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RFS+ for each region
A Normalization Technigues

For the BraTS dataset, several normalization techniques [1] are implemented in this
study, categorized into two main types: individual time-point normalization methods and
sample-based normalization methods. The individual time-point normalization methods
incorporate Z-score normalization (zscore-normalize), Fuzzy C-means (FCM)-based tis-
sue-based mean normalization (fcm-normalize), Kernel Density Estimate (KDE) WM
mode normalization (kde-normalize), and WhiteStripe (ws-normalize). Meanwhile, the
sample-based normalization methods include Least squares (LSQ) tissue mean normali-
zation (lsq-normalize), Piecewise Linear Histogram Matching (nyul-normalize) except
RAVEL (ravel-normalize) due to not applicable.

Table S1 shows the results of RES+ on ET, TC, WT for each segmentation approach
with variable normalization techniques.

Table S1. The results of RFS+ for ET, TC and WT.

Intensity norm. tech Segmentation Ap- ET TC WT
proach

Multiclass 79.44 79.53 88.98

Nyul Multi-label 83.52 88.78 92.05

Binary class 84.21 89.42 90.30

Multiclass 84.99 89.71 91.65

Z-score Multi-label 82.29 87.27 92.24

Binary class 85.19 89.48 92.18

Multiclass 83.61 87.99 90.47

Whitestripe Multi-label 83.05 88.17 91.77

Binary class 84.12 88.24 91.83

Multiclass 78.65 78.23 88.67

FCM Multi-label 77.56 79.42 87.65

Binary class 83.65 84.21 88.53

Multiclass 78.59 78.04 87.32

LSQ Multi-label 79.34 80.11 86.59

Binary class 82.34 84.87 83.98

Multiclass 79.22 77.45 88.67

KDE Multi-label 81.03 78.66 87.45

Binary class 84.17 88.22 88.34

B. RFS+ Workflows for each region.
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Figure S1. RES+ for ET based on Table S1.
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Figure S2. RES+ for TC based on Table S1.
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Figure S3. RFS+ for WT based on Table S1.

C RFS+ with each segmentation approach for each region

Figure 54 shows each segmentation approaches with their respective inputs and RES+ for
ET.
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Figure S4. (A) Multiclass segmentation (B) Multi-label segmentation (C) Binary class segmentation
(D) RFS+ for ET.

Figure S5 shows each segmentation approaches with their respective inputs and RFS+
for TC.
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Figure S5. (A) Multiclass segmentation (B) Multi-label segmentation (C) Binary class segmentation
(D) RES+ for TC.

Figure 56 shows each segmentation approaches with their respective inputs and RFS+
for WT.
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Figure S6. (A) Multiclass segmentation (B) Multi-label segmentation (C) Binary class segmentation
(D) RES+ for WT.

D Analyzing Training Requirements and Time Efficiency

Tables 52-54 reveal that utilizing just 8GB of GPU memory and three days on an
RTX 3090 is adequate to surpass the performance of the extended nnU-Net [2]. Notably,
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the 2D U-Net model incorporating RFS+ demonstrates remarkable efficiency by requiring
only 66% of the memory and completing training in 92% less time.

Table S2. The extended nnU-Net requirements.

KTX 3070 8Gb RTX 3090 24 Gb .
Models . Time in . Time in The model Total Time
Trainable Trainable number (Days)
Days Days
BL
Ensemble baseline - - X 5 5 25
nnUNet
BL+L+GN
nnUNet
with larger i i X 2 > 10
Unet
The extended ) 35
nnU-Net
Table S3. The 2D U-Net with RFS+ requirements (Any region).
w The Total w The Total
Models Time ;5del  Time Time ; 0del  Time
Trainable Dlar; . number (Days) Trainable Dlal;s number (Days)
2D U-Net mul-
ticlass
X 3 1 3 X 1 1 1
(Z-score nor-
lizati
Ensemble —22 17at10n)'
2D U-Net bi-
nary class
3 1 3 X 1 1 1
(Z-score nor-
malization)
2D U-Net bi-
nary class 3 1 3 X 1 1 1
(Nyul normali-
zation)
RFS+ 9 3
Table S4. The comparison of the ensemble methods.
Ensemble RTX 3070 8GB RTX 3090 24 GB
Train- Time in Days Trainable Time in Days
able
The extended nnU-Net - - X 35

RFS+ X 9 X 3
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E Acquisiton Parametres retrieved from DICOM for STORM_GLIO

T1 Tlce T2 FLAIR
4.77 4.76 4.74 4.81
+-0.47 | +-0.47 | +-0.56 | +-0.39
Repetition 489 494 5627 8084

Thickness/mm

time/ms +-96 +-98 | +-1856 | +1832

. 11 11 97 112

Echo Time/ms +2 +2 -8 +27
Inversion 0 0 0 2217
Time/ms +-0 +-0 +-0 +-259

1.54 1.5 1.54 1.54
+0.24 +-0 +0.24 +0.24
426 424 546 475

Field Strength/T

Rows +-145 | +146 | +185 | +219
Columns 417 | 415 527 458
+-147 | +-148 | +198 | +-232
Pixel 062 | 062 | 048 | 059
spacing/mm +-0.19 | +0.19 | +-0.14 | +-0.21
Slice 599 | 598 | 627 | 634

Spacing/mm | +-0.73 | +-0.74 | +-0.96 | +-0.72
1.09 1.07+- 0.91 0.69
+-0.77 0.76 +-0.53 | +-0.67

SAR
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