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Sun, X.; Thomas, S.; Powell, J.; Spezi,

E. RFS+: A Clinically Adaptable and

Computationally Efficient Strategy

for Enhanced Brain Tumor

Segmentation. Cancers 2023, 15, 5620.

https://doi.org/10.3390/

cancers15235620

Academic Editor: Houman

Sotoudeh

Received: 19 October 2023

Revised: 22 November 2023

Accepted: 25 November 2023

Published: 28 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

RFS+: A Clinically Adaptable and Computationally Efficient
Strategy for Enhanced Brain Tumor Segmentation
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Simple Summary: In our study, we addressed the challenge of the brain tumor segmentation task
using a range of MRI modalities. While leading models show proficiency on standardized datasets,
their versatility across different clinical environments remains uncertain. We introduced ‘Region-
Focused Selection Plus (RFS+)’, enhancing the segmentation performance for clinically defined
labels like gross tumor volume in our local dataset. RFS+ integrates segmentation approaches and
normalization techniques, leveraging the strengths of each approach and minimizing their drawbacks
by selecting the top three models. RFS+ demonstrated efficient brain tumor segmentation, using
67% less memory and requiring 92% less training time than the state-of-the-art model. The strategy
achieved better performance compared to the leading model, with a 79.22% dice score. These findings
highlight the potential of RFS+ in amplifying the adaptability of deep learning models for brain
tumor segmentation in clinical applications. However, further research is needed to validate the
broader clinical efficacy of RFS+.

Abstract: Automated brain tumor segmentation has significant importance, especially for disease
diagnosis and treatment planning. The study utilizes a range of MRI modalities, namely T1-weighted
(T1), T1-contrast-enhanced (T1ce), T2-weighted (T2), and fluid-attenuated inversion recovery (FLAIR),
with each providing unique and vital information for accurate tumor localization. While state-
of-the-art models perform well on standardized datasets like the BraTS dataset, their suitability
in diverse clinical settings (matrix size, slice thickness, manufacturer-related differences such as
repetition time, and echo time) remains a subject of debate. This research aims to address this gap by
introducing a novel ‘Region-Focused Selection Plus (RFS+)’ strategy designed to efficiently improve
the generalization and quantification capabilities of deep learning (DL) models for automatic brain
tumor segmentation. RFS+ advocates a targeted approach, focusing on one region at a time. It presents
a holistic strategy that maximizes the benefits of various segmentation methods by customizing
input masks, activation functions, loss functions, and normalization techniques. Upon identifying
the top three models for each specific region in the training dataset, RFS+ employs a weighted
ensemble learning technique to mitigate the limitations inherent in each segmentation approach. In
this study, we explore three distinct approaches, namely, multi-class, multi-label, and binary class
for brain tumor segmentation, coupled with various normalization techniques applied to individual
sub-regions. The combination of different approaches with diverse normalization techniques is also
investigated. A comparative analysis is conducted among three U-net model variants, including the
state-of-the-art models that emerged victorious in the BraTS 2020 and 2021 challenges. These models
are evaluated using the dice similarity coefficient (DSC) score on the 2021 BraTS validation dataset.
The 2D U-net model yielded DSC scores of 77.45%, 82.14%, and 90.82% for enhancing tumor (ET),
tumor core (TC), and the whole tumor (WT), respectively. Furthermore, on our local dataset, the 2D
U-net model augmented with the RFS+ strategy demonstrates superior performance compared to the
state-of-the-art model, achieving the highest DSC score of 79.22% for gross tumor volume (GTV). The
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model utilizing RFS+ requires 10% less training dataset, 67% less memory and completes training in
92% less time compared to the state-of-the-art model. These results confirm the effectiveness of the
RFS+ strategy for enhancing the generalizability of DL models in brain tumor segmentation.

Keywords: magnetic resonance imaging (MRI); brain tumor segmentation; U-net; region-focused
selection (RFS); clinical applications; generalizability of deep learning model

1. Introduction

The global age-standardized rate (ASR) of incidence of brain cancer is 3.9 per 100,000
in males and 3.0 per 100,000 in females, while the ASR of mortality is 3.2 per 100,000 in
males and 2.4 per 100,000 in females [1]. Within this context, glioblastoma multiforme
(GBM) is the most prevalent malignant tumor in the brain, which is rapidly lethal with a
median survival time of approximately 15 months [2]. GBM occupies 57% of all gliomas
and 48% of all primary malignant types of central nervous system tumors [3]. GBM is in
the group of Grade 4 in the World Health Organization (WHO) report on brain tumors [4].

Patients suffering from GBM need an accurate diagnosis and prognosis for treatment
decisions. Although positron emission tomography (PET) and computed tomography
(CT) are occasionally used for non-invasive diagnosis of GBM, MRI (magnetic resonance
imaging) has gained widespread practice in brain imaging due to its non-ionizing, high-
resolution scans, and ability to generate images with high soft tissue contrast. MRI stands
out as the pivotal medical imaging method, utilizing strong magnetic fields and radiofre-
quency waves to create detailed images of the internal structures of the brain [5]. Different
MRI modalities, including T1-weighted, T1-contrast-enhanced, T2-weighted, and FLAIR,
are utilized, each highlighting various tumor characteristics such as size, location, and
the presence of oedema or necrosis. MRI is utilized both prior to and following treatment
for the purpose of detecting and evaluating the progression of the tumor. Additionally,
segmentation and quantitative evaluation of brain tumors provide information that may
lead to a better understanding of disease progression and treatment strategy [6].

In most cases, an expert neuroradiologist is required to carry out the precise manual
segmentation of tumors. This, in contrast to manual and semi-automatic segmentation,
is time-consuming, labor-intensive, and sensitive to observer bias. Conversely, automatic
segmentation appears as an alternative with the capability to eliminate intra- and inter-
observer segmentation variability [7]. In addition, unlike manual and semi-automated
segmentation, automatic segmentation is capable of overcoming reproducibility issues.

Although machine learning (ML) was used with hand-designed features for the brain
tumor segmentation task at the beginning of the brain tumor segmentation challenge
(BraTS) [8], deep learning (DL) demonstrated a better performance thanks to its capability
to explore highly complex features [9]. The intensity range of MRI varies for several reasons
such as differences in scanner models, manufacturers, and scan acquisition techniques.
This makes the generalization of ML–DL-based segmentation approaches challenging
and standardization is required in terms of the intensity of MRI. When using intensity
normalization techniques, an improvement can be shown in the metrics of CNN (convo-
lutional neural network)-based brain tumor segmentation [10]. Typically, the aim of the
segmentation task on brain tumors is to delineate active tumor tissue (enhancing tumor
(ET)), necrotic tissue, and edema (swelling near the tumor). Additionally, in radiotherapy,
the gross tumor volume (GTV) is delineated for planning purposes, which is “the gross
palpable or visible/demonstrable extent and location of the malignant growth” [11]. Du-
man et al. demonstrated the remarkable similarity observed between GTV and tumor core
(TC) [12]. Given the challenge of distinguishing between tumor and healthy tissues due to
their overlapping imaging features, multiple imaging modalities of MRI such as T1, T1-
contrasted (T1ce), T2, and fluid attenuation inversion recovery (FLAIR) are typically used.
The response assessment in neuro-oncology (RANO) working group provides guidelines
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for specific MRI modalities for GBM [13]. In clinical applications, the diversity of MRI
modalities in brain tumor segmentation presents obstacles, such as the differing sequences,
varying image quality, resolution, and slice thickness across different modalities, and the
complexity of integrating these varied data sources for accurate tumor delineation.

Even though early applications of computer vision (CV) techniques have demonstrated
success under certain conditions for similar tasks, the task of medical image segmentation
remains challenging due to the difficulties of feature representation [14]. Despite this,
DL approaches provide promising results in the image segmentation tasks by utilizing
CNN which is a widely used technique in image processing due to its ability to learn
complex patterns and features in images. For efficient tumor segmentation with CNN,
additional feature extraction methods are applied [15]. Recently, transformers [16] have a
wide application on CV including image segmentation tasks. Transformers, often employed
either independently or in integration with CNNs, are utilized to effectively capture both
local and global information in medical image segmentation, with most studies integrating
the transformer architecture with the U-net or its related variations [17]. In light of countless
advancements and the breadth of methodologies in computer vision, it becomes essential
to classify the predominant models that are crucial for navigating the complexities of
medical image segmentation tasks. A substantial number of contemporary models can
predominantly be classified into two principal categories: (1) multi-class segmentation;
and (2) cascaded versions of binary class segmentation, which are all-in-one, end-to-end
solutions for each sub-tumor (ET, TC, and whole tumor (WT)) of brain tissue.

Multi-class segmentation is an effective method to delineate multiple classes of tumors.
However, in the context of the segmentation task, binary class segmentation may present
exclusive benefits compared to multi-class segmentation such as simpler optimization
methodology [18]. For binary class segmentation, the multi-class segmentation problem is
subdivided into three separate models, each dedicated to a specific sub-region for each class.
Then, all sub-regions are segmented utilizing cascaded or basic binary class models [18,19].
Additionally, the 2D models utilizing the binary classification approach might outperform
the 3D models utilizing the multi-class segmentation method [20].

There are two representations of tumor classes: labels (non-overlapping masks) and
sub-regions (overlapping masks). While the labels are classified as enhancing tumor,
necrotic, and edema, the sub-regions being segmented are (i) enhancing tumor (ET),
(ii) tumor core (TC; enhancing tumor and necrosis), and (iii) whole tumor (WT; enhancing
tumor, necrosis, and edema) [21]. Despite this, multi-class segmentation still focuses mostly
on label segmentation instead of region-based techniques. However, previous studies show
that optimization based on sub-regions instead of labels achieves better results [22–25].

Lastly, it is required to note that the generalizability of DL models can be seen as one of
the prominent issues, especially in medical imaging research. For example, a state-of-the-art
model was trained on the BraTS dataset but was validated on a local dataset [26]. The
outcomes revealed a noticeable discrepancy, with the segmentation results of the local
dataset falling short of the accomplishments seen with the BraTS dataset. Another study
elucidated the significant impact of differences in MRI scanners on medical image analysis,
examining datasets obtained from two distinct scanners, each encompassing 50 patients,
and illustrated the potential enhancement in results achieved through the implementation
of varied methodologies [27]. This established that the underlying cause of these scanner
differences can be attributed to variations in MRI acquisition settings, which encompass
factors such as slice thickness, matrix size, echo time, and repetition time, among others.
Given these identified discrepancies and challenges in generalizability, there is an evident
and pressing need for more robust research endeavors aimed at amplifying segmentation
accuracy on local datasets, thereby fostering enhanced universal applicability and reliability
of the models in diverse clinical settings.

This study aims to improve the versatility of DL models for brain tumor segmentation
in different clinical scenarios while also prioritizing time and memory efficiency to address
real-world practical limitations. The aforementioned issues guided our research to propose
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a novel strategy called RFS+, which represents a pioneering approach distinct from the
region-focused selection (RFS) [12]. RFS covers both tumor regions and labels as input
masks with only Z-score normalization for only TC/GTV. This strategy includes multi-
class, multi-label, and binary class segmentation approaches rather than choosing one over
another. The utilization of RFS+ allows to train a U-net [28] model on the BraTS training
dataset to handle the generalizability of DL models by acquiring better segmentation results
over the results of a state-of-the-art model [29] on our local dataset.

RFS+ proposes three types of approaches for image segmentation, i.e., binary class,
multi-class, and multi-label. It utilizes combinations of models with different normalization
techniques [30] and picks the best three models on the training dataset for each region
(ET, TC, and WT) to be used with ensemble learning. Most of the research on brain tumor
segmentation uses the intensity normalization of Z-Score as a pre-processing step [31]. In
this paper, we employed several intensity normalization techniques as well as compared
the segmentation accuracy in terms of the dice similarity coefficient (DSC) score. The
contributions of this study are as follows.

1. This paper, for the first time in the literature, provides a thorough investigation of
different normalization techniques of MRI scans on segmentation tasks for DL models;

2. A novel strategy called RFS+ is introduced as a versatile solution for any DL model,
optimizing brain tumor segmentation through a fusion of various segmentation
approaches, and normalization techniques with ensemble learning, thereby enhancing
accuracy and generalizability across different datasets;

3. For each region, RFS+ method provides the best DSC score by investigating the
effect of normalization techniques on U-net models. It helps in the selection of the
best method for each region when the aim is to use only one model. For example,
transferring the trained models with one approach (such as multi-class) on ET, TC,
and WT to segment GTVs cannot always give the best results. In contrast, RFS+ gives
the best model for specific contours when transferring information from one contour
style (TC) to another (GTV) [12];

4. RFS+ offers ensemble learning by using models with the top three DSC scores on
the training dataset from the proposed models. The segmentation outcomes, when
utilizing a 2D U-net model through ensemble learning, outperform those of the state-
of-the-art model, indicating a substantial enhancement in segmentation accuracy
provided by RFS+. Additionally, the introduction of RFS+ led to a DSC enhancement
up to 1% when compared to its predecessor;

5. A state-of-the-art model, with its original Docker image that triumphed in the BraTS
2021 challenge, was evaluated using a local dataset, addressing a notable gap as
most models, trained on the BraTS training dataset, have predominantly been tested
on the BraTS validation and test datasets, leaving the exploration on local datasets
largely untouched. This study seeks to illuminate the generalizability of DL models by
showcasing the segmentation results of a state-of-the-art DL model on local datasets,
serving as a pivotal guide for future research and applications in this domain.

2. Related Work

The deployment of DL in medical imaging is increasingly prevalent. In the BraTS
challenge, most of the applications are based on DL where the best-performing model is
based on CNNs (convolutional neural networks) [8]. Encoder and decoder paths have a key
role in the segmentation of brain tumors which resulted in first place in the BraTS 2018 with
an asymmetric encoder–decoder architecture [23]. Winners of the following three years
performed their models based on U-net architecture which utilizes the encoder–decoder
path. In 2019, a two-stage cascaded U-net model was used which took the first rank on
the BraTS leaderboard [24] whilst in the following year, 2020, the winner used only a
3D U-net without any major modification (called nnU-net which is a framework having
self-configuration). In 2021, the winning model took first place with the same nnU-net
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but a larger U-net architecture, even though it used different methods to achieve the best
results [29].

Magadza et al. categorized CNN architectures into four subgroups which are single
pathway, dual pathway, cascaded architectures, and U-net [31]. An example of the single
pathway which is a simple network with small kernels in the layers using a single path
is performed by Pereira et al. [10]. On the other hand, a dual pathway is a method using
two different paths to collect information from the global context (the location in the brain)
and local information (visual details) in the same architecture [32]. Although cascaded
architecture has several distinct types, the most noticeable type is the input cascade. The
output of one CNN is given as an input to another CNN [33]. The reason for this approach
is to provide another image channel for the second CNN. Another approach for cascaded
architecture is hierarchical segmentation which breaks the multi-class segmentation prob-
lem into the multi-stage binary segmentation problem. The importance of this architecture
is utilizing the presence of tumor sub-regions and this application provides the mitigation
of the class imbalance problem. Initially, WT undergoes segmentation, followed by pro-
viding the bounding box of the segmentation to the subsequent stage. Later, the second
stage performs the segmentation of TC, with the last stage of the architecture dedicated to
segmenting ET. The results show that the training and inference time increased. However, a
successful application of binary segmentation on cascaded networks is performed by Wang
et al. [34]. Additionally, a model using a binary segmentation approach which provides
an advantage of memory efficiency achieves remarkable results [20]. According to the
two winners of 2020 [25] and 2021 [29] BraTS challenges, models based on U-net [28] have
a successful architecture that yields promising results. These models used a multi-label
approach (overlapping classes instead of individual classes). There are three different
approaches for using sub-tumors, namely, multi-class (non-overlapping masks), multi-label
(overlapping masks), and binary classes (individual classes). The different masks for each
approach can be seen in Section 3.3.1.

Other feature extraction-based methods or transformer-based DL models are not
widely utilized in clinical applications [26,35] or do not produce the top performance on
the last three-year BraTS challenge [25,29,36]. Although many U-net variants are available,
our research provides extensive analysis of the impact of ensemble learning for baseline
variants. In terms of architectural distinctions, DeepMedic (v0.8.4) [6] employs a multi-
scale 3D convolutional neural network (CNN) framework, whereas the RFS+ strategy
adopts a divergent structural methodology, a factor that could significantly influence their
respective performances in brain tumor segmentation. Concerning the trade-off between
complexity and efficiency, the cascade U-net [24] employs a cascading mechanism to
enhance segmentation accuracy, whereas RFS+ prioritizes resource efficiency, an aspect that
may be pivotal for its practical implementation in clinical settings. Additionally, the RFS+
approach is crafted to exhibit adaptability across various clinical scenarios, a characteristic
that appears less emphasized in the cascade U-net. In the realm of learning efficiency, the
RFS+ model potentially enhances this aspect through its refined optimization techniques, in
contrast to the deep supervision mechanism employed by 3D deeply supervised networks
(3D-DSN) [37]. Furthermore, the capability of RFS+ to adjust effectively to diverse MRI
modalities and clinical contexts may offer it a distinct advantage over 3D-DSN, especially
in heterogeneous healthcare settings.

In this research, we utilized 2D, 2.5D [38], 3D U-net, and nnU-net [25] models. The
DL model inclusion criteria was based on the winners’ model (nnU-net which is based
on U-net) of the last three-year BraTS challenge [25,29,36] with validated superior clinical
results of U-net based models (including nnU-net) over DeepMedic (v0.8.4) [35]. The
RFS [12] only makes use of the models with multi-class, multi-label, and binary class
segmentation approaches for only TC/GTV. The proposed RFS+ strategy expands the RFS
with the combination of different normalization techniques for each region.
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3. Method

This section explains the details of the proposed architectures, pre-processing steps,
and hyperparameters used in the models. Additionally, further information is given about
two datasets that are utilized in this paper: the BraTS 2021 dataset (training and validation)
and our local dataset (STORM_GLIO).

3.1. The Proposed Strategy: (RFS+)

The methodology depicted in Figure 1A exemplifies region-focused selection (RFS).
This workflow utilizes Z-score normalization exclusively, in conjunction with three specific
segmentation approaches customized for TC/GTV. The segmentation outputs from these
three models are unified, encompassing overlapping areas into a unified entity. On the other
hand, Figure 1B showcases ‘Region-Focused Selection Plus’ (RFS+), a versatile workflow
designed for use with any DL model for brain tumor segmentation. RFS+ can target any
region, be it ET, TC, or WT. For each region, additional workflows are in Supplementary
Materials (see Figures S1–S3 in the Supplementary Materials).
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Figure 1. (A) RFS strategy and (B) RFS+ strategy on GTV segmentation. Figure 1. (A) RFS strategy and (B) RFS+ strategy on GTV segmentation.

The distinction from RFS lies in the utilization of ensemble learning, incorporating
various normalization techniques that can be customized for specific regions. This strategy
consists of two main components. Firstly, various normalization techniques are applied dur-
ing the pre-processing of MRI scans. Secondly, three distinct segmentation approaches are
employed. When using the combinations of segmentation approaches and normalization
techniques (a normalization technique such as Z-score + a segmentation approach such as
multi-class), the segmentation target should be selected. We showed the transferability of a
trained model on the TC contour to the GTV contour [12]. The top three models for TC/GTV
on the training dataset (15% unseen dataset), which are Z-score/multi-class, Z-score/binary
class, and Nyul/binary class according to DSC scores, are given to ensemble learning. A
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comprehensive depiction of each segmentation approach, along with their respective inputs
and RFS+ strategy, is presented in Figure 2. The figures primarily illustrate the TC/GTV,
but comprehensive visualizations for each segmentation, in larger dimensions, can be
found in Supplementary Material (see Figures S4–S6 in the Supplementary Materials).
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Figure 2. (A) Multi-class segmentation, (B) multi-label segmentation, (C) binary class segmentation,
and (D) RFS+ for TC/GTV segmentation.

3.2. Normalization of MRI Scans

To mitigate the intensity differences between different MRI scanners, we utilized two
types of normalization techniques. These are: Z-score and piecewise linear histogram
matching (Nyul) which were selected from a larger set as described in Reinhold et al. [30],
based on their better performance when used in DL models (see Section 4.1). Additional
results obtained from other normalization techniques are available in Supplementary
Materials (see Table S1 in Supplementary Materials).
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3.3. Network Architectures
3.3.1. Segmentation Approaches

The segmentation strategy we propose employs three distinct approaches: multi-class
segmentation, multi-label segmentation, and binary class segmentation. In the multi-class
approach, non-overlapping masks were utilized, whereas for both the binary class and
multi-label approaches, overlapping masks were employed, as illustrated in Figure 3.
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We used three types of U-net architectures: 2D, 2.5D, and 3D U-net. The 2D U-net
architecture is shown in Figure 4 whilst the 3D U-net architecture is the same architecture
proposed by Cicek et al. [39].

The 2.5D U-net architecture [38] employs the same 2D U-net model but enhances it to
accommodate multi-channel inputs. Specifically, it utilizes a 3-channel method, where the
current image, the previous image, and the following image in the volume are concatenated.
This allows for the utilization of all MRI modalities as input. The application of the 3-
channel method for each modality is depicted in Figure 5.

The proposed 2D U-net model has three versions. The only difference in the archi-
tecture lies in the last layer, where sigmoid is applied for binary class and multi-label
segmentation, while softmax is utilized for multi-class segmentation. The activation func-
tion selection is related to the input mask.

The input image dimensions for the 2D model are 240 × 240 × 4, whereas for the 2.5D
model, they are 240 × 240 × 12. These input images have a resolution of 240 × 240 pixels
and include the concatenation of four registered modalities (T1, T1ce, T2, and FLAIR) for
the third dimension. In the encoder path, there are four blocks, each utilizing convolutional
layers and incorporating batch normalization for feature map normalization, followed by a
ReLU activation layer. After the application of two convolutional layers, a max-pooling
layer is employed. The initial feature maps start with 64 channels and are doubled after
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each max-pooling operation. Furthermore, the bottleneck kernel consists of 1024 channels.
In the decoder path, a convolutional transpose layer is applied following two convolutional
layers. Skip connections connect the encoder and decoder paths. Finally, the output layer
produces a segmentation with a size of 240 × 240 pixels.
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In the multi-class approach, as illustrated in Figure 2A, mutually exclusive classes (see
Figure 3A) are considered. The architecture for this approach incorporates the softmax
function in the last layer to handle non-overlapping masks. The masks for both the multi-
label (see Figure 2B) and binary class (see Figure 2C) approaches, which are characterized
by their non-mutually exclusive nature, are presented in Figure 3B. In the architectural
design of these approaches, the sigmoid function is used in the last layer to accommodate
overlapping masks. It is worth noting that the proposed 3D U-net model and nnU-net
(DynU-net of utilizing MONAI [40]) also employ these three approaches, all with the
same parameters, including the last layers and channels. The input patch size is set to
192 × 192 × 128 for each version. The patch size in the 3D models was increased from
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128 × 128 × 128 to 192× 192× 128, shifting the focus towards capturing global information
instead of local information and aiming for an optimized, time-efficient achievement of the
optimum dice score. The increase in patch size allows our models to process larger data
volumes per iteration, reducing the number of iterations needed for the entire dataset and
streamlining the training process by enabling faster convergence. However, it is clear that
this trade-off might result in poor generalizability and overfitting. The original patch size
of nnU-net required more training time, which did not align with the research’s efficiency
goals. This approach against time efficiency was also adopted by the extended nnU-net
model, and we have provided a comparison of these methods in the Section 4.

3.3.2. Loss Function

The loss function employed in all the previously mentioned U-net architectures is
chosen as follows: the binary cross-entropy for multi-label/binary class segmentations
and multi-class cross-entropy for multi-class segmentation. The selection of these two
loss functions is based on the nature of the input masks, distinguishing between mutually
exclusive and non-mutually exclusive classes (see Figure 3).

The choice of activation function is closely linked to the type of input mask used. For
multi-class segmentation with non-overlapping input masks (as illustrated in Figure 3A),
the softmax function is employed for each class. This approach ensures that the combined
probabilities for all classes sum to 1, highlighting their interdependence. Consequently,
if the probability of one class increases, it necessitates a corresponding decrease in the
probabilities of the other classes. Based on this consideration we implemented a multi-class
cross-entropy as loss function. Such function measures the similarity between the predicted
probabilities and the true labels for each class interdependently. For a given pixel and N
classes, the multi-class cross-entropy loss is;

−∑N
c=1yo,c log(po,c) (1)

where, yo,c represents a binary indicator (0 or 1) if class label c is the correct classification
for pixel o and po,c is the predicted probability that pixel o belongs to class c. For an entire
image, the total loss is the average over all pixels. After the calculation of the loss function,
the multi-class provides a detailed analysis with class imbalance issues, more suitable for
complex tasks such as the provided input mask including ET, TC, and WT.

In binary class segmentation, each input mask is processed individually using the
sigmoid function. On the other hand, for multi-label due to utilizing overlapping input
masks (c.f. Figure 3B), the sigmoid function is used. For the sigmoid function, each class
prediction is independent of others; you obtain separate probabilities for each class. It
can be applied to each label in a multi-label problem, treating each label as a separate
binary classification. Then the average of each loss is used. For a single pixel, the binary
cross-entropy loss is;

−[y log(p) + (1− y) log(1− p)](y) log(1− p)] (2)

where, y represents the true label for the pixel (1 if it belongs to the object, 0 if it belongs to
the background) and p is the predicted probability that the pixel belongs to the object. For
an entire image, the total loss is the average of the losses for all pixels. This is for only the
binary class segmentation approach. After the loss function calculation, the binary class
provides computationally friendly simple analysis like the provided input mask having
only one region for each training. For the multi-label segmentation approach, additionally,
the calculated losses for each region are averaged to obtain a total loss. The multi-label seg-
mentation approach provides complex and flexible analysis compared to others. However,
this increases complexity, computational resources, and label correlation challenges.

Each segmentation approach has its inherent advantages and drawbacks. The conven-
tional methods typically employ the same segmentation approach to delineate all tumor
regions. Our solution diverges from this, by advocating for a region-focused ensemble
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learning model. This model assimilates the most efficacious segmentation approaches, each
complemented by a distinct normalization technique, thereby leveraging the strengths of
each to achieve superior performance on the segmentation of the targeted tumor region.

3.4. Dataset

In this paper, two different datasets are utilized for the purposes of training and
testing the proposed approaches. The first one is the BraTS dataset which defines the
retrospective collection of brain tumor MRI scans from multiple institutions [21,41,42]. In
2021, the BraTS contained 1251 training, 219 validation, and 570 testing data. The modalities
in the BraTS are T1, T1ce, T2, and FLAIR. The delineations are performed manually by
neuro-radiologists.

In the BraTS competition, there are 3 different sub-tumors for GBM shown in Figure 2,
namely, necrotic tumor (NCR, label 1), peritumoral edematous/invaded tissue (ED, label 2),
and enhancing tumor (ET, label 4). There are 3 different sub-regions which overlap with
each other according to the BraTS competition. These are ET (label 4), TC (label 1 + label 4),
and WT (label 1+ label 2+ label 4). ET shows hyper-intensity in post-contrast T1-weighted
(T1Gd) compared to T1. TC is considered for surgical excision and this region can be
detected thanks to being hypo-intense in T1Gd [21]. WT shows abnormal hyper-intensity
in the T2-flair sequence. For each patient’s MRI scans on the BraTS dataset, skull-stripping
and co-registration for the same anatomical template are performed. Each modality has an
isotropic resolution of 1 mm3 and a matrix size of 240 × 240 × 155.

The second dataset utilized in this study is the local dataset (STORM_GLIO), collected
between April 2014 and April 2018 in Wales. This dataset comprises 108 glioblastoma
patients, with only 53 of them having all four modalities similar to the BraTS dataset.
Notably, the MRI scan format for STORM_GLIO is DICOM, differing from the format
of the BraTS dataset. The resolution and matrix size of each patient is different. Addi-
tionally, these specifications can vary inter-modalities. For further details, please refer to
Supplementary Materials.

3.5. Data Pre-Processing

The 3D MRI of the BraTS 2021 dataset has the dimension of 240 × 240 × 155. Before
the collection of the slices (240 × 240) or patches (192 × 192 × 128), the training dataset
samples are split into 70% training, 15% validation, and 15% testing shown in Figure 6. The
training dataset is 10% less than the state-of-the-art model [29]. Following the train/test
splitting, 155 slices are collected for each patient of the 2D U-net models. The slice collection
is performed with a 3-channel method for 2.5D U-net. All slices are selected with the 3-
channel method (the current (N), the previous (N − 1), and the following slices (N + 1)) for
each modality. The first and the last slices of a patient (when there was no slice before or
after the slice) are collected with the addition of a synthetic slice of fully black pixels. In 3D
U-net, a patch of 192 × 192 × 128 is collected for each patient.

Cancers 2023, 15, x FOR PEER REVIEW 6 of 8 
 

 

 

 
Figure 6. The use of the BraTS training and validation datasets. 

  

Figure 6. The use of the BraTS training and validation datasets.

Since STORM_GLIO is a clinical dataset, it included scans of different dimensions
and a patient co-ordinate system that needs to be registered before use. Original MRI
scans of the BraTS dataset are registered based on T1ce and SRI24 Atlas [43] (aligning
different modalities in the same co-ordinate), skull stripped, and segmented to sub-tumor
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classes. To match our local dataset (STORM_GLIO) to the BraTS format, STORM_GLIO is
applied to the BraTS pipeline with two adjustments. First, CaPTk [44,45] is used to make
STORM_GLIO dataset match the BraTS dataset specifications. Instead of using CaPTk
for skull stripping, HD-BET [46], which outperformed up-to-date publicly available brain
extraction algorithms, is utilized. Second, the SRI-24 atlas registration is not applied to
STORM_GLIO due to the deformation of ground truth. Because of the adjustments of
the pre-processing steps, we managed to convert output segmentations from DL mod-
els to radiation therapy (RT) struct DICOM format or RTSTRUCT to be used in clinical
applications. Additionally, MRI acquisition parameters of STORM_GLIO were added in
Supplementary Materials.

3.6. The Details of the Implementation

For the 2D and 2.5D U-net models, the epoch number and batch size are selected
as 100 and 16, respectively. Adam optimization [47] is performed with a learning rate
of 0.0001. The augmentation process included rotating, horizontal flipping, and vertical
flipping. The model is trained on an NVIDIA RTX 3070 GPU with 8 GB RAM, i7 11700
cpu, 32 GB RAM. For the 3D U-net and nnU-net models, the epoch number is 150, and the
batch size is 4. Adam optimization is performed with a learning rate of 0.0001. The model
is trained on an NVIDIA RTX 3090 GPU with 24 GB RAM, Intel i7 11700 cpu, 32 GB RAM.
The Python v3.9.13, Pytorch framework (v1.10) on a Linux OS environment are utilized for
the experiments. The Docker image for extended nnU-net [29], which secured first place in
the BraTS 2021 challenge, has been obtained and is included for comparative purposes in
this research. This Docker image encompasses 10 distinct models along with additional
post-processing steps. All 3D models necessitate the resampling of our local datasets to
achieve an isotropic resolution of 1 mm3 and a matrix size of 240 × 240 × 155 for optimal
segmentation results. Following the collection of outputs, it is essential to resample the
segmentations back to their original resolution and matrix size for the sake of comparison
with the ground truth.

To evaluate the results from the segmentation, the DSC score is utilized. The overlap-
ping area between the ground truth and the prediction is compared with the total area of
the ground truth and the prediction [48]. This calculation defines the DSC score. The score
is between zero and one. A score of 1.0 describes the best-matched segmentation. Ytrue
is for the ground truth and Ypred is for the prediction. The following equation shows the
calculation of the DSC score. The DSC score is equal to one when neither the mask nor the
predicted segmentations contain a pixel for tumor delineation [25].

All metrics are calculated by using a python library: Segmentationmetrics v1.0.1. For
the targeted region, DSC, sensitivity, specificity, and 95% Hausdorff distance (HD95) are
computed as follows:

DSC =
2
∣∣∣Ytrue,pos ∩ Ypred,pos

∣∣∣∣∣Ytrue,pos
∣∣+ ∣∣∣Ypred,pos

∣∣∣ (3)

Sensitivity =

∣∣∣Ytrue,pos ∩ Ypred,pos

∣∣∣∣∣Ytrue,pos
∣∣ (4)

Speci f icity =

∣∣∣Ytrue,neg ∩ Ypred,neg

∣∣∣∣∣Ytrue,neg
∣∣ (5)

HD95 = 95th percentile o f
{

maxa∈Ytrue,pos minb∈Ypred,pos
‖a− b‖2, maxb∈Ypred,pos

mina∈Ytrue,pos ‖a− b‖2

}
(6)

4. Results and Discussion

We evaluated the proposed method through three principal test scenarios. Initially, to
identify the top-performing architecture among the models, the BraTS 2021 dataset was
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employed. A comparative analysis of each model was conducted to facilitate the model
selection phase for the RFS+ strategy. Subsequently, the BraTS validation dataset was
utilized to contrast the proposed U-net with the extended nnU-net (the winning model of
BraTS 2021). Ultimately, in the third experimental scenario, we executed the RFS+ strategy
with the highest-performing architectures against both the extended nnU-net and the
models devoid of the RFS+ strategy.

4.1. Model Selection via the BraTS 2021 Dataset

This section presents experiments, evaluations, and comparisons of the proposed DL
models with different approaches using several intensity normalization techniques.

The effectiveness of the proposed models was tested with the BraTS 2021 and STORM_GLIO
datasets and compared to each other in order to pursue a model selection step. The results of the
aforementioned analysis are presented in Table 1.

Table 1. The comparison of DSC Scores for the 2D, 2.5D, 3D U-NET, and nnU-net with Z-score
normalization and multi-class approach on the BraTS 2021 training dataset.

Model ET TC WT

nnU-net 83.96 88.34 92.53

3D U-net 83.21 87.55 91.67

2.5D U-net 84.34 88.55 91.64

2D U-net 84.99 89.71 91.65

On STORM_GLIO, Table 2 shows the segmentation results of the models trained on
the BraTS dataset with a multi-class segmentation approach via Z-score normalization.

Table 2. The comparison of the models with multi-class approach on STORM_GLIO.

Models GTV

nnU-net 77.45

3D U-net 75.74

2.5D U-net 70.35

2D U-net 78.43

According to Tables 1 and 2, the highest DSC scores for TC and GTV are both obtained
by the 2D U-net model. The 2D model uses only one slice which might result in higher DSC
scores. The additional slices for 2.5D and 3D might decrease the segmentation accuracy
due to different slice thicknesses and resolutions. Table 3 compares the models of 2D U-net
with different approaches and normalization techniques quantitively with the DSC score
for the BraTS 2021 training dataset.

Investigating the results presented in Table 3 with the focused region of TC, we
concluded that the three high-performing models based on DSC score are Nyul-binary class
(89.42%), Z-score-multi-class (89.71%) and Z-score-binary class (89.48%). In the proposed
method, the three models are then fed to a weighted average ensemble learning stage.
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Table 3. The comparison of DSC scores for binary class, multi-label, and multi-class approaches of
2D U-net with several intensity normalization techniques on the BraTS 2021 training dataset.

Intensity
Norm. Tech

Segmentation
Approach ET TC WT

Nyul

multi-class 79.44 79.53 88.98

multi-label 83.52 88.78 92.05

binary class 84.21 89.42 90.30

Z-score

multi-class 84.99 89.71 91.65

multi-label 82.29 87.27 92.24

binary class 85.19 89.48 92.18

4.2. Benchmarking RFS+ Method: Comparative Study to the BraTS 2021 Winner Model

On the BraTS 2021 validation dataset, the evaluation in this section will compare the
performance of the extended nnU-net and the proposed U-net variants and nnU-net models.
Intensity normalization is the Z-score for the proposed U-net variants and nnU-net model.
Table 4 shows the comparison of DL models for the BraTS validation dataset.

Table 4. The comparison of the BraTS validation dataset based on online evaluation.

Models DSC(ET) (%) DSC(TC) (%) DSC(WT) (%)

Extended nnU-net [27] 84.51 87.81 92.75

nnU-net 78.65 85.96 91.67

3D U-net 78.89 81.05 91.16

2.5D U-net 78.80 84.23 90.90

2D U-net 77.45 82.14 90.82

As can be seen in Table 4, the extended nnU-net [29] outperformed the proposed mod-
els for each region. This model has been developed on the U-net model with modifications
(nnU-net) based on the BraTS training dataset which has a fixed size and resolution. The
matrix size and resolution of the BraTS validation dataset are fixed, as well. Thus, the
extended nnU-net easily achieved better DSC scores over the proposed U-net variants and
the nnU-net model for each sub-region. The ground truth for the BraTS validation dataset
is not shared publicly. To obtain DSC scores, all evaluations need to be tested online. The
comparisons are shown in DSC scores with segmentation predictions for U-NET variants,
the nnU-net, and the extended nnU-net model.

4.3. Ablation Study

To improve the performance of the ensemble learning, several combinations of seg-
mentation approaches and normalization techniques were employed. To demonstrate the
importance of each segmentation approach, an ablation study was conducted. The U-net
model employing the multi-class segmentation approach served as the baseline (base U-net)
due to the nature of the training dataset masks (non-overlapping).

Table 5 presents the performance of different U-net models, incorporating varying
segmentation approaches and normalization techniques as part of our proposed RFS+
strategy on the STORM_GLIO dataset. The base U-net rows in Table 5 provide a benchmark
for performance comparison using the Dice score. Each column corresponds to a unique
combination of segmentation approach and normalization technique, with the final column
displaying Dice scores for GTV segmentation. The table reveals that base U-net achieves
the highest Dice score among U-net models using Z-score normalization. Switching to Nyul
normalization, the binary class model outperforms others. Notably, while no single model
consistently delivers the highest Dice score, each combination of the segmentation approach
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and normalization technique uniquely addresses different aspects of the target area (see
Figure 7). The RFS method, employing a union approach that combines segmentations
from all models into one contour, showed a modest increase in the Dice score from 78.43%
to 78.51% [38]. The RFS+ further incorporates a weighted ensemble learning method, with
weights calculated based on the BraTS training dataset results. This approach, particularly
when applying the models using Z-score normalization in ensemble learning, led to a
slight improvement in Dice score to 78.69%. Upon integrating Nyul normalization within
RFS+, we selected the top three models based on their Dice scores from the BraTS training
data. The proposed RFS+ strategy boosted the Dice score on STORM_GLIO from 78.43%
to 79.22%, marking the highest achievement in GTV segmentation. This improvement
underscores the effectiveness of diversifying the base U-net model with various normal-
ization and segmentation combinations, significantly enhancing performance through
ensemble learning.

Table 5. The ablation study on U-net.

Z-Score
Normalization

Nyul
Normalization

Combined
Method

GTV Dice
Score (%)

Multi-Class Multi-Label Binary Multi-Class Multi-Label Binary Union Ensemble

Base U-net (Multi-class) Yes 78.43

Multi-label Yes 77.91

Binary Yes 78.22

Base U-net (Multi-class) Yes 77.61

Multi-label Yes 78.20

Binary Yes 78.91

RFS Yes Yes Yes Yes 78.51

RFS+
(only Z-score

normaliz-ation)
Yes Yes Yes Yes 78.69

Proposed RFS+ Yes Yes Yes Yes 79.22
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4.4. Validating RFS+ on Local Dataset

This section presents the usage of the proposed strategy—RFS+—for the purposes of
GTV segmentation for the local dataset. We tested the best-performing U-net and nnU-net
models with and without RFS+ along with the extended nnU-net model. Additionally, the
predecessor method (the RFS) [12] for 2D U-net is compared. DSC scores, HD95, sensitivity
and specificity for GTV segmentation of each model are given in Table 6.



Cancers 2023, 15, 5620 16 of 21

Table 6. The comparison of base models, the proposed models, and the state-of-the-art model on the
GTV label.

Models DSC ↑ HD95 ↓ Sensitivity ↑ Specificity ↑
extended nnU-net [27] 79.09 7.8 74.07 99.97

nnU-net (base nnU-net) 77.83 10.72 74.65 99.95

nnU-net with RFS+ 78.30 8.2 73.59 99.97

2D U-net (base U-net) 78.43 8.8 77.24 99.94

2D U-net with RFS [12] 78.51 11.33 78.48 99.93

2D U-net with RFS+ 79.22 8.1 76.93 99.95

Upon scrutinizing the outcomes detailed in Table 6, it can be concluded that the
2D U-net model, integrated with RFS+, surpassed the extended nnU-net model. This is
achieved by adopting the combination of the top three high-performing models identified
in the preceding section. Notably, the 2D U-net with RFS+ covers all three approaches
of multi-class, multi-label, and binary class along with incorporating both Nyul and Z-
score normalization techniques. In contrast, the extended nnU-net model only utilizes
the multi-label approach and Z-score normalization technique. Therefore, our result with
the ensemble learning within RFS+ achieves a higher DSC score on GTV segmentation
and provides a considerable generalization capability compared to the reference models.
Furthermore, the implementation of RFS+ has led to an increase in DSC of up to 1%
compared to the RFS. Due to the demonstration of accurate delineation of the tumor
margins, lower HD95 of segmentation is important in the planning of both surgical and
radiotherapy treatments. The comparative analysis between the proposed RFS+ model and
the current state-of-the-art model in terms of HD95 reveals a small difference (8.1 vs. 7.8).
This indicates that the RFS+ can yield adequate results for clinical applications while taking
efficiency into consideration. In clinical settings, when including computer-aided decision-
making processes for diagnoses and evaluation purposes, a higher sensitivity might be
required for comprehensive coverage and assessment of all tumor tissues. The RFS+ exhibits
a notable enhancement in sensitivity compared to the state-of-the-art model, elevating it
from 74.07 to 76.93. Accurately distinguishing healthy tissue from tumor tissue is vital,
especially during radiotherapy and surgical procedures. Based on this, high sensitivity and
specificity is important during treatment planning and response assessments to correctly
identify tumor tissue and differentiate this from healthy brain tissue. The RFS+ model
exhibits considerable promise in safeguarding healthy tissue, emphasizing efficiency in
both time and memory consumption when compared to the leading model (with specificity
99.97 vs. 99.95).

Figure 7 demonstrates the prediction of 2D U-net models with and without RFS+.
Each model without RFS+ segmented the tumorous tissue differently. No single approach
exhibited unequivocal superiority over the others; rather, each approach demonstrated
unique advantages depending on the specific task requirements, such as TC/GTV seg-
mentation. RFS+ yields improved segmentation by encompassing the benefits of each
individual approach comprehensively.

The comparative illustration between the 2D U-net model with RFS+ and the extended
nnU-net model is depicted in Figure 8. It is evident from the figure that the proposed
model accurately segmented a larger amount of tumor tissue compared to the winner
model. The resolution and matrix size of the local dataset differ for each patient and can
even vary between modalities for the same patient, presenting additional challenges to
the segmentation task. Therefore, the model incorporating RFS+ demonstrates superior
generalizability over the winning model on the local dataset, proving its resilience and
adaptability to diverse and complex datasets.
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The RFS+ strategy marks a significant innovation in brain tumor segmentation, no-
tably augmenting the adaptability of DL models within clinical environments. Compared
to the current state-of-the-art model, the RFS+ on 2D U-net models exhibits remarkable
efficiency, necessitating 10% less training dataset, 67% less memory, and reducing train-
ing time by 92% (see Tables S2–S4 in Supplementary Materials), thereby presenting a
substantial advancement in computational resource management. In the analysis of a
local dataset, the RFS+ achieved a Dice score of 79.22%, a metric that stands out in the
context of brain tumor segmentation tasks and underscores the model’s accuracy. The RFS+
incorporates an ensemble learning approach, combining various models and employing
diverse normalization techniques, which collectively contribute to the enhancement of
segmentation accuracy.

The RFS+ appears to address dataset variability and generalization more explicitly
than DeepMedic (v0.8.4), which is crucial for real-world clinical applicability. The multi-
scale approach of DeepMedic (v0.8.4), which captures both local and global contextual
details, presents a potential area of limitation for the RFS+. The refined, cascading structure
of cascade U-net is tailored for precise tumor boundary delineation, which could potentially
yield more accurate segmentations compared to those by the RFS+. Cascade U-net’s layered
methodology may exhibit superior performance in managing intricate tumor structures. 3D-
DSN employs a deep supervision mechanism, ensuring comprehensive feature extraction
at multiple levels, potentially resulting in more detailed segmentations than those achieved
by the RFS+ approach. The capacity of 3D-DSN to extract learning from its intermediate
layers might endow it with an edge in identifying subtle features, a facet that could pose a
challenge for RFS+, depending on its learning methodology. The nnU-net’s proven ability
to generalize across various medical segmentation tasks stands in contrast to RFS+, which
has yet to demonstrate similar breadth in generalizability across diverse datasets and
segmentation challenges. Known for its automated configuration, nnU-net can adjust to
different tasks and datasets: this is a level of adaptability and automation that RFS+ has
not yet developed. The nnU-net has undergone rigorous validation and benchmarking on
multiple datasets, including the well-regarded medical segmentation decathlon, whereas
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RFS+ is yet to be as comprehensively validated, particularly on diverse and complex
datasets. Demonstrating robustness under a variety of imaging conditions and with
different medical image types, nnU-net’s versatility might present a benchmark for RFS+,
whose robustness in such a wide array of conditions necessitates further investigation.
With a design conducive to scaling effectively across different tasks and dataset sizes,
nnU-net’s flexibility might highlight potential scaling or adaptability challenges for RFS+ in
handling exceptionally large or complex datasets. Although the RFS+ strategy demonstrates
promising results when compared with the leading model, the primary benchmark used
for comparison is the nnU-net. Future work should involve more comprehensive analyses
involving a wider array of state-of-the-art models. The performance on standard datasets
like BraTS is well established, but its effectiveness on a wider range of datasets might
need more exploration. The varying clinical environments present a challenge for the
generalizability of DL models, including those using RFS+. Our study focused on the
GTV/TC label which include both ET and NCR labels from our local dataset. Finally, the
effect of intensity normalization on outcomes differs, based on the specific local dataset
and this is an area that necessitates additional research.

5. Conclusions

This study highlights the benefits of adopting the RFS+ strategy for the purposes
of brain tumor segmentation in MR images. Although the extended nnU-net resulted
in the best DSC score on the BraTS validation dataset, the performance of the proposed
2D U-net model with RFS+ strategy on GTV delineation had the best DSC score in the
local dataset. The main reason for this is that the local dataset has no fixed resolution
and matrix size for each patient, unlike the BraTS dataset. It is necessary to determine
which normalization technique will be most effective for the targeted sub-tumor which is
TC/GTV in this research. When using U-net with a multi-class approach on the BraTS 2021
validation dataset, the best DSC scores among the proposed models are 77.45%, 82.87%,
and 90.82% for ET, TC, and WT segmentation, respectively. The model incorporating RFS+
yields the best DSC score on our local dataset, achieving 79.22% for GTV segmentation.
Moreover, it is worth noting that the model requires 10% less training dataset, 67% less
memory, and takes 92% less time for training, as detailed in Supplementary Materials (see
Tables S2–S4 in Supplementary Materials).

In conclusion, this study effectively improves segmentation accuracy on the local
dataset with our proposed strategy RFS+, setting the stage for future state-of-the-art models
to similar benefits from the RFS+ strategy for enhanced generalizability in brain tumor
segmentation. The RFS+ model shows encouraging progress, especially in its computational
efficiency and ability to adapt to varied clinical contexts. However, to comprehensively
assess its place in the domain of brain tumor segmentation, it is essential to conduct further
validations and engage in more extensive comparisons with a diverse set of algorithms,
thereby mitigating the risk of potential biases. We are planning to extend the application of
RFS+ to not only time and memory efficiency but also performance improvement in brain
tumor segmentation compared to a wider array of state-of-the-art models, under different
clinical settings. The development of data augmentation methods for clinical applications
is crucial to align training data with real-world data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15235620/s1, Figure S1: RFS+ for ET based on Table 1;
Figure S2: RFS+ for TC based on Table 1; Figure S3: RFS+ for WT based on Table 1; Figure S4:
(A) Multi-class segmentation (B)Multi-label segmentation (C) Binary class segmentation (D) RFS+
for ET.; Figure S5: (A) Multi-class segmentation (B) Multi-label segmentation (C) Binary class seg-
mentation (D) RFS+ for TC; Figure S6: (A) Multi-class segmentation (B)Multi-label segmentation
(C) Binary class segmentation (D) RFS+ for WT; Table S1: The results of RFS+ for ET, TC and WT;
Table S2: The extended nnU-Net requirements; Table S3: The 2D U-Net with RFS+ requirements
(Any region); Table S4: The comparison of the ensemble methods. References [29,30] are cited in the
supplementary materials.

https://www.mdpi.com/article/10.3390/cancers15235620/s1
https://www.mdpi.com/article/10.3390/cancers15235620/s1
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