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Simple Summary: The accurate stratification of head and neck squamous cell carcinoma (HNSCC)
patients based on prognostic differences, using robust biomarkers or signatures, is crucial for guid-
ing clinical interventions. Our study aimed to develop a predictive signature for head and neck
squamous cell carcinoma outcomes based on T-cell receptor-related genes (TCRRGs). Using The
Cancer Genome Atlas HNSCC dataset, GSE41613, and GSE65858, we identified two HNSCC clusters
based on TCRRG expression. These clusters showed differences in overall survival (OS) and immune
infiltration. A robust TCRRG-based prognostic signature comprising MAP2K7, MAPK3, MAPK9,
ORAI1, PSMA1, UBB, and ZAP70 was subsequently constructed and validated across multiple HN-
SCC cohorts. A nomogram model was then constructed for personalized HNSCC treatment guidance.
Functional analyses indicated notable changes in biological functions and pathways between high-
and low-risk groups, with the high-risk group exhibiting a suppressive immune environment. Utiliz-
ing this TCRRG-based signature, we may precisely forecast HNSCC outcomes, offering enhanced
therapeutic strategies.

Abstract: Backgroud: The stratification of head and neck squamous cell carcinoma (HNSCC) patients
based on prognostic differences is critical for therapeutic guidance. This study was designed to
construct a predictive signature derived from T-cell receptor-related genes (TCRRGs) to forecast the
clinical outcomes in HNSCC. Methods: We sourced gene expression profiles from The Cancer Genome
Atlas (TCGA) HNSCC dataset, GSE41613, and GSE65858 datasets. Utilizing consensus clustering
analysis, we identified two distinct HNSCC clusters according to TCRRG expression. A TCRRG-based
signature was subsequently developed and validated across diverse independent HNSCC cohorts.
Moreover, we established a nomogram model based on TCRRGs. We further explored differences
in immune landscapes between high- and low-risk groups. Results: The TCGA HNSCC dataset
was stratified into two clusters, displaying marked variations in both overall survival (OS) and
immune cell infiltration. Furthermore, we developed a robust prognostic signature based on TCRRG
utilizing the TCGA HNSCC train cohort, and its prognostic efficacy was validated in the TCGA
HNSCC test cohort, GSE41613, and GSE65858. Importantly, the high-risk group was characterized by
a suppressive immune microenvironment, in contrast to the low-risk group. Our study successfully
developed a robust TCRRG-based signature that accurately predicts clinical outcomes in HNSCC,
offering valuable strategies for improved treatments.

Keywords: T-cell receptor-related genes; head and neck squamous cell carcinoma; risk signature;
prognosis prediction; immune infiltration
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1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is a pervasive and aggressive
cancer type originating from the epithelial layers of the oral cavity, larynx, and pharynx [1].
The occurrence of HNSCC is predominantly associated with risk factors such as genetic
susceptibility, infection with human papillomavirus, tobacco smoking, betel nut chewing,
and heavy alcohol consumption [2,3]. At present, HNSCC treatment strategies encompass
surgical intervention, chemotherapy, radiotherapy, targeted therapy, and immunother-
apy [4]. Nonetheless, despite a broad array of therapeutic tools, the 5-year survival rate of
HNSCC patients has demonstrated minimal progress over time [5]. Therefore, elucidating
the molecular mechanisms driving HNSCC malignancy and establishing novel prognos-
tic biomarkers of improved precision is crucial [6–9]. The development of sophisticated
biomarker profiles is fundamental for enhancing clinical outcomes for HNSCC patients, as
it enables the selection of personalized treatments, minimizes the risk of adverse reactions,
and reduces unnecessary healthcare costs.

Tumor immunotherapy has emerged as a promising therapeutic approach for pa-
tients with recurrent or metastatic HNSCC [10]. Immune checkpoint inhibitors (ICIs) have
significantly advanced tumor immunotherapy by interrupting signals that allow cancer
cells to evade immune detection [11]. The most extensively researched ICI therapies tar-
get the programmed cell death 1 receptor (PD-1) and its ligand (PD-L1), which act as
a braking mechanism for the immune system [12]. This approach has been successful
in treating various cancers, including HNSCC, lung cancer, liver cancer, and breast can-
cer [13–15]. Specifically, PD-1/PD-L1 inhibitors have shown significant survival benefits in
HNSCC, enhancing both overall and progression-free survival rates [16]. Employed either
as monotherapy or in combination with other treatments, these therapies have become in-
tegral to clinical practice, demonstrating considerable potential in cancer management [17].
The effectiveness of cancer immunotherapy largely rests on the crucial role of T-cells, which
are essential for identifying and responding to tumor-associated antigens [18]. T-cell recep-
tors (TCRs), an extensive assortment of antigen receptors on T-cell surfaces, are integral
for immune response as they recognize and bind to specific antigens presented by major
histocompatibility complex molecules on antigen-presenting cells [19]. The exceptional
diversity of TCRs originates from a process called V(D)J recombination, which generates a
vast repertoire of TCRs, each with unique antigen-binding capabilities [20]. Thus, precise
and effective TCR targeting of tumor antigens presents a potent therapeutic strategy to
enhance clinical outcomes for HNSCC patients [21]. TCR-related genes (TCRRGs) are those
genes directly or indirectly associated with TCR [22]. For example, cytotoxic T lymphocyte
antigen-4 (CTLA-4) is an immune checkpoint molecule predominantly expressed on T-cells,
and CTLA-4 blockade combined with radiotherapy significantly modulates the TCR reper-
toire of tumor-infiltrating T-cells [23]. Similarly, T-cell activation via TCRs upon antigen
recognition leads to an increase in intracellular calcium concentration, and this process is
mediated by STIM1 and Orai1 [24].

In the present study, we established a TCRRG-based risk prediction model employing
The Cancer Genome Atlas (TCGA) HNSCC train cohort, with its robustness successfully
corroborated in the TCGA HNSCC test cohort, GSE41613, and GSE65858. Additionally, a
predictive nomogram model using the TCRRG risk signature was developed to accurately
forecast the OS of HNSCC patients. Notably, our study unveiled a substantial rise in
immune cell infiltration and improved immune functions within the low-risk group in
contrast to the high-risk group. These observations shed light on the potential mechanisms
contributing to the favorable clinical outcomes identified in the low-risk group.
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2. Materials and Methods
2.1. Public Data Source

RNA-seq transcriptome data and associated clinicopathological information for HN-
SCC patients were acquired from the TCGA database. The clinical samples originated from
diverse head and neck regions, including the oral cavity, tongue, floor of the mouth, tonsil,
gum, palate, lip, larynx, oropharynx, pharynx, and hypopharynx. The study included a
total of 497 HNSCC cases. Additionally, microarray data and relevant clinical information
were obtained from the Gene Expression Omnibus databases using the accession num-
bers GSE41613 and GSE65858. The microarray data for GSE41613 (n = 97) and GSE65858
(n = 270) were based on the GPL570 (Affymetrix Human Genome U133 Plus 2.0 Array) and
the GPL10558 (Illumina HumanHT-12 V4.0 expression beadchip, Illumina Inc., San Diego,
CA, USA), respectively. All patients in the TCGA HNSCC cohort underwent surgery, and
a subset of these patients also received postoperative radiotherapy. Within the GSE41613
cohort, 43 patients were treated with a multi-modality, whereas 53 patients underwent a
combination of treatment modalities. In the GSE65858 cohort, 78 patients received a single
therapeutic approach, 189 patients were treated with multiple modalities, and 3 patients
received palliative care, though specific treatment details were not provided. The TCR-
related genes were obtained from the ImmPort Portal (https://www.immport.org/home,
accessed on 8 December 2022) and GSEA databases (GSEA software version 4.3.2), includ-
ing REACTOME_TCR_SIGNALING, BIOCARTA_TCR_PATHWAY, PID_TCR_PATHWAY,
and KEGG_T_CELL_RECEPTOR_SIGNALING_PATHAWY.

2.2. TCRRG Risk Signature: Construction and Validation

The TCGA HNSCC cohort was randomly split into a train cohort and a test cohort.
Univariate Cox analysis was employed to examine the correlation between TCRRGs and
OS in the TCGA HNSCC train cohort. The most optimal TCRRGs were selected using the
least absolute shrinkage and selection operator (LASSO) regression method. A unique
TCRRG-based prognostic signature was derived via multivariate Cox proportional hazards
regression analysis. A risk score for each patient was computed as the sum of each gene’s
score, derived by multiplying the expression of each gene by its coefficient. The TCGA
HNSCC train cohort was divided into high-risk and low-risk groups based on the median
value of risk scores. The Kaplan–Meier method and log-rank test were utilized to calculate
the difference in OS between these groups. Moreover, a comparison of OS, stratified by
various clinicopathological parameters between these groups, was conducted. A receiver
operating characteristic (ROC) curve was generated to assess the prediction accuracy of
the prognostic model. The utility of the risk score as an independent prognostic factor was
analyzed using univariate and multivariate Cox regression analyses. Finally, the robustness
of the TCRRG-based prognostic signature was validated in independent HNSCC cohorts,
which included the HNSCC test cohort, GSE41613, and GSE65858.

2.3. Nomogram Model Construction

A nomogram model, incorporating risk scores and clinicopathological parameters
such as age, gender, tumor grade, and TNM stage, was established. Calibration curves
were employed to assess the accuracy of predicting the 1-year, 2-year, and 3-year OS rates
in HNSCC.

https://www.immport.org/home
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2.4. Pathway and Function Enrichment Analysis

A volcano plot was utilized to depict differentially expressed genes (DEGs) between
high- and low-risk groups. Following this, Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analyses were conducted to pinpoint enriched biological
processes and pathways. These analyses were carried out using the “clusterProfiler” R
package (R software version 4.2.3).

2.5. Immune Cell Infiltration Analysis

In order to calculate the stromal score, immune score, and tumor purity in high-risk
and low-risk groups, the ESTIMATE R package (R software version 4.2.3) was employed.
The ggplot2 R package (R software version 4.2.3) was used to illustrate these differences.
The CIBERSORT method was performed to determine the disparities in infiltration abun-
dance of 22 immune cell types within high-risk and low-risk groups. Violin plots, derived
from the ggplot2 R package (R software version 4.2.3), graphically displayed these varia-
tions in immune infiltrating cell types among distinct subgroups. Furthermore, the immune
function in the low-risk and high-risk groups was estimated via single sample Gene Set
Enrichment Analysis (ssGSEA). The most pronounced positive and negative correlations
between risk scores and immune cell types were visualized with a scatter plot.

2.6. Mutation Landscape of High- and Low-Risk Groups

The mutation profiles of HNSCC samples were sourced from the TCGA Data Portal,
and the ‘maftools’ package was used to contrast the mutational profiles between high-risk
and low-risk groups.

2.7. Prediction of Immunotherapy Efficacy

The Tumor Immune Dysfunction and Exclusion (TIDE) web platform (http://tide.dfci.
harvard.edu, accessed on 8 December 2022) was utilized to evaluate the potential immune
therapy response in the TCGA HNSCC cohort. By following procedures provided by the
TIDE platform, median centering of the expression matrix for both low-risk and high-risk
groups was performed and submitted for analysis. This yielded important metrics such
as cancer-associated fibroblast (CAF) score, T-cell exclusion score, and T-cell dysfunction
score, all of which were compared between the two risk groups.

2.8. Statistical Analyses

R software (version 4.2.3) was used for all statistical analyses. To evaluate the difference
in OS between specified groups, we applied Kaplan–Meier curves and performed the log-
rank test. Additionally, we utilized the two-sided t-test to compare the differences between
the two groups. A p-value < 0.05 was considered statistically significant.

3. Results
3.1. Construction and Validation of TCRRG-Based Risk Signature

Univariate Cox regression analysis revealed a significant correlation between the
OS of HNSCC patients and several TCRRGs, namely CSF2, INPP5D, MAP2K1, MAP2K7,
MAPK3, MAPK9, ORAI1, PIK3R3, PSMA1, PSMA7, PSMD10, PSMD2, PSMD7, SKP1,
UBB, UBE2D2, and ZAP70 (Table 1). Among these, CSF2, MAP2K1, MAPK9, ORAI1,
PSMA1, PSMA7, PSMD10, PSMD2, PSMD7, SKP1, UBB, and UBE2D2 were identified
as risky genes (HR > 1). In contrast, INPP5D, MAP2K7, MAPK3, ORAI1, PIK3R3, and
ZAP70 were deemed as protective genes (HR < 1). For the construction of the prognos-
tic signature, seven TCRRGs—MAP2K7, MAPK3, MAPK9, ORAI1, PSMA1, UBB, and
ZAP70—were selected, and their coefficients were obtained from the LASSO algorithm
(Table 2, Supplementary Figure S1A,B). The risk score for each patient was calculated
using the following formula: risk score = (−0.72216) × MAP2K7 expression + (−0.484) ×
MAPK3 expression + (0.58118) × MAPK9 expression + (−0.38196) × ORAI1 expression
+ (0.477007) × PSMA1 expression + (0.48365) × UBB expression + (−0.46462) × ZAP70

http://tide.dfci.harvard.edu
http://tide.dfci.harvard.edu
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expression. On the basis of the median risk score value, HNSCC patients were divided into
high-risk and low-risk groups following the computation of risk scores (Supplementary
Table S1). To visually represent the survival time and status of every HNSCC patient in
the TCGA HNSCC train cohort, a scatter plot was depicted (Figure 1A). A heatmap was
then used to present the differential expression levels of the seven prognostic TCRRGs
between low-risk and high-risk groups within the TCGA HNSCC train cohort (Figure 1B).
The results of the survival analysis revealed that patients defined in the high-risk group
had a significantly shorter OS (p = 1.353 × 10−6) compared to those in the low-risk group
(Figure 1C). This TCRRG-based prognostic signature’s robustness was subsequently vali-
dated across several independent HNSCC cohorts, including the TCGA HNSCC test cohort
(p = 1.621 × 10−4) (Figure 1D–F, Supplementary Table S2), GSE65858 (p = 4.029 × 10−2)
(Figure 1G–I, Supplementary Table S3), and GSE41613 (p = 1.712 × 10−3) (Figure 1J–L,
Supplementary Table S4). Following this, we delved further into the survival differences
between low- and high-risk groups, performing stratification based on several clinicopatho-
logical parameters—age, gender, clinical stage, T stage, and N stage. In the TCGA HNSCC
train cohort, the high-risk group exhibited a significantly lower OS rate than the low-risk
group for patients aged ≤60 (p = 1.5 × 10−2) or >60 (p = 8.3 × 10−3), for male patients
(p = 1.3 × 10−3), for patients at stages III–IV (p = 3 × 10−4) or T3–T4 (p = 1.1 × 10−4), and
for patients with (p = 4.3 × 10−2) or without lymph node metastasis (LNM) (p = 5.3 × 10−3).
Conversely, female patients (p = 7.6 × 10−2), those at stages I–II (p = 1.1 × 10−1), or at T1–T2
(p = 1.6 × 10−1) did not demonstrate significant differences in OS between high- and low-
risk groups (Supplementary Figure S2A–E). For the TCGA HNSCC test cohort, the high-risk
group showed significantly lower OS rates for patients aged >60 (p = 6.5 × 10−4), both male
(p = 3.2 × 10−2) and female patients (p = 1.4 × 10−2), those at stages III–IV (p = 8.4 × 10−4)
or T3–T4 (p = 4.7 × 10−3), and those with LNM (p = 2.8 × 10−3). However, no significant
difference in OS was observed for patients aged ≤60 (p = 2.6 × 10−1), those at stages
I–II (p = 4.6 × 10−1) or T1–2 (p = 1.4 × 10−1), and those without LNM (p = 1.5 × 10−1)
(Supplementary Figure S3A–E). In the GSE65858 cohort, the high-risk group had sig-
nificantly lower survival rates for male patients (p = 4.3 × 10−2), those at stages I–II
(p = 1 × 10−2) or T1–T2 (p = 3.1 × 10−2), and those without LNM (p = 2.6 × 10−2). No
significant difference in OS was identified for patients aged ≤60 (p = 1.1 × 10−1) or >60
(p = 1.8 × 10−1), female patients (p = 6.6 × 10−1), those at stages III–IV (p = 1.9 × 10−1) or
T3-4 (p = 2.8 × 10−1), and those with LNM (p = 3 × 10−1) (Supplementary Figure S4A–E).
In the GSE41613 cohort, significantly lower survival rates were observed in the high-
risk group for patients aged ≤60 (p = 3.8 × 10−2) or >60 (p = 1.7 × 10−2), male patients
(p = 2.8 × 10−4), and those at stage III–IV (p = 2.4 × 10−4). There was no significant dif-
ference in OS for female patients (p = 5.6 × 10−1) or those at stage I–II (p = 8.2 × 10−1)
between the high- and low-risk groups (Supplementary Figure S5A–E). Moreover, we
further explored the differences in OS between the low- and high-risk groups based on
HPV status. In the TCGA HNSCC cohort and GSE65858, it was proven that the high-risk
group exhibited a lower OS rate compared to the low-risk group among HPV-negative
patients (p < 1 × 10−3). In contrast, for HPV-positive patients, there was no significant
difference in OS between the high- and low-risk groups (Supplementary Figure S6A,B).
We also conducted survival analyses based on various primary tumor sites in the TCGA
HNSCC cohort. The results show a significant difference in OS between the high-risk
and low-risk groups for HNSCC originating in the larynx and oral cavity (p < 1 × 10−3)
(Supplementary Figure S6C).
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Figure 1. Development and validation of a TCRRG-based risk signature: (A) A scatter plot represent-
ing OS and survival status distribution in the low- and high-risk groups of the TCGA HNSCC train
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cohort. (B) A heatmap displaying differential expressions of specified TCRRGs between low- and
high-risk groups in the TCGA HNSCC train cohort. (C) The survival difference between high-
and low-risk groups in the TCGA HNSCC train cohort. (D–L) For the validation cohorts, the
scatter plot depicts OS and survival status distribution in the low- and high-risk groups. Heatmaps
illustrate differential expression levels of specified TCRRGs between these risk groups, while survival
differences between high- and low-risk groups are further explored.

Table 1. Univariate analysis of TCR-related genes impacting the OS rate in HNSCC.

Gene HR HR.95L HR.95H p Value

CSF2 1.148047 1.01135 1.30322 0.032806
INPP5D 0.77208 0.596419 0.999477 0.049537
MAP2K1 1.626797 1.074057 2.463993 0.021605
MAP2K7 0.511056 0.319551 0.81733 0.00508
MAPK3 0.600922 0.383093 0.942607 0.026603
MAPK9 1.698728 1.06908 2.699215 0.024917
ORAI1 0.62139 0.440776 0.876014 0.006619
PIK3R3 0.763542 0.598236 0.974525 0.030215
PSMA1 1.675832 1.143652 2.455654 0.008085
PSMA7 1.657035 1.104644 2.485658 0.014647

PSMD10 1.566579 1.012122 2.424776 0.044007
PSMD2 1.478009 1.037221 2.106119 0.030602
PSMD7 1.741479 1.083136 2.799971 0.022046

SKP1 2.035235 1.27314 3.253516 0.002989
UBB 1.360397 1.011212 1.830161 0.041989

UBE2D2 2.191311 1.202443 3.99341 0.010406
ZAP70 0.731255 0.552287 0.968217 0.028852

Table 2. Multivariate analysis of TCR-related genes impacting the OS in HNSCC.

Gene Coefficient

MAP2K7 −0.72216
MAPK3 −0.484
MAPK9 0.58118
ORAI1 −0.38196
PSMA1 0.477007

UBB 0.48365
ZAP70 −0.46462

3.2. The Predictive Accuracy of TCRRG-Based Risk Signature

To further scrutinize the predictive accuracy of the TCRRG-based risk signature, ROC
curves were generated for OS prediction, and the corresponding areas under the curve
(AUCs) were computed. Additionally, the predictive effectiveness of the risk signature
was compared against various clinicopathological parameters, such as age, gender, grade,
and stage. In the TCGA HNSCC train cohort, as demonstrated in Figure 2A, the risk score
displayed substantial predictive capacity, reflected by 1-year, 3-year, and 5-year AUCs of
0.707, 0.705, and 0.685, respectively. Furthermore, the risk score outperformed other factors
like age, gender, grade, and stage in terms of predictive effectiveness (Figure 2B). Similar
observations were identified in the remaining validation cohorts, including the TCGA
HNSCC test cohort (Figure 2C,D), GSE65858 (Figure 2E,F), and GSE41613 (Figure 2G,H),
underscoring the robustness and effectiveness of the risk signature.
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Figure 2. Evaluating the predictive precision of the TCRRG-based risk signature: (A) An ROC curve
used to evaluate the prognostic signature’s predictive efficiency at specific time points in the TCGA
HNSCC train cohort. (B) The predictive efficiency was compared between risk score and other
clinicopathological parameters, including age, gender, grade, and stage, in the TCGA HNSCC train
cohort. (C–H) In the indicated validation cohorts, ROC curves demonstrate the prognostic signature’s
predictive efficiency at certain time points. Simultaneously, comparative analyses are conducted to
assess the predictive efficiency of risk score against other clinicopathological parameters, including
age, gender, grade, and stage.

3.3. TCRRG-Based Risk Signature Is an Independent Prognostic Factor for HNSCC

We then evaluated whether the TCRRG-based risk signature was an independent
prognostic factor for HNSCC cohorts. In the TCGA HNSCC train cohort, univariate
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analysis unveiled a significant association between the risk score (p < 1 × 10−3, HR = 1.504,
95% CI = 1.345–1.682) and OS (Figure 3A). The multivariate analysis further corroborated
the risk score (p < 1 × 10−3, HR = 1.470, 95% CI = 1.309–1.651) as an independent prognostic
indicator (Figure 3B).
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Figure 3. Independence of the TCRRG-based risk signature as a prognostic factor for HNSCC:
(A) Univariate analysis of risk score in conjunction with clinicopathological parameters in the TCGA
HNSCC train cohort to identify indicators significantly associated with OS. (B) Multivariate analysis
of the risk score alongside clinicopathological parameters in the TCGA HNSCC train cohort to
identify independent prognostic factors. (C–H) Univariate and multivariate analyses of risk score
and clinicopathological parameters in the indicated validation cohorts for OS correlations and
independent prognostic factor determination. Yellow squares represent univariate analysis, and red
squares represent multivariate analysis.
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In the TCGA HNSCC test cohort, the univariate analysis demonstrated that both age
(p = 3 × 10−3, HR = 1.028, 95% CI = 1.010–1.046) and risk score (p < 1 × 10−3, HR = 1.229,
95% CI = 1.121–1.346) were significantly correlated with survival (Figure 3C). Subsequent
multivariate analysis confirmed age (p = 2 × 10−3, HR = 1.030, 95% CI = 1.011–1.049) and
risk score (p < 1 × 10−3, HR = 1.256, 95% CI = 1.141–1.381) as independent prognos-
tic determinants for HNSCC (Figure 3D). Likewise, in GSE65858 and GSE41613 cohorts,
the risk scores were found to be significantly associated with survival (p = 4.1 × 10−2,
HR = 1.540, 95% CI = 1.017–2.332; p = 0.002, HR = 2.423, 95% CI = 1.370–4.283, respec-
tively) and served as independent prognostic predictors (p = 3.9 × 10−2, HR = 1.549,
95% CI = 1.023–2.344; p = 1 × 10−3, HR = 2.632, 95% CI = 1.459–4.747, respectively) for
HNSCC patients (Figure 3E–H).

3.4. Nomogram Model Construction and Prediction

We further established a nomogram model incorporating risk score, age, gender,
grade, and clinical stage to predict the clinical outcome of HNSCC. This model generates a
total score for each HNSCC patient, calculated from their individual clinicopathological
parameters and corresponding points. Consequently, the nomogram model facilitates the
prediction of 1-year, 2-year, and 3-year OS rates for HNSCC patients (Figure 4A). The
calibration curves demonstrate the good performance of our nomogram model, exhibiting
excellent conformity in predicting 1-year, 2-year, and 3-year OS rates for HNSCC patients
(Figure 4B–D).
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served as independent prognostic predictors (p = 3.9 × 10−2, HR = 1.549, 95% CI = 1.023–
2.344; p = 1 × 10−3, HR = 2.632, 95% CI = 1.459–4.747, respectively) for HNSCC patients 
(Figure 3E–H). 

3.4. Nomogram Model Construction and Prediction 
We further established a nomogram model incorporating risk score, age, gender, 

grade, and clinical stage to predict the clinical outcome of HNSCC. This model generates 
a total score for each HNSCC patient, calculated from their individual clinicopathological 
parameters and corresponding points. Consequently, the nomogram model facilitates the 
prediction of 1-year, 2-year, and 3-year OS rates for HNSCC patients (Figure 4A). The 
calibration curves demonstrate the good performance of our nomogram model, exhibiting 
excellent conformity in predicting 1-year, 2-year, and 3-year OS rates for HNSCC patients 
(Figure 4B-D). 

 
Figure 4. Construction and validation of a nomogram model integrating risk score and clinicopatho-
logical parameters: (A) A nomogram predictive model was built using the risk score and various
clinicopathological parameters. (B–D) Internal validation of the nomogram’s predictive accuracy
was conducted via calibration plots for 1-year (B), 2-year (C), and 3-year (D) OS predictions. The
gray line represents the predictive curve, and the red line represents the actual curve.
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3.5. Genomic Alterations in Low- and High-Risk HNSCC Groups and Their Impact on
Survival Rates

At the genomic level, we found that 83.4% of HNSCC cases (196/235) had somatic
mutations in the low-risk group. The most frequent alterations were TTN, TP53, and
CSMD3. In the high-risk group, 87.06% of (222/255) HNSCC cases had somatic mutations,
with TTN, TP53, and MUC16 showing the highest frequency of alterations (Supplementary
Figure S7A). Moreover, we observed that patients with both a lower TMB and risk score
had improved OS rates compared to those with both a higher TMB and risk score in both
the TCGA HNSCC train and test cohorts (Supplementary Figure S7B).

3.6. Functional Enrichment Analysis of the DEGs between High- and Low-Risk Groups

We then identified the DEGs between high- and low-risk groups in the TCGA HNSCC
cohort, using a threshold of |log2FC| > 1 and FDR < 0.05 (Figure 5A). Our GO and KEGG
analyses demonstrated that DEGs were significantly enriched in biological processes and
signaling pathways related to immune activation and response. These biological pro-
cesses and signaling pathways included immune response-activating cell surface receptor
signaling, immune response-activating signal transduction, immune response-regulating
cell surface receptor signaling, leukocyte-mediated immunity, and lymphocyte-mediated
immunity. This underscores the crucial role of TCRRG alterations in shaping the tumor
microenvironment of HNSCC (Figure 5B–E).

3.7. Correlation of Risk Score with Immune Cell Subpopulations and Potential for
Immunotherapy Responsiveness

Recognizing the significant influence of tumor-infiltrating immune cells on the tumor
immune microenvironment and their consequential impact on tumor progression, the
correlation between the risk score and infiltrating immune cell subpopulations, as derived
from the TCGA HNSCC database, was initially evaluated using the CIBERSORT algorithm.
This examination revealed different levels of immune cell populations in the low-risk and
high-risk groups. The low-risk group was characterized by a higher proportion of naïve B
cells, plasma cells, CD8 T+ cells, activated memory CD4+ T-cells, and activated dendritic
cells. In contrast, the high-risk group showed a higher proportion of resting memory CD4+

T-cells, M0 macrophages, and resting dendritic cells (Figure 6A,B).
Additionally, the relative levels of CD8 T+ cells, T-cells, B lineage cells, NK cells, and

cytotoxic lymphocytes were notably elevated in the low-risk group (Figure 6C). Consid-
ering the profound impact of immune cells on immune function, further comparison of
ssGSEA scores for immune function revealed significantly higher immune function scores
in the low-risk group compared to the high-risk group (Figure 6D). Using the ESTIMATE
algorithms for an in-depth examination of the tumor immune microenvironment, it was
discovered that the low-risk group displayed higher immune scores, reduced levels of
T-cell dysfunction and exclusion, and a lower abundance of CAFs. This points towards a
greater potential responsiveness to immunotherapy among HNSCC patients in the low-risk
group (Figure 6E). Finally, a Pearson correlation analysis showcased positive associations
between risk scores and certain immune cell types, namely resting memory CD4+ T-cells,
M0 macrophages, eosinophils, resting dendritic cells, and resting mast cells. Conversely,
negative associations were detected with other immune cell types, including active memory
CD4+ T-cells, follicular helper T-cells, CD8+ T-cells, naïve B cells, plasma cells, and activated
mast cells (Supplementary Figure S8A–K).
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volcano plot illustrated significantly upregulated and downregulated genes in the high-risk and
low-risk groups within the TCGA HNSCC cohort. (B) GO analysis of DEGs. (C) KEGG analysis
of DEGs. (D) Visualization of the interconnected network resulting from GO and KEGG analyses.
(E) Both GO and KEGG analyses highlighted enrichment in immune-related biological processes.
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Figure 6. Differential immune characteristics between low- and high-risk groups in the TCGA
HNSCC cohort: (A) Bar plot displaying the proportions of 22 unique types of immune cells in the low-
and high-risk groups. (B) Violin plot showing the differences in immune infiltration status between
low- and high-risk groups. (C) Violin plot illustrating the distinct distribution of immune cell types
between low- and high-risk groups. (D) Box plot examining immune functions using TIDE scores in
the low- and high-risk groups. (E) Comparison of immune score, CAF score, T-cell exclusion score,
and T-cell dysfunction score between low- and high-risk groups. * p < 0.05. ** p < 0.01. *** p < 0.001.

3.8. Correlation of Risk Score with T-cell Functions

The comparative analysis of T-cell function-related genes and chemokine expression
profiles between the high-risk and low-risk groups was conducted. The results show
a significant reduction in both T-cell function-related genes and chemokine expression
within the high-risk group, underscoring the intimate correlation between TCRRG and the



Cancers 2023, 15, 5495 14 of 19

activities of T-cell cytotoxicity and recruitment (Figure 7A). These consistent results were
also validated in the independent dataset GSE61413 (Figure 7B).
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Figure 7. Risk score is associated with T-cell functions: (A) The differential expression levels of T-cell
functionality and chemokine genes between the two risk groups in the TCGA HNSCC cohort. (B) The
differential expression levels of T-cell functionality and chemokine genes between the two risk groups
in the GSE41613 cohort. (C) GSEA analysis shows significant enrichment of genes in T-cell-related
pathways in the TCGA HNSCC cohort. (D) GSEA analysis shows significant enrichment of genes in
T-cell-related pathways in the GSE41613 cohort. * p < 0.05. ** p < 0.01. *** p < 0.001.

The GSEA results prominently illuminate that in the high-risk group, the enriched
signatures associated with T-cell-related signaling pathways, including antigen receptor,
B cell receptor, CD4+/CD8+ αβ T-cell lineage, immunoglobulin production, positive reg-
ulation of activated T-cell proliferation, positive T-cell selection, regulation of Th17 cell
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differentiation, T-cell lineage, T-cell receptor, and T-cell selection (Figure 7C). Consistently,
the T-cell-related pathways encompassing adaptive immune response, antigen processing
and presentation, B cell-mediated immunity, cell killing, leukocyte meditated cytotoxic-
ity, leukocyte-mediated immunity, natural killer cell-mediated immunity, positive T-cell
selection, regulation of natural killer cell-mediated immunity, and T-cell activation were
markedly enriched in the high-risk group within the GSE41613 cohort (Figure 7D).

4. Discussion

The development of our TCRRG-based risk signature offers several distinct advan-
tages. To the best of our knowledge, there currently are no existing TCR-based prognostic
signatures available for predicting the prognosis of HNSCC. Thus, our unique signature
provides a pioneering TCR-based solution. While many prognostic signatures incorporate
a substantial quantity of genes, which can present obstacles to their clinical application,
our risk signature only consists of seven genes. This reduction enhances the feasibility and
utility of our signature for clinical application. Furthermore, we have not only developed
this risk signature but have also successfully devised a TCR-based nomogram model. This
model holds considerable potential for offering therapeutic guidance specially tailored
to HNSCC patients. Lastly, our TCR-based prognostic signature, as shown through mul-
tivariate analysis, demonstrates superior robustness in predicting HNSCC prognosis in
comparison to the traditional TNM stage classification, underscoring the clinical value of
our signature as a reliable prognostic tool for HNSCC patients.

Recent research has increasingly shown the importance of the tumor immune microen-
vironment in cancer progression. Consequently, we investigated the potential correlation
between our TCR-related prognostic signature and the immune tumor microenvironment.
The GO and KEGG analyses of the DEGs between the high-risk and low-risk groups
highlighted an enrichment of numerous immune-related biological processes and path-
ways. GSEA analysis between the high-risk and low-risk groups has revealed a significant
enrichment of genes in the TCR-mediated pathway. Moreover, an immune-suppressive
environment was apparent in the high-risk group, leading us to hypothesize that variances
in the immune microenvironment among the patient groups contributed to their differential
survival outcomes.

Through the analysis of TCRRGs affecting the OS in HNSCC, we identified MAPK9,
PSMA1, and UBB as risk genes. MAPK9 is an important downstream signaling molecule in
the TCR pathway and is involved in the activation and proliferation of T-cells. Silencing
MAPK9 leads to impaired T-cell activation and insufficient secretion of cytokines. However,
it has little effect on the apoptosis of mature T-cells [25]. MAP2K7 is a member of the
serine/threonine protein kinase family, which can specifically phosphorylate and activate
the MAPK family protein JNK [26]. Then, the activated JNK can participate in the positive
transmission of TCR signals and promote the proliferation and differentiation of T-cells [27].

MAPK3 integrates cytoplasmic signals to induce transcriptional changes in the context
of differentiation, proliferation, and survival [28]. It has been demonstrated that MAPK3
plays a key role in positive selection during T-cell development, and activation of MAPK3
is necessary for the induction of T-cell anergy [29,30]. Members of the MAP kinase family
also play an important role in the innate and adaptive immune response by modulating the
JNK pathway, which regulates T-cell differentiation and survival, mediates the response
to viral and bacterial infections, and destroys cancer cells [31]. PSMA1 is one of the key
regulatory subunits of the cytochrome C-terminal enzyme pathway [32]. During TCR
signal transduction, PSMA1 expression is upregulated and promotes the degradation of
downstream effector proteins in the TCR signaling pathway, thereby participating in TCR
signaling-induced cell apoptosis. The ubiquitin B protein encoded by the UBB gene can
participate in the conduction, regulation, and termination of TCR signaling by providing
ubiquitination modification [33]. In the TCR signaling transduction process, ubiquitin B
can ubiquitinate and precisely regulate the activity of some key effector molecules such
as PKCθ, Bcl10, and MEKK1, thereby affecting TCR signal transduction. ORAI1 is one
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of the pore components of Ca2+-release-activated Ca2+ channels that mediate Ca2+ entry
induced by TCR stimulation [34]. Following the depletion of intracellular calcium stores,
T lymphocytes require a sustained influx of calcium ions via calcium release-activated
calcium channels to develop an effective immune response [35]. At this point, Orai1 and
STIM-1 aggregate and interact in close proximity to the plasma membrane, which can form
the basic unit of Ca2+ entry and facilitate the formation of stable immune synapses between
T-cells and antigen-presenting cells (APCs) [36,37]. Consequently, a number of T-cell surface
and signaling molecules are recruited to the IS at the interface of APC, thereby optimizing
the conditions under which they interact to amplify and maintain the signals required
for full T-cell activation and efficiently generate an immune response [38,39]. Moreover,
Lioudyno et al. showed increased Orai1 and STIM1 mRNA expression in activated T
lymphocytes, which may contribute to enhanced signaling in activated T-cells [40].

The cytoplasmic tyrosine kinase ZAP70 is one of the additional signaling molecules
that the TCR relies on to transduce signals. It can associate with the TCR complex and is
required to initiate the canonical biochemical signal pathways downstream of the TCR [41].
Novotná et al. identified the ability of ZAP to convert the TCR into a ‘catalytic unit’
that amplifies antigenic stimulation, which is achieved by phosphorylating the cycle of
recruitment, activation, and release of ZAP70 kinase on the TCR [42].

Despite the promising results, our study has several limitations that need to be ad-
dressed. Although the validity of the TCRRG-based signature has been confirmed across
multiple independent HNSCC cohorts, further validation through large-scale independent
studies remains essential for fully establishing the signature’s reliability and wide applica-
bility. Additionally, this analysis did not include key clinical parameters such as therapeutic
resistance and molecular features. The available TCGA HNSCC dataset, as well as the
GSE41613 and GSE65858 datasets, provided limited or no information regarding these
essential clinical and molecular attributes. Moreover, our case series lacks the immunohis-
tochemical evaluation, and in particular, the Combined Positive Score (CPS). Combining
CPS and our TCRRG-based signature might be important for the diagnosis and therapeutic
guidance of patients with HNSCC [43]. Pathologists play a pivotal role in this process, as
they are tasked with determining PD-L1 expression while navigating challenges such as
the selection of appropriate specimens, the intrinsic heterogeneity of PD-L1 expression in
tumors, and the impact of prior treatments [44]. Consequently, pathologists provide crucial
diagnostic information that informs therapeutic decision-making. They are responsible
for the careful selection of sample types for analysis, the use of appropriate diagnostic
platforms and clones, and ensuring interobserver consistency [45]. Their expertise is vital
for interpreting the complexities of PD-L1 expression and its evaluation, which is funda-
mental to the effective application of targeted therapies in oncology. Thus, further studies
that integrate detailed clinical and molecular information are necessary to understand the
clinical importance of these seven genes in the context of HNSCC.

5. Conclusions

In summary, we effectively constructed and verified a reliable prognostic signature
utilizing TCRRG that exhibits a substantial correlation with the unfavorable clinical out-
come among patients with HNSCC. This signature may function as a significant molecular
biomarker for tracking the development of HNSCC and may provide critical insights into
the selection of suitable therapeutic approaches.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15235495/s1, Figure S1. Development of a TCRRG-based
prognostic signature via LASSO regression analysis. Figure S2. Analysis of survival difference in
high- and low-risk groups as stratified by clinicopathological parameters within the TCGA HNSCC
training Cohort. Figure S3. Survival differences between high- and low-risk groups stratified by
clinicopathological parameters in the TCGA HNSCC test cohort. Figure S4. Survival differences be-
tween high- and low-risk groups stratified by clinicopathological parameters in the GSE65858 cohort.
Figure S5. Survival differences between high- and low-risk groups stratified by clinicopathological
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groups stratified by HPV status and primary tumor site. Figure S7. Genomic alterations in low-
and high-risk HNSCC groups and their impact on survival rates. Figure S8. Interplay between
TCRRG-based risk score and immune cell infiltration in HNSCC. Table S1. The riskscores of HNSCC
patients in the TCGA HNSCC train cohort. Table S2. The riskscores of HNSCC patients in the TCGA
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APCs Antigen-presenting cells
AUCs Areas under the curve
CAF Cancer-associated fibroblast
CPS Combined Positive Score
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CTLA-4 Cytotoxic T lymphocyte antigen-4
DEGs Differentially expressed genes
GO Gene Ontology
HNSCC Head and neck squamous cell carcinoma
ICIs Immune checkpoint inhibitors
KEGG Kyoto Encyclopedia of Genes and Genomes
LASSO Least absolute shrinkage and selection operator
LNM Lymph node metastasis
OS Overall survival
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TCRRGs T-cell receptor-related genes
TCRs T-cell receptors
TIDE Tumor Immune Dysfunction and Exclusion
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