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Simple Summary: Online adaptive radiotherapy (oART) can potentially reduce the required plan-
ning target volume (PTV) margins for clinical target volume (CTV) coverage. To achieve this ad-
vantage, it is crucial that intrafractional CTV deformation during adaptation remains smaller than
deformation from fraction to fraction. In this study, we analyzed the dosimetric effects of intrafrac-
tional CTV deformations using a time-dependent CTV deformation model based on cone beam CT
data generated before and after adaptation. Data were obtained from nine patients undergoing online
adaptive definitive focal radiochemotherapy as part of a clinical registry. In half of the treatment
series, a significant time dependence in the required margin to maintain an effective uniform dose
within the CTV was observed. Extending the adaptation time beyond 10 min by an additional 5 min
necessitated a 1.9 ± 0.24 mm increase in the margin. This underscores the importance of minimizing
adaptation time as it significantly influences the precision of oART.

Abstract: Interfraction anatomic deformations decrease the precision of radiotherapy, which can
be improved by online adaptive radiation therapy (oART). However, oART takes time, allowing
intrafractional deformations. In this study on focal radiotherapy for bladder cancer, we analyzed
the time effect of oART on the equivalent uniform dose in the CTV (EUDCTV) per fraction and
for the accumulated dose distribution over a treatment series as measure of effectiveness. A time-
dependent digital CTV model was built from deformable image registration (DIR) between pre- and
post-adaptation imaging. The model was highly dose fraction-specific. Planning target volume (PTV)
margins were varied by shrinking the clinical PTV to obtain the margin-specific CTV. The EUDCTV per
fraction decreased by—4.4 ± 0.9% of prescribed dose per min in treatment series with a steeper than
average time dependency of EUDCTV. The EUDCTV for DIR-based accumulated dose distributions
over a treatment series was significantly dependent on adaptation time and PTV margin (p < 0.0001,
Chi2 test for each variable). Increasing adaptation times larger than 10 min by five minutes requires a
1.9 ± 0.24 mm additional margin to maintain EUDCTV for a treatment series. Adaptation time is an
important determinant of the precision of oART for one half of the bladder cancer patients, and it
should be aimed at to be minimized.

Keywords: online adaptive radiotherapy; bladder cancer; intrafractional motion; bladder deformation

1. Introduction

Online adaptive radiotherapy (oART) has been studied in several clinical indications
such as prostate, head and neck, lung and cervix treatments, demonstrating enhanced
target coverage and sparing of organs at risk (OAR) [1–7]. While offline ART involves
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generating new treatment plans for subsequent fractions, oART takes a step further by
enabling plan adjustments in real time while the patient is on the treatment couch. This
approach ensures that the treatment plan is tailored to the patient’s anatomy captured by
pre-adaptation imaging. Currently, oART is available with cone beam computed tomogra-
phy (CBCT)- or magnetic resonance imaging (MRI)-equipped linear accelerators (LINACs).
These techniques have demonstrated variations in treatment duration. Using an MRI-
based LINAC in adapt-to-shape (ATS) mode [8], treatment durations ranging from 19.1 to
106.4 min have been reported [9–11], while with a CBCT-based LINAC, durations of 11.9 to
34.1 min have been reported [12,13]. During this adaptation time, profound intrafractional
deformations occur, influencing the delivered dose to the CTV due to variations in bladder-
shape-dependent CTV deformations. Bladder volume increases during radiotherapy on
average by 2.1–4.0 mL/min [14–16]. Bladder wall displacements from treatment fraction to
treatment fraction have been measured, indicating the need for PTV margins of 15–25 mm
for bladder cancer treatment without online adaptation [17–19]. While for whole-bladder
treatments, patients are usually treated with an empty bladder, focal bladder cancer treat-
ments can benefit from a filled bladder, which allows for better sparing of non-involved
bladder walls [20–22]. Four studies on oART have also been reported on bladder cancer.
In two studies, the whole bladder was included into the target volume, and patients were
treated with an empty bladder [23,24]; in the other two studies, focal radiotherapy to the
bladder tumor was delivered using simultaneous integrated or sequential boost [25,26].
The latter studies used PTV margins for the boost CTV between 5 and 10 mm.

The aim of this study is to investigate the impact of adaptation time between the initial
imaging study, as a basis for oART on the delivered dose to the CTV, derived from imaging
immediately after adaptation and just before treatment execution for focal radiotherapy
of bladder cancer with a filled bladder. The adaptation time dependence of the effective
uniform dose in the CTV (EUDCTV) was studied from fraction to fraction interfractional
per treatment phase or series using a fixed isotropic PTV margin of 5 mm instead of
individualized clinical margins. In addition, a digital CTV and bladder phantom was built
to capture the fraction-specific deformations of the bladder or CTV between both imaging
studies, assuming linear volume growth over time. Employing deformable image-based
dose accumulation, this study examines the influence of adaptation time and the PTV
margin around the CTV, which was varied from 2 mm to 14 mm, on the EUDCTV for the
entire treatment series.

2. Materials and Methods
2.1. Online Adaptive Radiotherapy

Consecutive patients with bladder carcinoma treated prior to March 2023 with oART
treatment using the Ethos® system (Varian, Palo Alto, CA, USA) were included in this
study. Patients were treated with combined chemoradiotherapy and were registered on
a prospective institutional clinical registry. The Ethics Committee of the University of
Duisburg-Essen approved this study (18-8364-BO/23-11380-BO). The study was conducted
according to the Declaration of Helsinki. All patients provided written informed consent.
The oART treatment workflow begins with a cone beam CT (CBCT1). The system au-
tomatically contours pelvic organs at risk using an AI-based algorithm. These contours
must be checked by the radiation oncologist, corrected if necessary and approved. Elastic
deformable image registration (DIR) deforms the planning CT (PCT) onto the CBCT1,
thereby generating the synthetic CT (sCT) of the day corresponding to the patient’s actual
anatomy as observed on CBCT1. This sCT incorporates Hounsfield unit (HU) values de-
rived from the PCT. By using a contour-based DIR, the deformed clinical target volume
(CTV) of the day is then generated from the CTV in the PCT. Subsequently, the deformed
CTV is presented to the radiation oncologist for correction and approval. Treatment plan
optimization is then performed, and the user can choose between two treatment plans:
the scheduled plan, which is calculated based on the actual anatomy, and the adaptive
plan, which is optimized for the specific anatomy of the day. In the final steps prior to dose
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delivery, a second cone beam CT (CBCT2) is acquired for position verification. This enables
a rigid registration with the reference CBCT1 and allows a corresponding adjustment of
the treatment couch to partially compensate for patient movements or anatomical changes
that may have occurred during the adaptation process.

2.2. Contouring

The contours of the rectum, bladder and CTV in CBCT1 were those approved dur-
ing the clinical treatment sessions within the Ethos system. In the case of CBCT2, the
contours for these structures were generated offline using an artificial intelligence-based
auto-segmentation algorithm (MIM ProtégéAI®, version 1.1.3, MIM Software Inc., Cleve-
land, OH, USA). These segmented structures underwent a review and, where deemed
necessary, were further modified by two experienced radiation oncologists. For delineating
the CTVCBCT1, we employed two contour-based DIR methods within the MIM Maestro®

software (version 7.3.2, MIM Software Inc., Cleveland, OH, USA). DIR1 utilized the bladder
and rectum as contours to steer the deformation, while DIR2 used only the bladder. In the
first step, we employed DIR1 to transfer the CTVCBCT1 from CBCT1 to CBCT2. The result-
ing contours were reviewed, and any required corrections were made while comparing
the CTV on both CBCT1 and CBCT2 side by side. Subsequently, in the second step, a third
radiation oncologist examined the new CTV on CBCT2. This evaluation included reviewing
the superposed CTV on CBCT2, which had been corrected by the first reviewer, as well as
the CTV on CBCT2 deformed by both DIR1 and DIR2. Additionally, the CTVCBCT1 were
presented side by side. Modifications suggested by reviewer 3 were discussed among
all three reviewers and the final CTVFinal was consented by all three reviewers. The final
contour-based DEF3 was generated using the CTV and the bladder contour on both CBCT1
and CBCT2.

2.3. Modelling of the Bladder and CTV Volume at Different Time Points

Contour-based deformation from CBCT1 at the start of the session (time point t1 = 0 min
and V1 represents the bladder volume at t1) to CBCT2 (t2 = clinical adaptation time, V2 =
the bladder volume at t2) was performed using DIR3 with bladder and CTV as steering
contours, respectively. The deformation vector field was scaled for the generation of the
bladder and the CTV at another time point ti. The scaling was accessed by the same
time-dependent factor at all surface points assuming linear bladder volume increase over
time as a first-order approximation. The relative length of a deformation vector at ti > t1 in
comparison to the time t2 is expressed as follows:

K =

3
√

1 + (ti−t1)∗(V2−V1)
(t2−t1)∗V1

− 1

3
√

V2
V1

− 1

The scaling as well as the generation of the new deformation vector fields were
assessed in MATLAB (R2022a). Figure S1a illustrates the bladder and CTV structures at a
time point of 10 min between the fix timepoints t1 = 0 min and t2 = 18.8 min, achieved by
adjusting the deformation vector field using the factor K at ti = 10 min.

2.4. Equivalent Uniform Dose

The equivalent uniform dose (EUD) for an inhomogeneous dose distribution delivered
to a tumor or an organ is the homogeneous dose resulting in the biological effect [27]. In
this study, the generalized equivalent uniform dose (gEUD) based on a power law model
was used [28]. For tumors, we used the parameter value a = −20, which is adequate for
rather aggressive tumors and gives larger weight cold spots [29]. Furthermore, the gEUD
values were normalized to the prescribed dose, and these values were referred to as nEUD.
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2.5. Dose Accumulation

For each fraction, we performed a contour-based deformable registration between
the CTV delineated on the PCT as the primary reference and the CTVt1 as well as CTVt2
observed on CBCT1 at t = 0 min and on CBCT2 after clinical adaptation time, respectively.
An in-house script developed within the MIM® environment facilitated this registration
process. The script initiated with a rigid fusion between CBCT1 or CBCT2 and the planning
CT, utilizing the isocenter positions from the scheduled plans as the initial alignment. Dose
distributions for each fraction were subsequently deformed and accumulated, maintaining
a voxel resolution of 1 mm per voxel in all spatial directions.

2.6. Dependence of the EUD on Margin around CTV

The CTV contours used in this study were derived from the clinically used PTV
contours. To investigate the dependence of EUD on the CTV margin, the PTV was first
contracted by applying an isotropic margin, ranging from 2 mm to 13 mm in 1 mm
increments. Subsequently, EUD values were calculated for each resulting CTV. In the clinic,
individualized non-isotropic margins were employed ranging from 5 to 10 mm and the
results for the clinical CTV were described in a previous report [26]. All analyses in this
study were performed with CTV volumes generated with 5 mm margins, unless otherwise
specified. Specifically, CTV volumes generated with 5 mm margins were utilized for the
contour-based DIR process.

2.7. Statistics

Statistical analyses were performed using SAS statistical software (SAS/STAT version
15.1, SAS Institute Inc., Cary, NC, USA). The empirical distribution functions from the
different treatment series were compared with a nonparametric Kruskal–Wallis test using
the procedure “npar1way”. Logistic regression was performed using the procedure “logis-
tic”. Analyses of adaptation time-dependent trends of the nEUD values were performed
with a general linear model. Depending on the error structure, especially the homogene-
ity of variances across adaptation times, regression on ranks or mixed models was used.
Regression on ranks was performed with SAS procedures “GLM”, ranking the nEUD
values from the different dose fractions per patient. For more quantitative analyses in the
case of inhomogeneous error variances over adaptation time, a mixed linear model using
fixed and random effects was used. Then, repeated measures analyses at different time
points per fraction were performed with a mixed, fixed and random effect linear model
using the procedure “mixed”. It allows for both heterogeneous variances and correlations
between error components. Deviations from a normal distribution were analyzed using
the Shapiro–Wilk test (Procedure Univariate, SAS). All statistical tests were performed as
two-sided tests.

3. Results

Nine focal bladder cancer radiotherapy series from nine consecutive patients were
analyzed for the effect of adaptation time on the nEUD values for the CTV (nEUDCTV).
In the PCT, the target volume had a median of 226.32 mL (range: 79.52–487.51 mL) and
the bladder volume had a median of 249.75 mL (range: 113.23–381.58 mL). The median
overall adaptation was 18.8 min (range: 8.6–33.3 min). For five series, we delivered an
intensity-modulated radiation therapy (IMRT) plan, while for the remaining four series,
we used volumetric modulated arc therapy (VMAT). There was a significant difference in
treatment duration between these techniques (p < 0.001, Kruskal–Wallis Test). The median,
minimum and maximum treatment times for IMRT were 15.85 min (ranging from 8.6 to
26.68 min), while for VMAT, these values were 20.76 min (ranging from 13.23 to 33.3 min).

As a starting point, we analyzed the cumulative distribution functions of the nEUDCTV
values using the adapted plan to the anatomy in CBCT1 at the times t1, representing the
time of the pre-treatment CBCT1, t2 of the post-adaptation CBCT2 and t10, i.e., 10 min after
t1. The empirical distributions of the nEUDCTV values for the 137 dose fractions using a
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uniform margin of 5 mm are shown in Figure 1. The nEUD values differed significantly
between the times t2 and t10, as well as t2 and t1 (p < 0.001, Kruskal–Wallis Test). The
proportion of treatment fractions falling below 95% of the prescribed dose over the three
time groups was as follows: 0% at t1, 2.19% at t10 and 33.57% at t2.
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Figure 1. Empirical cumulative distribution of the equivalent uniform doses normalized to the
prescribed dose for the CTV with a margin of 5 mm in the nine treatment series using the adaptive
plan on CBCT1 at t1 = 0 min adaptation time (blue), on CBCT2 at the clinical adaptation time t2

(orange) and for the model-based CTV generated for an adaptation time of 10 min (yellow).

Next, the nine treatment series were analyzed with respect to an nEUDCTV depen-
dence on adaptation time (Figure 2). As residuals from a general linear model were not
homogeneously distributed over adaptation time, values of the nEUDCTV were ranked
per patient and the rank numbers were scaled within the [0, 1] interval. An analysis of
covariance was performed on the rank-transformed data, as the residuals were not nor-
mally distributed for the untransformed nEUDCTV data (p < 0.0001, Shapiro–Wilk test),
and the variance of the residuals was not independent of adaptation time. However, both
assumptions were met when analyzing the transformed data. An overall effect between
the dependence of nEUDCTV values on adaptation time and the respective radiotherapy
series was found to be significant (p = 0.0037, F-test). However, there were significant
differences in time dependencies from series to series (p = 0.0157, F-test). The series were
categorized into five time-sensitive series, with slopes smaller than the overall mean slope
of −0.0262 ± 0.0080 min−1, and four time-insensitive series, with slopes larger than the
overall mean slope (Figure 2). No heterogeneity in slopes remained between time-sensitive
series (p = 0.84, F-test). The nEUDCTV values on CBCT2 were smaller for the time-sensitive
than for the insensitive series, indicating that the CTV was more deformed over time in
time-sensitive compared to time-insensitive series (median nEUDCTV: 0.9969 vs. 1.0113;
p = 0.0016, Kruskal–Wallis test). The same holds for the bladder volume on CBCT1, which
was smaller in time-sensitive series (median bladder volume: 109.8 mL vs. 254.8 mL;
p < 0.0001, Kruskal–Wallis test). In addition, we observed slightly larger dorsal deviations
of the CTV in time-sensitive compared to insensitive series (median dorsal Hausdorff
distance between the CTV in CBCT2 and CBCT1: 6.0 mm vs. 5.0 mm; p = 0.0363, Kruskal–
Wallis test). The latter could, in part, be caused by a rectal balloon, which was used in
three of the four time-insensitive but for none of the time-sensitive series. However, adap-
tation times were not larger but smaller in time-sensitive than in time-insensitive series
(median adaptation times: 18.1 min for time-sensitive vs. 25.7 min for time-insensitive
series; p < 0.0001, Kruskal–Wallis test).
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series. nEUDCTV values were ranked for each series and the rank numbers were scaled to the interval
[0, 1]. There was a significant inter-series heterogeneity of slopes (p = 0.0157, F-test). According to
the overall mean slope, series were ranked as time-sensitive (blue regression lines), with smaller
slops than the overall slopes, or time-insensitive, with larger slops (black regression lines). Ranked
nEUDCTV values from a time-insensitive series were labeled by the same black filled symbol, and
values from a time-sensitive series by the same blue open symbol. The 95% confidence limits of
mean-predicted values are given as transparent confidence bands.

For contour propagation of CTV or bladder, a time-dependent scaling factor for the
deformation vectors from CBCT1 to CBCT2 was used. These volumes were generated at
various time points per fraction: at 10 min after t1 and the medians of adaptation times
within the lower, middle and upper terciles of all adaptation times, i.e., the 16.67th, 50.00th
and 83.33th percentiles of all clinical adaptation times. The 16.67th percentile and its
95% confidence interval had a value of 14.14 min (95%CI: 13.24–15.57 min), the 50.00th
percentile of 18.82 min (95%CI: 18.19–19.82 min) and the 83.33th percentile of 26.69 min
(95%CI: 25.14–29.10 min). This time-dependent deformation model was highly fraction-
specific, as can be shown by the intrafraction movement of selected points on the CTV
surface by the respective deformation vector, e.g., the intrafraction posterior movement
of the most posterior point on the CTV surface at an adaptation time of 18.82 min that
is influenced by intrafraction bladder and rectum deformation (Figure S1b). The 50%
confidence intervals for a prediction of this movement in a future fraction from a single
past fraction are considerably larger than the median deviation over a treatment series.
Therefore, the intrafraction deformation model cannot be predicted precisely from a single
treatment session or a single planning CT session. The correlation of outward movements
between points on different sides the CTV surface was only moderate, e.g., the Spearman
correlation coefficient between the outward movements of the most superior and most
posterior point of the CTV was rs = 0.35 [95% CI: 0.19–0.49].

In the subsequent analysis, we focused exclusively on the time-sensitive series of
dose fractions. Figure 3 illustrates the empirical cumulative distribution functions of
the nEUDCTV values on CBCT2 for the five time-sensitive series according to the terciles
in which the associated clinical adaptation time falls. There were significant differences
between the nEUDCTV values between the terciles (p = 0.0005, Kruskal–Wallis test). Pairwise
comparisons revealed significant differences between all terciles: terciles 1 and 2, terciles
1 and 3, as well as terciles 2 and 3 (p < 0.0025, Kruskal–Wallis tests). In addition, the
cumulative distribution functions of the nEUDCTV values for the interpolated CTV volumes
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from each dose fraction of the time-sensitive series were depicted in Figure 3 at median
adaptation times of the respective percentiles. The distributions of the nEUD values for
the observed CTVs and the modeled CTVs did not differ within each percentile (p > 0.25,
Mann–Whitney U-test).
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Figure 3. Empirical cumulative distribution of the nEUDCTV values from the adaptive plans present-
ing a comparison between the actual nEUD values and the nEUD values calculated for the CTV at
the simulated time points using the digital bladder model. The solid lines represent the observed
nEUDCTV values with a treatment duration belonging to the terciles T1 (red line), T2 (green line)
and T3 (blue line). The dashed lines indicate the nEUD values for the model-based time-dependent
CTV volumes at the median adaptation times in T1 (orange), T2 (green) and T3 (blue), i.e., 14.14 min,
18.82 min and 26.69 min. The distribution of the nEUDCTV values on CBCT1 at t = 0 min is indicated
for comparison (black).

The inter- and intrafractional adaptation time dependence of the nEUDCTV values are
presented in Figure 4 for the five time-sensitive series. As the residual nEUDCTV values from
the model were not homogeneously distributed across adaptation times delta_t, we utilized
a mixed linear model with the respective patient as a main effect for the interfractional
analysis and the respective dose fraction as a main effect for the intrafractional analysis.
There was a significant time dependence (p < 0.0001, F-test) with no significant difference
in slopes obtained for the interfractional dependence of the nEUDCTV values on adaptation
time using CTV volumes on CBCT2 at t2 compared with the intrafractional dependence
using the intrafractional interpolated CTV volumes at 10 min, 14.14 min, 18.82 min and
26.69 min as repeated measurements per fraction (p = 0.1072, F-test). The slopes for
the interfractional and intrafractional dependencies of nEUDCTV values on time were
−0.04345 ± 0.0086 min−1 and −0.0294 ± 0.0014 min−1. In Figure 4, the marginal residuals
of nEUDCTV values from the model are depicted as the differences between observed and
predicted nEUDCTV values.

The residual nEUDCTV values for the different fractions at t2 on CBCT2 from the above
time-dependent model were further analyzed for a correlation with local deformations
of the bladder not captured by a linear volume expansion. Here, we analyzed the local
Hausdorff distances between the bladder wall on CBCT1 and the bladder wall on CBCT2,
overlapping with the CTV on CBCT1. These Hausdorff distances were adjusted by the
subtraction of the average increase in the bladder, estimated by the difference of the radii
of spheres that have volumes equivalent to the bladder in CBCT1 and CBCT2. Figure S2a
shows the increase in bladder volume from CBCT1 to CBCT2 dependent on the time interval
between both CBCT studies for the fractions from the five series. The mean slope was
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4.29 ± 0.89 mL/min. The dependence of the residual nEUDCTV values from the model on
the adjusted local Hausdorff distances of the bladder wall is shown in Figure S2b. There was
a significant dependence of the residual nEUDCTV values on the adjusted local Hausdorff
distances of the bladder wall leading to local distortions of CTV at t2 not described by
the model (p < 0.0001, t-test). The Spearman correlation coefficient was −0.455 (95% CI:
−0.607–0.265). However, Figure S2c shows that the intrafractional nEUDCTV residuals were
not dependent on the adjusted local Hausdorff distances (p = 0.34, t-test). The Spearman
correlation coefficient was rs = 0.02 (95%CI: −0.089–0.123). This difference between inter-
and intrafractional analysis is due to the fact that adjusted Hausdorff distance is determined
per fraction and the intrafractional analysis adjusts to peculiarities of each fraction.
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Figure 4. Residual nEUDCTV values for the CTV volumes from a mixed linear model adapted to
the nEUD values for the CTV volumes on CBCT2 after clinical adaptation times from fraction to
fraction and to the interpolated CTV volumes at 4 distinct time points: 10 min, 14.14 min, 18.82 min
and 26.69 min. The intrafractional dependence of the nEUDCTV values on the adaptation time was
modeled using the interpolated CTV volumes at the above 4 distinct time points. The nEUDCTV

values were explained by the respective time as a continuous covariate and the respective dose
fraction as a mean effect using a repeated measures design. The interfractional dependence of the
respective nEUDCTV values used the clinically observed adaptation times and the respective patient
as explanatory variables.

In a next step, we analyzed the interplay between adaptation time and required PTV
margin to maintain a nEUDCTV value > 95% for the accumulated dose distribution over
a treatment phase of adaptive dose fractions. The dose distributions adapted to the PTV
in the initial CBCT1 for each dose fraction of the time-dependent treatment series were
accumulated onto the planning CT using DIR-based dose accumulation, deforming the
CTV volumes in CBCT2 at different adaptation times onto the CTV in the planning CT.
Subsequently, the nEUDCTV values were computed for the CTV volumes at the four time
points: the adaptation times of 10 min, 14.1429 min, 18.877 min and 26.5866 min. In
addition to the CTV with a 5 mm margin to the clinical PTV at t1 and t2, CTV volumes
with margins ranging from 2 to 13 mm were generated through isotropic shrinkage of the
PTV. The CTV volumes for different margin sizes were also propagated to the mentioned
additional time points. The nEUDCTV values at the four time points in dependence on
PTV margin are shown in Figure 5 for the accumulated dose distributions of the different
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treatment series. An increase in the nEUDCTV values was observed with both prolonged
adaptation time and increased margin. At the clinical times t2 per dose fraction and the
5 mm PTV margin, the nEUDCTV for the accumulated dose distribution stayed above 95.0%
and even 99.0% of the prescribed dose for eight of the nine series. For the remaining series,
which were time-sensitive, it stayed at 91.5% when accumulating doses from all fractions
and exceeded 99.0% when accumulating the doses from fractions within adaptation times
falling within the lower two terciles of values, i.e., times shorter than 20.8 min. A more
quantitative analysis was performed by logistic regression at an nEUDCTV cut point of
95% in dependence of adaptation time and PTV margin as continuous covariates. Figure 6
shows the time-dependent predicted probability of an nEUDCTV value falling below the
cut point for various PTV margins within a treatment series. The probability increased
with time and fell with margin (p < 0.0001, Chi2 test for both covariates). The regression
coefficients were 0.6028 ± 0.1270 min−1 for time and −1.5777 ± 0.3474 mm−1 for PTV
margin, with a covariance of −0.0366 min−1 mm−1. The intercept was −6.4676 ± 1.7066.
From this, it follows that for every 5 min extension of adaptation time, an additional PTV
margin of 1.9 ± 0.24 mm is required for compensation. The upper 95% confidence limits
for the predicted probability of nEUDCTV for a treatment series < 95% stayed below 5% up
to adaptation times of 10.0 min, 13.0 min, 15.7 min, 18.3 min, 23.0 min and 27.2 min at PTV
margins of 3 mm, 4 mm, 5 mm, 6 mm, 8 mm and 10 mm, respectively.
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Figure 5. nEUD values for the CTV from the accumulated dose distribution of the adaptive plans on
CBCT2 over a treatment series in dependence on PTV margin and adaptation time. Data are shown
for the 5 time-sensitive treatment series. Open brown squares represent data modeled at 10 min
adaptation time, green rhombus, red triangles and blue circles data at 14.1429 min, 18.877 min and
26.5866 min adaptation time. PTV margins were varied in 1 mm increments and data for the different
adaptation times at the same integer PTV margin were separated by changing the horizontal position.
This was carried out by varying the horizontal position around the respective PTV margin from
the longest to the shortest adaptation time in submillimeter steps. Vertical box plots represent the
indicated PTV margin and adaptation time extending from the 25th to the 75th percentile of values;
the horizontal line inside the box represents the median of values and the whiskers indicate the whole
range of values. Median nEUDCTV values for the series at neighboring PTV margins were connected
by drawn lines for each adaptation time.
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Figure 6. Adaptation time dependence of the probability of an nEUDCTV < 95% for the accumulated
dose distribution of a treatment series at different PTV margins. Data from Figure 5 were analyzed
with a bivariate logistic model at an nEUDCTV cut-off value of 95%. Logistic curves were given
together with their 95% confidence bands. There was a significant effect of adaptation time and PTV
margin on nEUDCTV (p < 0.0001, Chi2 test for each variable).

4. Discussion

Adaptation time can profoundly decrease the effectiveness of focal oART for bladder
tumors treated with a filled bladder in order to spare the contralateral walls in about
half of the treatment series as a result of this study. Quite a few studies analyzed the
effect of adaptation time on the coverage of the CTV by a dose distribution adapted to the
imaging at the beginning of each fraction for tumors located near the bladder. Berger et al.
found in their simulation study on adaptive proton therapy for cervical cancer that dose
coverage of the CTV decreased with adaptation time from 5 min to 15 min using a PTV
margin of 5 mm, and that dose coverage was even more time-sensitive using a margin of
2.5 mm [30]. About 25% of the dose fractions had a minimum dose to the hottest 98% of
the CTV (D98) below 91% and 82% of the prescribed dose at 5 min and 10 min adaptation
time. This simulation study used the pre-treatment CBCT imaging from conventional
IGRT per fraction and a bladder expansion model, derived from a population of previously
treated cervical cancer patients, together with a motion model to simulate bladder-induced
CTV deviations. However, no further intrafractional imaging to derive fraction-specific
deformations was performed. Brennan et al., 2023, found a decrease in the intraprostatic
gross tumor volume (GTV) dose coverage measured by the D98 with increasing bladder
filling during adaptation time using integrated boost radiotherapy with 2 mm PTV margins
on an MR-Linac [31]. In addition, some studies showed that dose coverage of the CTV in
prostate cancer can decrease importantly in terms of D95-D98 during treatment times of
about 30 min from initial imaging to the end of dose delivery on an MR-Linac at 3 mm PTV
margins [32,33].

Additional studies have shown an impact of time on the movement of tumors or
structures near the bladder during the patient on-couch time. The maximum bladder wall
movements from the start of a treatment session increased intrafractionally with time,
as found in the study by Nishioka using implanted fiducial markers and stereoscopic
fluoroscopy [34]. Eijkelenkamp et al. analyzed the deformations of the GTV in dependence
on adaptation time from repeated imaging on an MR-Linac during five dose fraction [35].
The margin around the GTV on the initial pre-adaptation MRI scan was isotropically
expanded to encompass the GTV in the consecutive scans per fraction. Margins required
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to encompass 90% of the intrafractional GTV deformations at the indicated later times
increased from 4.0 mm at 10–15 min to 6.4 mm at 30–35 min.

In this study, we applied an approach using contour-based elastic deformation for esti-
mation of bladder or CTV shape and deformation at different time points assuming linear
volume increase in the bladder with time. Using this model, we found the intrafractional
dependence of the nEUDCTV values on adaptation time comparable with the interfractional
dependence for the time-sensitive treatment series. In addition, adaptation times from all
series needed in the clinic were classified into three terciles, and no significant differences
were found between the empirical cumulative distribution functions of the interfractionally
observed respective nEUDCTV values and the distribution of the nEUDCTV values for the
model-based CTV volumes per tercile. While the interfractional time dependence compares
the time dependence of different set-up deformations at different days from fraction to
fraction per patient, the intrafractional time dependence captures the specific deformation
of the day between CBCT1 and CBCT2 and propagates it to the considered adaptation
time point. Although the model has passed the comparison of the inter- and intrafractional
time dependences of the nEUDCTV values, it has to be pointed out that deformations of the
bladder wall from a linear dependence on bladder volume over time have been observed.
Contractions of the bladder wall, the pelvic floor and the transversus abdominis muscle can
also cause shifts of the bladder neck [36,37]. Accordingly, monitoring of prostate position
with the Calypso electromagnetic tracking system showed rapid displacements within
seconds that could relax afterwards but standard deviations of displacement within 5 min
stayed below 2 mm for most fractions [38,39].

This study showed that the effect of prolonged adaptation time beyond 10 min on
the nEUD of the accumulated dose distribution can be outweighed by an increase in the
PTV margin of 1.9 ± 0.24 mm per 5 min increase in the time-sensitive half of treatment
series. These findings underline that adaptation times have clinical significance not only
for focal radiation therapies of bladder cancer but also for target volumes associated with
the bladder contours, as for adaptive external beam boost therapies for cervical cancers not
suited for brachytherapy or hypofractionated radiation therapies of prostate cancer [7,40].
For such dose-escalated or hypofractionated therapies, PTV margins are determinants
of treatment-associated toxicities and the results of the MIRAGE trial for prostate cancer
patients showed that an increase in a PTV margin of 2 mm results in a measurable increase
in toxicity [40]. In this study, dose accumulation of all dose fractions per series revealed
satisfactory results, with an nEUD > 95% in eight out of nine treatment series by a PTV
margin of 5 mm. Mitchell et al. treated bladder cancer with adaptive whole bladder
radiotherapy, with patients having emptied bladders before treatment, on an MR-Linac.
They used PTV margins of 15 mm anteriorly and superiorly, as well as 5–10 mm in the other
directions [1]. They found that with an increased workflow duration up to 60 min, there
was an increase in the percentage of dose fractions for which a rigid adaptation of the table
position as post-adaptation was required according to the verification imaging to recenter
the target with the PTV [24]. In addition, during two percent of the dose fractions, patients
had to leave the treatment room following adaptation and before treatment in order to
void bladder or rectum at adaptation times above 45 min. However, an empty bladder
does not allow for an optimal bladder wall sparing using focal bladder tumor radiotherapy
due to the smaller distance of the uninvolved wall from the target [41]. In this study,
we found that time-insensitive treatment series had larger bladder volumes and higher
nEUDCTV values than time-sensitive series. A similar finding was reported by Berger et al.
for cervical cancers for which larger bladder volumes of the day are associated with smaller
degradation of the effective dose to the CTV in terms of the D98 [30]. Therefore, attempts
should be taken at implementing protocols for full bladder with a volume of about 250 mL,
which in addition would allow better bladder wall sparing.

Limitations of this study include the smaller number of patients and that the anatomy
was not monitored intrafractionally at multiple time-points, since this would cause extra
dose exposure to the patient using CBCT imaging. In addition, extra 3D imaging takes
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extra time; MRI takes about 2 min for T2-weighted images [24]. From this study, it follows
that adaptation times in the upper tercile of observed values above 20.8 min are critical and
should be minimized. One option to speed up the process is the use of 9 or 12 field IMRT
instead of VMAT plans, with optimization times of about 3–4 min instead of 13–14 min [42].
In addition, each additional imaging requires contouring of the organs at risk and of the
target volume. In this study, target volume contouring on the verification CBCT was
performed in a two-stage process by three physicians. In the future, efforts should be
aimed at increasing automatization of on-line contouring using convolutional neuronal
networks [43,44] which also might be patient-specific and trained on imaging studies from
previous dose fractions of the considered patients [45].

5. Conclusions

Adaptation time should be aimed at being maintained below 20.8 min for pelvic tu-
mors near the bladder to minimize margins around the CTV. There was a close dependence
of PTV margin on adaptation time beyond 10 min of 1.9 ± 0.4 mm per 5 min adaptation
time, in order to maintain the nEUDCTV for the accumulated dose distribution per treatment
series. A full bladder of about 250 mL can stabilize the anatomical scenario.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers15235629/s1, Figure S1a: Time-dependent model derived from the
deformation vectors between CBCT1 and CBCT2 illustrating temporal changes in bladder and CTV
volumes; Figure S1b: Intrafraction posterior (+)–anterior (-) movement of the most posterior point of
the CTV in the planning CT within 18.8 min, the median adaptation time, from the time dependent
deformation model; Figure S2a: Increase of the bladder volume in CBCT2 compared to CBCT1
with adaptation time for the dose fractions of the time-sensitive series; Figure S2b: Dependence of
the residual nEUDCTV values from the model shown in Figure 4 for the CTV volumes on CBCT2
underlaying the inter-fractional analysis; Figure S2c: Dependence of the residual nEUDCTV values
from the model shown in Figure 4 for the inter-fractional analysis of model-based CTV at adaptation
times of 10 min, 14.14 min, 18.82 min, and 26.69 min.
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