweenness centrality (BC), and maximal clique centrality (MCC), were employed to
identify crucial genes. The highest-ranked genes based on each centrality value were
considered hub genes. Given that gene expression is regulated by specific transcription
factors (TFs), which in a cancer scenario are often affected in expression, we searched for
TFs associated with the hub genes in the TRRUST v.2 [30] and X2Kweb [31] databases. The
relationship between TF and genes was illustrated using a Sankey diagram created with
SankeyMATIC (https://sankeymatic.com/ (accessed on 1 July 2023)).

To assess functional protein association networks and evaluate protein–protein inter-
action (PPI) networks, we utilized the STRING online tool (http://string-db.org, accessed
on 10 July 2023). We employed the following arguments: full STRING network; active
interaction sources: text mining, experiments, databases, co-expression, neighborhood,
gene fusion, co-occurrence; minimum required interaction score: 0.9 (highest confidence).
The resulting PPI network was visualized using Cytoscape software version 3.9.1 [32].

2.4. Drug Screening and the Association of Genes with Cancer Cell Events

Individual hub gene and TF expression were corroborated through the GSCA (Gene
Set Cancer Analysis) database [33]. The GSCA web tool allows for the determination of the
association of a set of genes with cellular events that are hallmarks of tumor cells. Next,
we submitted our signature and consulted the Open Cancer Therapeutic Discovery web
portal (OCTAD; http://octad.org (accessed on 10 August 2023)) [34] to search for candi-
date drugs that may be useful against HCC. As of September 2023, the OCTAD database
comprised 19,128 samples derived from both normal and tumor tissues, sourced from a
variety of reputable datasets, including GTEx, TCGA, St. Jude Hospital, MET 500, and TAR-
GET. OCTAD performs deep-learning-based analysis, providing a drug reversal potency
score that suggests complementary compounds that may be efficacious against more than
50 cancer types. The lower the score, the higher the potential the candidate drug pos-
sesses [16]. To further validate our findings, we searched for interactions between genes
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and chemicals by consulting the Drug–Gene Interaction Database (DGIdb; https://www.
dgidb.org/ (accessed on 15 August 2023)), using the R package rDGIdb [35]. Finally, we as-
sessed the web tool shinyDepMap (https://labsyspharm.shinyapps.io/depmap (accessed
on 24 August 2023)) to check out the essentiality of genes for cancer cell survival, i.e., the
growth reduction caused by knockdown/knockout (efficacy) and the selectivity of our set
of genes across 423 distinct cancer cell lines [36].

3. Results
3.1. Data Mining, Filtering, and HCC—Associated Gene Identification

In our initial search, we individually analyzed 17 GSEs for paired cancerous and
non-cancerous adjacent tissue (adjacent group), 4 datasets for paired cancerous and non-
cancerous healthy tissue (normal group), and the TCGA-LIHC/GTEx database (TCGA
group), ultimately totaling 2292 HCC samples and 1361 non-tumor samples; in Table 1, the
platforms, the type, and number of samples are described, and the distribution of genes per
GSE is shown in Figure S1. In the adjacent group, out of a total of 22,508 genes, we filtered
191 DEGs, and for the healthy tissue samples, 263 DEGs were filtered from a universe of
20,038 genes (Figure 1A,B). An initial relevant finding was that while 146 DEGs are shared
between the adjacent and normal groups, 117 and 45 genes are differentially expressed
in an exclusive manner in healthy and adjacent tissues, respectively (Figure 1C). As a
“quality control” of our data, we checked the mean expression of four random genes in the
Liver Cancer Expression Resource database [37] to confirm there are differences between
normal tissue and non-tumor adjacent tissue (Figure S2A). We also compared the fold
change profile in each of the GSEs and could observe, through heat-maps, a few differences
between the individual GSEs (Figure S2B). To achieve a greater degree of assertiveness
in relation to DEGs, we searched for DEGs that were also described in the TCGA group;
the 110 genes that constitute the intersection of the three groups were separated into
73 down-regulated and 37 up-regulated genes in HCC (Figure S3A). By heat-mapping, we
made sure that log2FC was similar between the three conditions (Figure S3B).

Table 1. Datasets manually curated to identify DEGs commonly found in HCC.

GSE Plataform Type Tumor Sample Non-Tumor Sample

102079 GPL 570 Adjacent-tissue 152 91
121248 GPL 570 Adjacent-tissue 70 37
12941 GPL 5175 Adjacent-tissue 10 10

136247 GPL 17586 Adjacent-tissue 39 30
14520 GPL 571 Adjacent-tissue 225 220
22405 GPL 10553 Adjacent-tissue 24 24
25097 GPL 10687 Adjacent-tissue 268 243
36376 GPL 10558 Adjacent-tissue 240 193
39791 GPL 10558 Adjacent-tissue 72 72
41804 GPL 570 Adjacent-tissue 20 20
45267 GPL 570 Adjacent-tissue 46 41
57957 GPL 10558 Adjacent-tissue 39 39
60502 GPL 96 Adjacent-tissue 18 18
64041 GPL 6244 Adjacent-tissue 60 60
76427 GPL 10558 Adjacent-tissue 115 52
84005 GPL 5175 Adjacent-tissue 38 38
84402 GPL 570 Adjacent-tissue 14 14

102079 GPL 570 Healthy liver 152 14
112790 GPL 570 Healthy liver 183 15
62232 GPL 570 Healthy liver 81 10
50579 GPL 14550 Healthy-liver 67 10

TCGA x GTEx RNA-Seq - 359 110

https://www.dgidb.org/
https://www.dgidb.org/
https://labsyspharm.shinyapps.io/depmap
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Figure 1. Distribution of DEGs. Volcano plots showing the distribution of DEGs found in (A) healthy
and (B) adjacent tissue versus tumor tissues. Gray dots: Genes that do not fit in the FC cutoff and
have p-value > 0.05; Blue dots: Genes that do not fit in the FC cutoff and have p-value < 0.05. Green
dots: Genes that fit in the FC cutoff and have p-value > 0.05; Red dots: Genes that fit in the FC cutoff
and have p-value < 0.05. (C) Venn diagram evidencing the number of shared DEGs between the
two conditions.

The genes APOF, GPC3, C9, CLEC1B, CYP1A2, FCN3, HAMP, and the gene MT1M
were the most frequent genes found in the datasets we examined.

To make sure that our DEGs are related to HCC, we entered the 110 genes into the
DISGenet database using the R package disgenet2r [38]. As expected, the first term that
returned was hepatocellular carcinoma with an extremely significant false discovery rate
(FDR = 4.63 × 10−21), and other diseases related to the liver were also found (Table 2).
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Table 2. DISGENet results showing strong association between DEGs and liver events.

Term Ratio FDR

Liver carcinoma 68/3593 4.63 × 10−21

Carcinogenesis 55/4065 3.02 × 10−9

Liver diseases 19/606 1.50 × 10−7

Chronic liver disease 10/129 3.18 × 10−7

Hepatocarcinogenesis 17/527 4.73 × 10−7

Liver neoplasms 26/1321 8.22 × 10−7

Malignant neoplasm of liver 20/805 1.26 × 10−6

Liver and Intrahepatic Biliary Tract Carcinoma 15/607 6.31 × 10−5

3.2. Gene Ontology and Pathway Enrichment Analysis of the HCC-Associated Genes

GO enrichment analysis, provided by the R Studio Enricher package, showed that
down-regulated DEGs were significantly enriched in 64 biological processes (BP), 18 molecule
functions (MF), and 6 cellular components (CC). The top five BP included “steroid metabolic
process” (GO:0008202), “cellular response to zinc ion” (GO:0071294), “cellular response to
copper ion” (GO:0071280), “exogenous drug catabolic process” (GO:0042738), and “cellular
response to cadmium ion” (GO:0071276). The top five MF included “steroid hydroxy-
lase activity” (GO:0008395), “oxidoreductase activity” (GO:0016712), “arachidonic acid
epoxygenase activity” (GO:0008392), “estrogen 2-hydroxylase activity” (GO:0101021), and
“arachidonic acid monooxygenase activity” (GO:0008391). The top five CC included “Endo-
plasmic Reticulum Membrane” (GO:0005789), “Membrane Attack Complex” (GO:0005579),
“Collagen-Containing Extracellular Matrix” (GO:0062023), “Serine-Type Endopeptidase
Complex” (GO:1905370), and “Endopeptidase Complex” (GO:1905369) (Figure 2A). Up-
regulated DEGs were significantly enriched in 78 BP, 5 MF, and 13 CC. The top five terms
were “mitotic spindle organization” (GO:0007052), “microtubule cytoskeleton organiza-
tion involved in mitosis” (GO:1902850), “regulation of mitotic cell cycle phase transition”
(GO:1901990), “anaphase-promoting complex-dependent catabolic process” (GO:0031145),
and “regulation of G2/M transition of mitotic cell cycle” (GO:0010389) for BP. The top
five MF were “protein serine/threonine kinase activity” (GO:0004674), “histone kinase
activity” (GO:0035173), “protein kinase binding” (GO:0019901), “cyclin-dependent pro-
tein serine/threonine kinase regulator activity” (GO:0016538), and “microtubule motor
activity” (GO:0003777). For GO CC, the top five terms included “Spindle” (GO:0005819),
“Microtubule Cytoskeleton” (GO:0015630), “Intracellular Non-Membrane-Bounded Or-
ganelle” (GO:0043232), “Nucleus” (GO:0005634), and “Cyclin-Dependent Protein Kinase
Holoenzyme Complex” (GO:0000307) (Figure 2B).

We performed functional annotation for DEGs using three distinct pathway analyses:
the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, and WikiPathways.
Down-regulated DEGs were significantly enriched in 15 KEGG, 38 Reactome, and 29 Wiki
pathways. KEGG analysis showed that down-regulated DEGs were mainly enriched in
Caffeine, Retinol, Drug metabolism, “Mineral absorption”, and “Metabolism of xenobiotics
by cytochrome P450”. The top five Reactome pathways were “Metallothioneins Bind
Metals”, “Cytochrome P450—Arranged by Substrate Type”, “Response to Metal Ions”,
“Phase I—Functionalization Of Compounds”, and “Xenobiotics”. In the Wikipathways
the main terms were “Oxidation by Cytochrome P450”, “Metapathway biotransformation
Phase I and II”, “Nuclear Receptors in Lipid Metabolism and Toxicity”, “Zinc homeostasis”
and “Fatty Acid Omega Oxidation”. The number of significantly enriched pathways for
the up-regulated DEGs was 7 (KEGG), 81 (Reactome), and 11 (WikiPathways). The top five
KEGG pathways were “Cell cycle”, “Oocyte meiosis”, “p53 signaling pathway”, “Human
T-cell leukemia virus 1 infection” and “Cellular senescence”. Reactome pathways were
“Cell Cycle, Mitotic”, “Mitotic Prometaphase”, “M Phase”, “APC/C-mediated Degradation
Of Cell Cycle Proteins” and “Resolution Of Sister Chromatid Cohesion”. The top five
Wiki pathways were “Retinoblastoma gene in cancer”, “Cell cycle”, “Regulation of sister
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chromatid separation at the metaphase-anaphase transition”, “Gastric Cancer Network 1”
and “DNA damage response”. Pathways enrichment are depicted in Figure 3A,B.
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in HCC.

3.3. Hub Genes, Transcription Factors, and the PPI Network

We used CytoNCA V2.1.6, a CytoScape plugin, for centrality analysis of the PPI
network to identify crucial nodes (hub genes). The hub genes were selected based on
degree centrality (DC), eigenvector centrality (EGC), betweenness centrality (BC), and
maximal clique centrality (MCC) [7]. According to the centrality values, we ranked the top
genes as the crucial ones; we found 25 hub genes that are described in Table S1.

Transcription factors (TFs) are pivotal gene expression regulators, orchestrating the
intricate process by which genetic information is converted into functional molecules in
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living organisms. In the context of cancer, TFs play a dual role, acting as both drivers
and suppressors of tumorigenesis. We searched for TFs that regulate the expression of the
25 hub genes and found 28 TFs that have been described to repress or activate a specific
target gene (TRRUST database) or have a hypergeometric p-value lower than 0.05 (X2KWeb
database). The TFs that regulate a higher number of hub genes are E2F4 and NFYB (both
regulating 15 genes), followed by NFYA (14), SIN3A (13), and FOXM1 (10). The hub genes
that are targets of distinct TFs were CCNB1 (12), CDK1 (11), AURKA (9), and TOP2A (7).
Interestingly, PTTG1 acts as both a FOXM1-regulated gene and a modulator of CCNB1 and
CDK1 expression (Figure 4A). We also elaborated an expression kinase network displaying
the inferred regulatory network predicted to regulate the hub genes. Note the protein
kinases ATM, CDC2, CDK4, MAPK14, and JNK1 that act downstream in response to TF
modulation and have already been associated with HCC (Figure 4B).
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relationships between TFs and genes that compose the HCC signature. (B) Expression kinases
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Red nodes represent the top transcription factors predicted to regulate the expression of the Hub
genes; gray nodes represent intermediate proteins that physically interact with the enriched TFs
and connect them. Blue nodes represent the top predicted protein kinases known to phosphorylate
downstream proteins.

We explored the interconnectedness of the 53 genes that comprise our HCC signa-
ture, treating them as a cluster, and established a protein–protein interaction network

https://maayanlab.cloud/X2K/
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employing the STRING tool. This tool serves as an invaluable resource, capable of sys-
tematically and autonomously identifying associations between proteins, including their
corresponding genes, across diverse knowledge repositories, such as PUBMED, KEGG
Pathways, GO terms, and Reactome, among others [39]. The PPI network was built with
52 nodes interacting via 223 edges, an average node degree of 8.58, and an enrichment
p-value < 10−16 (Figure S4).

Next, we confirmed the differential expression of hub genes (Figure S5A) and explored
the expression pattern of the TFs. Except for YBX1, TP53, TFDP1, STAT6, SIN3A, RELA,
NFATC1, MED1, KLF5, CREB1, and ATF4, the other proteins show statistically significant
differences in tumor versus non-tumor hepatic tissue; specifically, the TFs E2F1, FOXM1,
PTTG1, BRCA1, E2F3, NFYA, IRF3, ZNF143, E2F4, and NFYB have high expression, and
conversely, the genes NFKB1, SMAD7, IRF1, KLF4, and FOS are down-regulated in liver
cancer tissues (Figure S5B).

3.4. Novel Candidate Drugs and Their Gene Expression Reversal Potential

To search for candidate-druggable genes, we submitted the 53 genes to the publicly
accessible OCTAD platform (http://octad.org (accessed on 10 August 2023)) for the purpose
of identifying compounds with potential utility in the treatment of HCC. Leveraging
advanced deep-learning methodologies, OCTAD generates a succinct metric known as the
summarized reversal gene expression score (sRGES). This metric serves as an indicator
of a candidate drug’s ability to modulate gene expression profiles, specifically by either
inhibiting the overexpression of particular genes or promoting the activation of genes
exhibiting lower expression levels. In accordance with the recommendations provided
by the platform, we considered candidate drugs with sRGES values less than −0.25 for
further investigation.

By selecting the drugs that have been tested in HCC cells only, such as Huh7.5 and
HepG2, we retrieved 190 candidate compounds, which are categorized into the following
experimental stages: 70 “launched”, 9 “phase 1”, 1 “phase 1/2”, 13 “phase 2”, 1 “phase 2/3”,
11 “phase 3”, 81 “preclinical stage”, and 4 drugs were withdrawn. The top 50 drugs ranked
by sRGES are depicted in Figure 5A. Among the candidate compounds, we could verify a
big diversity of mechanisms of action (moa), but inhibitors of HDAC, topoisomerase, CDK,
EGFR, and dopamine receptor antagonists were the moa shared by at least five different
chemicals (Figure 5B). From the 347 target genes retrieved from the OCTAD database,
ADRA1A, CDK1, CDK2, EGFR, GSK3B, HDAC1, HTR2A, HTR2C, and TOP2A are target
genes of at least 8 different drugs (Figure S6A). Nine of our genes are shared with the
OCTAD database: AURKA, CCNB1, CDK1, FOXM1, IRF3, RELA, RRM2, TOP2A, and TP53
(Figure S6B). These genes are targets of the following drugs: danusertib and JNJ-7706621
(AURKA); kenpaullone (CCNB1); alvocidib, aminopurvalanol-a, AT-7519, CDK1-5-inhibitor,
indirubin, JNJ-7706621; kenpaullone, PHA-793887 (CDK1); thiostrepton (FOXM1); piceatan-
nol (IRF3); bortezomib, caffeic-acid-phenethyl-ester, pyrrolidine-dithiocarbamate, triptolide
(RELA); cladribine, gemcitabine (RRM2); amonafide, amsacrine, daunurobicin, doxorubicin,
idarubicin, mitoxantrone, pirarubicin, podofilox, teniposide (TOP2A); pifithrin-mu (TP53).
Details about each drug are described in Table S2.

To double-check our findings, we consulted the repository DGIdb [35]. The nine
candidate-druggable genes returned 568 distinct drugs gathered from different sources
(Figure 6A). The drugs are distributed as follows: 47 distinct compounds that act over
AURKA, 3 over CCNB1, 48 over CDK1, 51 over RELA, 12 over RRM2, 80 TOP2A, and
377 drugs that have already been described to interact with the TP53 gene. We then opted
to check out candidate drugs that are common in the two databases; 37 drugs are shared
in OCTAD and DGIdb (Figure 6B). TP53 and RELA expressions did not differ in hepatic
tumor tissue, so we did not consider the drugs that interact with those genes. Alvocidib,
amonafide, amsacrine, AT-7519, cladribine, danusertibe, daunorubicin, doxorubicin, gemc-
itabine, idarubicin, JNJ-7706621, kenpaullone, mitoxantrone, PHA-793887, podofilox, and
teniposide are candidate chemicals able to reverse gene expression patterns in HCC tissues;

http://octad.org
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drug-gene interactions are represented in Figure 6C. The search for candidate drugs to
combat HCC stands as a pivotal endeavor, fueled by the unique importance and intricate
challenges posed by this type of cancer. The drug screening strategy we have put forward
is a strategic pursuit designed to tackle the specific genetic or molecular traits that underlie
these tumors. The drug screening we proposed can help identify and target the specific
molecular intricacies of HCC and may stimulate continuous innovation within the oncology
field, which can extend to the broader landscape of cancer research and therapeutics. It
also offers the potential to reduce healthcare costs, streamline resource allocation, and
optimize patient care. Finally, it unearths drugs that recognize and combat tumor hetero-
geneity, thereby taking a significant step towards tailoring treatments to the specific needs
of each patient.
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Figure 6. Drug and target-gene interactions: (A) different sources where the interactions were
retrieved; (B) drugs shared in two distinct databases; and (C) druggable genes and their respective
compounds. FDA: Food and Drug Administration; TEND: Trends in the exploitation of novel drug
targets; TALC: Targeted Agents in Lung Cancer; CIViC: Clinical Interpretation of Variants in Cancer;
NCI: NCI Cancer Gene Index; JAX-CKB: The Jackson Laboratory Clinical Knowledgebase; DTC: Drug
Target Commons. Blue arrows mean that the expression pattern may be reversed after treatment.

Lastly, we verified whether the selected druggable genes are critical entities for events
involved with the tumorigenesis process. Through gene set variance analysis (GSVA)
and the pathway activity module, we verified some cancer-related pathways and their
relationship with our genes. Apoptosis, cell cycle, and epithelial mesenchymal transition
(EMT) showed a positive and significant correlation; on the other hand, the hormone AR,
hormone ER, RASMAPK, and RTK pathways correlate inversely with our genes (Figure 7A).
The essentiality of our genes for cell survival was evaluated by the shinyDepMap tool
(https://labsyspharm.shinyapps.io/depmap (accessed on 24 August 2023)), which presents
the efficacy and selectivity of specific genes regarding cell growth. Though the five genes
had lower selectivity, all of them presented relative high efficacy, especially TOP2A, RRM2,
and CDK1 genes (Figure 7B).

https://labsyspharm.shinyapps.io/depmap
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Figure 7. Essentiality of the five druggable genes for liver tumor cell survival: (A) association between
GSVA score and activity of cancer-related pathways in HCC; * p < 0.05; # FDR < 0.05. (B) Efficacy
(e) and selectivity (s) of genes across all cancer cell lines available at the Cancer Dependency Map
(DepMap); the blue dots represent 15.847 genes evaluated. Efficacy refers to the cellular growth
reduction caused by the loss of function of a specific gene.

4. Discussion

Besides being the most common primary liver malignancy, HCC also accounts for
an elevated rate of morbidity and mortality. HCC is strongly associated with previous
conditions and environmental risk factors, such as liver cirrhosis, HBV and HCV infections,
alcohol abuse, and non-alcoholic steatohepatitis. This last one deserves special attention as
it is intrinsically correlated with obesity, the 21st century epidemic [40]. Genetic alterations
also contribute to HCC; thus, understanding the role played by deregulated related genes
and identifying new drugs and chemicals that interact with those genes may help treat
liver cancer more effectively.

One difference between this study and other studies that have proposed gene signa-
tures for HCC [7,9,13,14,41,42] is that we searched for and worked on a large number of
microarray experiments, in addition to the well-established RNA-seq experiments gath-
ered from TCGA and GTEx databases. After robust filtering processes, we selected only
DEGs that are in common with what we called healthy, adjacent, and TCGA groups, thus
resulting in a selection of highly representative genes that are differentially expressed in
tumor versus non-tumor tissue. The choice of more than one filtering process may be more
effective in finding DEGs in distinct types of tumors [39]. Our approach seems relevant,
especially as it highlights the differences between healthy liver tissue and tissue that has
already been affected to some extent by tumor cells and their microenvironment.
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Some of the most frequently deregulated genes we found have been previously con-
firmed to be altered in HCC [10,43]. The down-regulated suppressor tumor gene APOF
codes for Apolipoprotein F, which inhibits cholesteryl ester transfer among plasma circu-
lating lipoproteins. In vitro and in vivo experiments showed that the reversion of APOF
expression was effective against tumor growth, proliferation, and migration [44]. The
proteoglycan GPC3 (Glypican 3) is not normally expressed in healthy liver tissues, but the
gene is up-regulated in HCC. GPC3 is involved with Wnt signaling and Hippo pathways,
both associated with liver tumor cell differentiation, survival, proliferation, migration, and
invasion [45]. CLEC1B, encoding the CLEC-2 protein, a C-type lectin-like receptor 2, is
down-regulated in HCC samples. CLEC1B regulates distinct signaling pathways related
to immune and inflammatory responses and is inversely correlated with the proliferation
and migration of HCC cells [46]. The predominantly liver-expressed cytochrome P450 1A2
(CYP1A2) is down-regulated in HCC. CYP1A2 was identified as an antagonist of the hep-
atocyte growth factor/c-mesenchymal–epithelial transition factor (HGF/MET) signaling
pathway, which is associated with tumor progression, survival, and metastasis [47]. Ficolin-
3 (encoded by FCN3) is a protein member of the ficolin family that is down-regulated
in HCC. Through pathways associated with mannose-binding lectin-associated serine
proteases, ficolin-3 activates the complement system. In distinct HCC cell lines, the over-
expression of FCN3 inhibited cell proliferation and led cells to apoptosis [48]. Hepcidin
(encoded by the HAMP gene) is a protein hormone mainly produced and secreted from the
liver that, associated with ferroportin, contributes to iron homeostasis. The downregulation
of HAMP, as we demonstrated in HCC, was also related to liver fibrosis and cirrhosis, both
important risk factors for liver cancer [49]. The cysteine-rich protein Metallothionein 1M
(encoded by the MT1M gene) participates in metal detoxification, and its overexpression
was found to avoid HCC progression in vitro and in a xenograft nude mice model [50].

Of the 110 DEGs, most are down-regulated in HCC, while 37 are up-regulated genes.
The 110 genes are closely related to liver cancer as well as other events associated with
liver disease. Through GO enrichment analysis, we demonstrated that down-regulated
genes are involved in distinct biological processes associated with zinc, cadmium, and
cooper ions. This may not be unexpected, as chronic exposure to some metal ions has a
strong association with the tumorigenesis process. Low concentrations of cadmium trigger
fibrogenic and oncogenic signaling pathways in distinct HCC cell lines [51]. In vivo models
also corroborate metal ion metabolism as an important event that may be involved with
HCC [52]. Conversely, up-regulated gene enrichment returned distinct biological processes
associated with mitotic events and molecular functions linked to kinase activities. Kinases
are enzymes responsible for the ATP-dependent phosphorylation of several downstream
target proteins, which in turn respond in specific patterns. Distinct kinases are known to
have their expression profiles and/or activities deregulated in cancer. Excessive lactate
production, a hallmark of tumor cells, induces the proliferation and metastasis of HCC cells
by inhibiting adenylate kinase 2 function [53]. Furthermore, some of the actual available
drugs to treat HCC are multikinase inhibitors [54]. Pathway enrichment of down-regulated
genes reaffirmed the relevance of metal ions and pointed out detoxification events as
relevant for HCC biology. For the genes that are up-regulated in HCC, the p53 signaling
pathway and distinct events associated with cell division were enriched. Our results
corroborate previous studies that evaluated distinct GSEs [10,55,56].

As can be seen in this and other studies, the number of genes with altered expres-
sion in HCC is enormous, running into hundreds. We suggest that the higher number of
deregulated genes is more likely to be the consequence rather than the cause of the carcino-
genic process; thus, trying to generalize about all dysregulated genes seems uninformative.
One strategy is to use tools that predict degrees of centrality based on gene co-expression
networks. As a mathematical model, node centrality analyses have limitations, but in
biological terms, it is assumed that co-expressed genes must be co-regulated, and the
degree of connectivity between genes may reflect their physiological and pathological
roles [57]. We adopted 4 distinct topological analysis methods to select 25 deregulated
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hub genes (ASPM, AURKA, BUB1B, CCNB1, CCNB2, CDC20, CDK1, CENPF, CYP1A2,
CYP26A1, CYP2E1, DLGAP5, HMMR, KIF20A, KIF4A, MELK, NCAPG, NDC80, NEK2, PBK,
PRC1, PTTG1, RRM2, TOP2A, TTK). Transcription factors (TFs) play a pivotal role in gene
regulation, orchestrating the intricate process by which genetic information is converted
into functional molecules in living organisms. We found 28 TFs that regulate our hub genes
and showed E2F4, NFYB, NFYA, SIN3A, and FOXM1 to control at least 10 different genes.
The overexpression of those five TFs has already been described to participate in different
stages and events related to liver cancer and to have prognostic values for patients with
HCC [58–60]. The significance of TFs in gene regulation extends across diverse biological
contexts, driving advancements in our understanding of complex genetic networks, disease
etiology, and potential therapeutic interventions.

Chemotherapy remains the cornerstone of treatment for solid tumors like HCC, with
various drugs and regimens under constant investigation. Notably, the drug 5-fluorouracil
(5-FU), a breakthrough that emerged from research on rat hepatoma, has played a pivotal
role in this field. First synthesized in 1950 by Charles Heidelberger and collaborators and
approved for human trials in 1962, 5-FU undergoes metabolic transformations involving
enzymes like dihydropyrimidine dehydrogenase, orotate phosphoribosyltransferase, uri-
dine phosphorylase, and uridine kinase. Through a series of phosphorylation steps, 5-FU is
converted into active metabolites, including FdUTP and FdUMP, which disrupt DNA syn-
thesis by irreversibly inhibiting thymidylate synthase. Thymidylate synthase is essential for
DNA synthesis as it converts deoxyuridine monophosphate (dUMP) into deoxythymidine
monophosphate (dTMP), a basic component of pyrimidines [61,62]. Thus, thymidylate
synthase inhibition exhibits a potent anti-cancer mechanism. However, 5-FU, like many
chemotherapy drugs, is associated with significant systemic toxicity [63], underscoring the
need for novel adjuvants to mitigate adverse effects and enhance the overall efficacy of
anti-cancer treatments.

A promising strategy in therapeutic treatment involves the systematic re-utilization
of drugs with well-established safety and pharmacokinetic profiles, considering that nu-
merous drugs possess multiple targets and targets can be influenced by multiple drugs.
The exploration of drug repositioning extends beyond approved drugs and encompasses
a growing pool of late-stage failures that have been halted due to insufficient efficacy
or safety concerns [64]. One strategy for drug repurposing is based on computational
approaches, which revolve around the analysis of pre-existing data sources, including
chemical structures, gene expression data, proteomic information, and electronic health
records [36]. Drug repurposing offers distinct advantages such as diminished initial drug
development prerequisites, financial and temporal savings, and a heightened likelihood of
receiving regulatory approvals compared to the conventional de novo drug discovery route.
After consulting two distinct drug-gene interaction databases, we found 18 chemicals that
have been tested in HCC cells and have the potential to reverse the gene expression pattern
of the protein-coding genes AURKA, CCNB1, CDK1, RRM2, and TOP2A. We also showed
that the loss-of-function of CDK1, RRM2, and TOP2A has the highest efficacy in reducing
cellular proliferation.

CDK1 (Cyclin-Dependent Kinase 1) is a critical regulator of the cell cycle, and its
dysregulation has been implicated in various cancers. We found CDK1 to be upregu-
lated, which has been associated with tumor development and HCC progression. Five
drugs may interact with CDK1: (i) Alvocidib, the cyclin-dependent kinase inhibitor, is
being considered to treat acute myeloid leukemia [65]; (ii) AT-7519, the second-generation
small molecule multi-CDK inhibitor, was experimented against glioblastoma, lung can-
cer, myeloma, and leukemic cells [66–69]; more recently, AT-7519 has demonstrated anti-
tumoral effects against HCC [70]; (iii) Kenpaullone, a multiple kinase inhibitor known
for its inhibitory potential of GSK3 activity, has been experimented to be effective in some
neurological disorders, cystic fibrosis, ototoxicity, and preventing oxidative stress damage
in cardiomyocytes [71–74]. Kenpaullone may also act upon CCNB1, the gene that encodes
Cyclin B1. The CCNB1 gene is significantly up-regulated in HCC, and there is a positive
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correlation with CCNB1 overexpression and vascular invasion in HCC samples [75]. We
did not find experimental studies regarding kenpaullone and HCC. (iv) PHA-793887: Few
experimental studies have been conducted to certify its activity, but it was demonstrated
in vitro that PHA-793887 was able to interfere with the viability of osteosarcoma cells [76].
(v) JNJ-7706621: a potent inhibitor of CDKs and Aurora kinase (AURKA) demonstrated
effectiveness in dealing with the herpes simplex virus 1 [77].

AURKA, coding for Aurora A kinase, is up-regulated in HCC. AURKA is a mitotic reg-
ulator that is subject to several regulatory interactions and post-translational modifications,
including covalent CoA modification induced by oxidative stress [78]. Besides JNJ-7706621,
danusertibe is able to reverse the AURKA expression. Danusertibe exhibits inhibitory
activity against all known Aurora kinases and was identified to inhibit DNA helicases [79].
Danusertibe suppressed liver tumor cell proliferation in vitro and in vivo [80].

Ribonucleotide reductase regulatory subunit M2 (RRM2) overexpression found in
HCC samples increased the proliferative and migratory capabilities of Hep3B and Huh7
cells [81]. RRM2 is the target of cladribine and gemcitabine. Some of the applications for
cladribine are for treating acute myeloid leukemia, the rare Rosai–Dorfman disease, and
multiple sclerosis [82–84]. The heterocyclic drug gemcitabine, a nucleoside analogue of
deoxycytidine, acts in synergism with sorafenib to improve the chemoresistance of Huh7
cells [85].

TOP2A is the druggable gene that we found to be the target of eight distinct drugs.
Among them, we showed that the anthracycline antibiotics and classic cancer chemothera-
peutics (i) doxorubicin, (ii) daunorubicin, and (iii) idarubicin are predicted to be able to
reverse TOP2A upregulation. Their chemical properties and differences can be consulted
elsewhere [86]. Inhibition of TOP2A by doxorubicin contributes to suppressing the growth
of sorafenib-resistant HCC tumors in vitro and in vivo [87]. At this point, it is imperative
to address a key facet of HCC treatment with doxorubicin. Despite its widespread use as a
cytotoxic agent, it is crucial to acknowledge the ongoing debate regarding doxorubicin’s
clinical activity, with some asserting that it either lacks significant demonstrable benefits
or offers minimal efficacy against HCC when used systemically [88,89]. As a potential
alternative, a single-center clinical trial highlighted that transarterial chemoembolization
using idarubicin exhibits a favorable safety profile, achieves high tumor response rates,
and extends time to progression significantly [90,91].

Similar to doxorubicin and idarubicin, (iv) Mitoxantrone also has the ability to reduce
the growth of chronic myeloid leukemia K562 cells by a mechanism involving proteasomal
activity [92]. (v) Podophyllotoxin (Podofilox), an aryltetralin cyclolignan extracted from
the roots and rhizomes of Podophyllum species, and its derivative (vi) teniposide have
already shown anti-tumoral properties for distinct types of neoplasia, including HCC [93–95].
(vii) Amonafide, a naphthalimide, was initially tested to treat acute myeloid leukemia and
breast cancer. By intercalating DNA and blocking the binding of topoisomerases, amonafide
promotes apoptotic cell death [96] and was effective against HepG2 and Huh7 cells [97].
The synthetic aminoacridine derivative (viii) amsacrine has a mechanism of action similar
to amonafide and showed potential effects in treating malignant lymphoma and acute
myeloid leukemia [98]. We found no recent study dealing with amsacrine and HCC.

5. Perspectives and Limitations

The concomitant administration of drugs with distinct mechanisms of action holds
promise as a viable strategy for addressing neoplastic conditions. The synergy resulting
from the combination of two or more drugs can yield superior therapeutic outcomes in
the context of HCC, as demonstrated by prior research [99]. To cite a few examples, the
co-inhibition of AURKA and HSF1 has exhibited remarkable anti-tumor efficacy against
HCC cells, both in vitro and in vivo [100], while the concurrent use of danusertibe and
sorafenib has been shown to produce additive effects [80]. Furthermore, pharmacolog-
ically active compounds with new chemical structures analogous to and derived from
natural compounds, such as congeners of podophyllotoxin and amonafide, are possible
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and promising options that deserve further evaluation [94,97]. Despite the limitations
commented below, our study underscores the undeniable importance of repurposing novel
chemical candidates for addressing HCC. This includes the promising avenue of combining
predicted drugs with established compounds in conventional chemotherapeutic regimens,
thereby shedding light on innovative drug replacement strategies.

This study encountered two relevant constraints. Firstly, bioinformatics analyses were
executed without undergoing experimental validation. Secondly, empirical verification is
essential for confirming the identified hub genes and drug-gene interactions. With these
limitations in mind, investigations akin to ours not only broaden the spectrum of potential
therapeutic approaches but also pave the way for forthcoming experimental studies.

6. Conclusions

Through a comprehensive evaluation and comparison of multiple datasets highlight-
ing DEGs in HCC, we have meticulously curated a robust list of genes. This compilation
comprises 25 DEGs along with their associated transcription factors. Notably, CDK1,
TOP2A, and RRM2 emerge as promising candidates for potential drug testing, either in
isolation or in combination. Upon successful experimental validation of these novel ther-
apeutic approaches, they hold the potential for clinical testing within a specific cohort of
HCC patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15235653/s1, Data S1: All genes found in GSEs of Healthy
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Data S4: Transcription Factors. Figure S1: Circos-plot showing the number and distribution of
genes by GSE. Figure adopted from the web tool MetaScape. Figure S2: (A) Difference in the mean
expression between Normal and Adjacent non-tumor tissue (data extracted from the cancerlivER
database, available at https://webs.iiitd.edu.in/raghava/cancerliver/index.html); HCC: Hepato-
cellular carcinoma; CCA: Cholangiocarcinoma; HA: Hepatic Adenoma. (B) Heat-maps with log2FC
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and their differential expression profile: (A) Venn diagram showing DEGs shared between Healthy,
Adjacent, and TCGA groups; (B) Heat-maps of the 110 DEGs with log2FC. Figure S4: PPI network for
HCC signature with minimum required interaction score of 0.9 (highest confidence). Nodes with no
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Table S2: Details about drugs that can potentially reverse the expression pattern of DEGs found in
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