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Simple Summary: Lymph node metastasis is a crucial factor in determining the treatment and
prognosis of patients with gynecologic malignancies. Traditionally, medical imaging, including CT,
MRI, and PET-CT, are used to detect these metastases. This research introduces a novel approach
called “multimodal federated learning” that combines information from these imaging methods to
improve the accuracy of lymph-node-metastasis prediction. In simpler terms, this research merges the
strengths of multiple-imaging techniques, using advanced computer algorithms to provide a clearer
picture of cancer spread. This merger of techniques can provide a more precise diagnosis, facilitate
the accurate formulation of treatment plans for patients, and pave the way for similar improvements
in other areas of medical imaging.

Abstract: Gynecological malignancies, particularly lymph node metastasis, have presented a di-
agnostic challenge, even with traditional imaging techniques such as CT, MRI, and PET/CT. This
study was conceived to explore and, subsequently, to bridge this diagnostic gap through a more
holistic and innovative approach. By developing a comprehensive framework that integrates both
non-image data and detailed MRI image analyses, this study harnessed the capabilities of a multi-
modal federated-learning model. Employing a composite neural network within a federated-learning
environment, this study adeptly merged diverse data sources to enhance prediction accuracy. This
was further complemented by a sophisticated deep convolutional neural network with an enhanced
U-NET architecture for meticulous MRI image processing. Traditional imaging yielded sensitivities
ranging from 32.63% to 57.69%. In contrast, the federated-learning model, without incorporating
image data, achieved an impressive sensitivity of approximately 0.9231, which soared to 0.9412 with
the integration of MRI data. Such advancements underscore the significant potential of this approach,
suggesting that federated learning, especially when combined with MRI assessment data, can revo-
lutionize lymph-node-metastasis detection in gynecological malignancies. This paves the way for
more precise patient care, potentially transforming the current diagnostic paradigm and resulting in
improved patient outcomes.

Keywords: gynecological malignancies; lymph node metastasis; multimodal federated learning;
multilayer perceptron; convolutional neural network

1. Introduction

Gynecological malignancies, especially cervical carcinoma (CC) and endometrial car-
cinoma (EC), present formidable challenges in women’s health across the globe. Recent
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statistics from 2020 reported an alarming surge of over one million new diagnoses, under-
scoring the criticality of effective interventions [1]. Among the diverse metastatic pathways
these malignancies exploit, the lymphatic system stands out, with CC and early-stage EC
recording metastatic incidences of 15–20% and 10–17%, respectively [2,3]. Traditionally,
lymphadenectomy—the surgical removal of lymph nodes—has been pivotal in treating
EC and manageable CC cases. Thus, the precision in determining lymph node metastasis
(LNM) became a cornerstone of effective treatment.

In 2018, the landscape of medical diagnostics underwent a pivotal transformation.
The International Federation of Gynecology and Obstetrics (FIGO) introduced a nuanced
approach to CC staging, underscoring the imperative role of LNM detection [4]. Notably,
imaging techniques, such as computed tomography (CT), magnetic resonance imaging
(MRI), and fluorine-18-labeled fluoro-2-deoxy-D-glucose positron emission tomography–
computed tomography (18F-FDG PET/CT) have dominated LNM identification. However,
these methodologies have intrinsic limitations. If LNM is confirmed via CT, MRI, or
PET/CT, the patient is typically advised to undergo external beam radiation therapy
(EBRT) for CC. The repercussions of EBRT can vary, encompassing conditions ranging from
pelvic lymphedema to more severe issues such as symptomatic vaginal stenosis, which
can detrimentally impact a patient’s quality of life [5]. This underscores the paramount
importance of accurate LNM evaluation. Additionally, prominent European medical
consortia have advocated for the primacy of PET/CT in nodal assessments for advanced
CC [6]. However, despite their widespread utilization, the diagnostic accuracy of these
imaging modalities warrants further refinement.

Amid this landscape, this study embarked on a pioneering journey: introducing a
multifaceted evaluation framework driven by multimodal federated learning. At its core,
this framework employed a composite neural network model that synergistically integrates
image data, harnessing the computational strengths of both the multilayer perceptron
(MLP) and the convolutional neural network (CNN) [7–10]. This approach aimed to offer
a more nuanced and accurate prediction of LNM. One of the groundbreaking facets of
this method was the deployment of federated learning. In an era in which data privacy is
paramount, federated learning facilitates inter-institutional data sharing and computation
without compromising patient confidentiality [11].

The findings of this study not only present an avant-garde method for LNM assess-
ment, but also underscore the transformative potential of federated learning in medical-
image analytics. As we delve deeper into the dataset’s construction, model design, and
training methodologies, this study stands as a testament to the evolution of diagnostic
paradigms, promising more precise LNM assessments in gynecological malignancies.

2. Related Works

As discussed in this section, the study delved into the multifaceted realm of gyne-
cological malignancies, focusing particularly on the pivotal roles of imaging modalities
in the assessment of LNM in CC and EC. The essence of the discussion revolves around
the paramount importance of accurate LNM assessment, given the metastatic nature of
these cancers.

To gain insights into the diagnostic landscape, previous researchers extensively em-
ployed CT and MRI modalities. Historically, these tools, which center on morphological
characteristics of lymph nodes, such as size, shape, and border consistency, were the
cornerstones of diagnosis. Kim et al. [12] and McMahon et al. [13] elaborated on their sig-
nificance, even though their diagnostic efficiency, as illustrated by sensitivities captured by
Choi et al. [14], Bipat et al. [15], Haldorsen et al. [16], Kim et al. [17], and Sarabhai et al. [18],
were often subject to scrutiny. In contrast to these traditional methods, PET/CT, spotlighted
by Adam et al. [19], offered a broader panorama by integrating morphological imaging
with the capability of detecting metabolic alterations. However, as Kitajima et al. [20]
pointed out, even this advanced modality was not immune to challenges, especially where
micro-metastases in lymph nodes were concerned.
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To enhance diagnostic capabilities, especially in the realm of deep learning, the integra-
tion of artificial intelligence (AI) has taken center stage. A significant trend observed in the
literature was the application of machine-learning and deep-learning techniques for the di-
agnosis and prognosis of CC. Researchers Rahimi et al. [21] and Matsuo et al. [22] explored
the potential of traditional machine learning algorithms, such as decision trees and random
forests. In contrast, studies by Al Mudawi et al. [23] and Zhang et al. [24] showcased the
prowess of deep-learning methods. Furthermore, research by Dong et al. [25] attested to
the power of data integration, successfully amalgamating medical-imaging data with other
clinical data to enhance prognostic evaluations.

Shifting the focus to the surgical aspect, some research, notably by Erdem et al. [26],
delved deeply into risk factors related to preoperative and postoperative scenarios in CC.
Notably, an innovative approach in Zhang et al. [27] employed a multi-dimensional risk
assessment strategy. By integrating diverse biomarkers, including coagulation and immune
function indicators, researchers gained a more comprehensive understanding of patients’
conditions, setting a benchmark for future investigations.

In the realm of therapeutic optimization, AI and machine-learning techniques began to
shine. Findings by Wang et al. [28] were particularly enlightening, unveiling the potential
of AI and reinforcement learning in enhancing radiation-therapy planning. This discovery
underscored the vast possibilities in the horizon for therapeutic optimization endeavors.

Especially against the backdrop of pathological imagery, the practicality of medi-
cal image analysis was emphasized in recent research. A meticulous evaluation of the
Cerviray AI® system by Kim et al. [29] highlighted its efficacy in diagnosing late-stage
cervical intraepithelial neoplasia. Additionally, work by Liu et al. [30] showcased the po-
tential of weakly supervised deep learning, particularly in identifying LNM from intricate
histopathological slides.

In conclusion, a holistic approach to data integration emerged as a disruptive transfor-
mation in the field of CC research. Studies like those of Dong et al. [25] and Zhang et al. [27],
emphasizing this paradigm shift, amalgamated diverse data sources into a unified model,
demonstrating the heightened accuracy and robustness this integration brings to diagnostic
and prognostic models. The focus on integrative data-synthesis methods underscores
potential trajectories for future research, heralding the advent of a new era in the domain
of CC diagnosis and treatment.

3. Dataset

This section is structured in three distinct parts. First, the background and character-
istics of the study participants are illuminated. Then, the various clinical and laboratory
data points collected during the study are detailed. Finally, the strategies adopted for data
partitioning are outlined, ensuring both its effective utility and the stringent preservation
of patient privacy.

3.1. Study Participants and Criteria

This study was a retrospective case-controlled investigation involving patients with
EC or CC who underwent surgery between August 2016 and May 2021 at the Department
of Gynecological Oncology at Renji Hospital Affiliated with Shanghai Jiao Tong University
School of Medicine. The research involved a total of 567 patients, comprising 423 cases
of CC and 144 cases of EC. The median age of the participants was 49 years, ranging
from 19 to 78 years. Through meticulous histopathological analysis, LNM was identified
in 89 CC patients, accounting for 21.04%, and 14 EC patients, or 9.72%. An additional
observation delved into the distribution of lymphvascular space invasion (LVSI) in patients
who were diagnosed with CC or EC, as detailed in Table 1.

Eligible patients met the following criteria: (1) they had been diagnosed with CC (2009
FIGO stage IA1 with LVSI to IIA2) or EC; (2) They had undergone LNM assessment using
at least one of the following modalities—MRI, CT, or PET/CT; and (3) they had received
surgical treatments such as radical hysterectomy, radical trachelectomy, or total hysterectomy
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with pelvic lymphadenectomy (with or without sentinel lymph nodes, [SLNs) or para-aortic
lymphadenectomy, either through laparoscopic or abdominal procedures. Exclusion criteria
included the following: (1) those patients who underwent neoadjuvant chemotherapy or
preoperative pelvic radiotherapy; (2) individuals who received lymphadenectomy before
the main surgical procedure; and (3) patients who did not undergo lymphadenectomy.

Table 1. Characteristics of the patients with cervical or endometrial carcinoma.

N (%)

Median age (range) 49 (19–78)

Cervical carcinoma 423

Endometrial carcinoma 144

Lymph node metastasis
Cervical carcinoma

No 334(78.96)
Yes 89 (21.04)

Endometrial carcinoma
No 130(90.28)
Yes 14(9.72)

FIGO 2009 stage
Cervical carcinoma

IA1 8 (1.89)
IA2 18 (4.26)
IB1 219 (51.77)
IB2 33 (7.80)

IIA1 61 (14.42)
IIA2 84 (19.86)

Endometrial carcinoma
IA 102 (70.83)
IB 18 (12.5)
II 6 (4.17)

IIIA 4 (2.78)
IIIC1 9 (6.25)
IIIC2 5 (3.47)

LVSI
Cervical carcinoma

No 310 (73.29)
Yes 113 (26.71)

Endometrial carcinoma
No 123 (85.42)
Yes 21 (14.58)

Stromal invasion
Cervical carcinoma

<1/3 171 (40.43)
1/3–2/3 86 (20.33)

>2/3 166 (39.24)
Endometrial carcinoma

<1/2 117 (81.25)
>1/2 27 (18.75)

Histology
Cervical carcinoma

Squamous cell carcinoma 321 (75.89)
Adenocarcinoma 81 (19.15)

Adenosquamous cell carcinoma 8 (1.89)
Neuroendocrine carcinoma 9 (2.13)

Clear cell carcinoma 1 (0.24)
Rhabdomyosarcoma 1 (0.24)

Carcinosarcoma 1 (0.24)
Genital wart-like carcinoma 1 (0.24)

Endometrial carcinoma
Endometrioid carcinoma 131 (90.97)

Clear cell carcinoma 6 (4.17)
Serous carcinoma 4 (2.78)

Carcinosarcoma 3 (2.08)
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Table 1. Cont.

N (%)

Grade
Cervical carcinoma

1 10 (2.36)
2 197 (46.57)
3 70 (16.55)

Non-keratinizing SCC 26 (6.15)
Keratinizing SCC 5 (1.18)

Not reported 91 (21.75)
Endometrial carcinoma

1 33 (22.92)
2 64 (44.44)
3 26 (18.06)

Not reported 8 (5.56)
SCC, squamous cell carcinoma; FIGO, International Federation of Gynecology and Obstetrics; LVSI, lymphovascu-
lar space involvement.

The study recorded pertinent clinical details of the patients, which included age, tumor
histopathological attributes, results derived from imaging evaluations concerning LNM,
and the postoperative histopathological diagnosis of LNM. This study secured approval
from the institutional Ethics Review Board of Renji Hospital Affiliated with Shanghai Jiao
Tong University School of Medicine (KY2019-154).

3.2. Clinical and Laboratory Data

The dataset employed in this research was sourced from the Gynecological Oncology
Department of Renji Hospital. It included real patient data from individuals diagnosed
with CC and EC and comprised the field information set out in Table 2.

Table 2. Medical data overview.

Field Meaning

Hospital ID Records the unique identifier of the patient within the hospital

Diagnosis result Indicates the patient’s disease diagnosis, including cervical and endometrial
malignant tumors

Preoperative CT Records the results of CT evaluation conducted before surgery

MRI Records the results of MRI evaluation conducted before surgery

PET/CT LNM Indicates the LNM in the pelvic and abdominal cavity evaluated by PET/CT

PET results Record the results of PET evaluation conducted before surgery

CT LNM Indicates the LNM in the pelvic and abdominal cavity evaluated by CT

CT results Record the results of CT evaluation conducted before surgery

In addition to the above-mentioned fields, the dataset also encompassed image data
obtained through preoperative CT and MRI evaluations. Every patient underwent preoper-
ative CT and MRI assessments, resulting in corresponding image data. These images were
essential for the analysis and assessment of lymph node metastasis in gynecological malig-
nant tumors. These image data were presented in two-dimensional or three-dimensional
forms and included detailed structures and features of the patient’s pelvic and abdominal
regions. In the current model, only MRI images were utilized as input for the evaluation of
potential lymph node metastasis. Within the images, regions containing possible metastatic
lymphatic tissue were segmented and annotated (Figure 1).
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Figure 1. The right external lliac lymph node (arrow) of a 40-year-old EC patient. T2-weighted MRI
(a) and contrast-enhanced T1-weighted MRI (b).

3.3. Data Partitioning

To ensure patient privacy and to fully utilize the multi-modal data, this study em-
ployed an innovative data-management strategy, dividing the dataset into two independent
types of clients, Client 0 and Client 1, to simulate a real-world multi-data owner environ-
ment. Client 0 encompassed 226 samples, including 111 positive samples and 115 negative
samples, while Client 1 consisted of 341 samples, subdivided into 226 positive samples and
115 negative samples. Both data holders combined text and image data, a design that not
only safeguarded patient privacy, but also facilitated the optimal integration and utilization
of multi-modal data. Additionally, the data within each “Client” category was further
segmented into training and testing sets, serving as validation sets for each other, with a
ratio of 8:2 between the training and testing sets, thereby achieving a rational distribution
and effective validation of the dataset, as shown in Table 3.

Table 3. Distribution of samples and data splitting among clients.

Client Positive Samples Negative Samples Training Set Testing Set Validation Set

Client 0 111 115 181 (8:2) 45 (8:2) 341 (Client 1)

Client 1 226 115 273 (8:2) 68 (8:2) 226 (Client 0)

4. Materials and Methods

In its quest to improve LNM diagnosis in gynecological malignancies, this study
crafted an integrated method that blended non-image clinical data and MRI image data
within a federated-learning framework. This approach ensured enhanced prediction
accuracy, while safeguarding data confidentiality.

The solution hinged on a composite neural network that operated within this federated-
learning environment. By adeptly merging diverse data sources, the model delivered more
precise predictions for LNM. Whether training on non-image clinical data, MRI image
data, or both, the system demonstrated adaptability and efficiency, marking a significant
advancement in gynecological malignancy research.

4.1. Overall Model Architecture

This study introduced a novel federated-learning framework that operated across
various local clients, each of whom was emblematic of distinct medical institutions or
data sources. These clients processed two types of multimodal data: non-image clinical
data (Xtext) and MRI image data (Ximage). The model was a composite neural network that
seamlessly integrated the capabilities of the MLP and the CNN, respectively, to process
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these data. The fusion of outputs from both MLP and CNN components was achieved
through the Softmax activation function, which is formulated as:

P
( y

x

)
= Softmax(α· f

(
Wmlp·Xtext + bmlp

)
+ β· f

(
Wcnn·Ximage + bcnn

)
) (1)

where α and β are learnable weight parameters that ascertain the significance of each
component’s output in the consolidated result. The Softmax function ensured a normalized
prediction and was defined by the following equation:

S(xi) =
exi

∑N
j=1 exj

(2)

where xi represents the ith element in the prediction and N denotes the total count of
the predictions.

By leveraging the potential of this composite neural network, each local client inde-
pendently discerned and produced predictive outputs. Instead of sharing the raw data,
which may have raised privacy concerns, only the model parameters were transmitted
to a central server. This server aggregated the parameters from different clients and un-
dertook global optimization. This methodological approach not only safeguarded data
privacy, but also fostered a culture of collaborative knowledge-sharing across institutions.
Post-optimization, the central server circulated the refined parameters back to each client,
establishing a recursive learning cycle. Through this iterative process, clients collectively
learned from each other, enhancing their individual and collective predictive accuracies.

By harmoniously amalgamating multiple data sources, utilizing the strengths of both
the MLP and the CNN, and adopting federated learning for training, the model furnished
a probability metric for LNM. This pioneering approach augmented diagnostic accuracy,
endowed flexibility, ensured data privacy, and paved the way for a more nuanced and
personalized diagnosis of gynecological malignant tumors, as depicted in Figure 2.
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Figure 2. Multimodal federated-learning framework.

4.2. Text Data Model

To enhance the prediction of lymph node metastasis, this study introduced a model
tailored for non-image clinical data, which included both pathological findings related to
LNM and expert evaluations of imaging techniques such as MRI, CT, and PET/CT. Built
upon an MLP framework, this model was adept at capturing key information related to
LNM from this clinical dataset.

The MLP was structured with an input layer, several hidden layers, and an output
layer. The design ensured the flexibility required to adjust the number of neurons in the



Cancers 2023, 15, 5281 8 of 20

hidden layers, a feature that was crucial for discerning the intricate relationships between
input features and LNM. The computational representation of the model’s output was
determined by the following equation:

MLPoutput = f
(

Wmlp·Xtext + bmlp

)
(3)

where f is the activation function that transforms the output of the linear function to the
non-linear function, allowing the model to learn more intricate data representations. Xtext
is the input data, Wmlp represents the weight parameters of the MLP component, and bmlp
is the bias term.

This tailored approach not only integrated findings from clinical diagnostic procedures,
but also synthesized evaluations from various imaging techniques, thereby amplifying
the model’s predictive accuracy for LNM. By converging these diverse data sources, the
methodology promised a more holistic and precise prediction, setting a benchmark in the
realm of gynecological malignancy research.

4.3. MRI Image-Processing Model

Radiological assessments, which are traditionally reliant on the manual expertise
of radiologists, bring invaluable insights but also introduce an element of subjectivity,
due to human variance. Recognizing this, this study sought to introduce more consistent
and objective evaluations by developing an AI model that was tailored for MRI image
interpretation, specifically targeting LNM in gynecological malignancies.

To achieve this, this study harnessed a tailored CNN amalgamated with the U-
NET architecture for the nuanced interpretation of MRI image data that were pertinent
to LNM. This combination ensured both depth in feature extraction and precision in
region segmentation.

The CNN structure, designed for MRI images, consisted of multiple convolutional
layers, pooling layers, and fully connected layers. These layers worked cohesively to
meticulously extract and refine deep features from the MRI images that were related to
LNM. The computational output of this network was defined as follows:

CNNoutput = f
(
Wcnn·Ximage + bcnn

)
(4)

where Ximage is the MRI image data input, Wcnn denotes the weight parameters of the CNN
component, bcnn is the bias term, and f again denotes the activation function.

To ensure precise interpretation and the segmentation of MRI image data that were
related to LNM, our model integrated a CNN with the U-NET architecture. The U-NET,
renowned for its precision in region segmentation, is systematically designed with input
blocks, downsampling blocks, upsampling blocks, and a final output block. As MRI T1W
sequences are processed, they traverse the U-NET, starting from the input block. The
subsequent downsampling phase not only reduces the image’s spatial dimensions, but
also amplifies feature channels, thanks to convolutional layers that are paired with Leaky
ReLU activation functions. This ensures a detailed extraction of the salient features that are
indicative of LNM.

After downsampling, the model underwent the upsampling phase. Here, the original
image dimensions were restored, while the depth of the extracted features was maintained.
The final step involved the output block, which utilized convolutional layers in tandem
with a Softmax activation function. The result was pixel-level classifications that accurately
highlighted potential regions of LNM.

Turning our attention to the data underpinning this research, they were rooted in
the expertise of two senior radiologists, who reassessed patient MRI scans, providing
crucial diagnostic labels. This dataset consisted of MRI T1W sequences, with each sequence
containing 1–2 images that were suspected of showing signs of lymph node metastasis.
Crucially, these images were annotated by the radiologists, marking the lymph node regions
in detail. While the current study prioritized the detection of LNM presence, we recognize
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that the possible depth and potential of future studies that could delve into the specific
characteristics or types of lymph nodes.

Upon the completion of the annotation phase, the MRI image-processing model was
deployed, with its primary function being segmentation and feature extraction from the
images. These sequence images were then subjected to distributed training across two
distinct clients, and further enhanced with cross-validation. The model’s operational flow
commenced with image classification, which segued into segmentation using the CNN,
culminating in the autonomous identification and annotation of potential LNM regions.

With its intricate segmentation capabilities, the model offered invaluable insights,
enabling precise localization of potential anomalies in gynecologic tumor regions. This
fusion of CNN and U-NET architectures not only allowed for a comprehensive analysis,
but also set a new benchmark for LNM diagnosis in MRI images. Through this integrated
approach, the model stood as a formidable tool, heralding a new era in gynecological
malignancy research, as shown in Figure 3.
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4.4. Multimodal Fusion

In the pursuit of refining the diagnosis of LNM in gynecological malignancies, the role
of integrative methodologies, particularly the amalgamation of clinical text data and MRI
image data, has taken center stage. One significant dimension of this integrative approach
was manifest in the “multimodal fusion” model.

The “multimodal fusion” model was established in response to the challenges pre-
sented by isolated data sources. It seamlessly combined text-based clinical insights, pre-
dominantly drawn from radiologist evaluations, with the diagnostic outputs generated
by the advanced MRI image-processing model. By leveraging the precision of AI-driven
image analyses and the nuanced insights of experienced radiologists, this fusion strategy
aspired to substantially elevate the accuracy of LNM predictions.

Building upon the integrated approach, this section (titled “Multimodal Fusion”)
elu-cidates how to harmoniously merge two disparate data sources—text and image—to
enhance diagnostic precision. By harnessing the inherent strengths of both data types, the
model endeavored to present a comprehensive and nuanced picture, especially con-cerning
LNM predictions. The ensuing discussion provides insights into the fusion technique and
its implications and details the loss function employed during the model’s training phase.



Cancers 2023, 15, 5281 10 of 20

The fusion result was shown in Equation (1). Through this methodology, it was
possible to integrate two types of data (text and image) and to produce a comprehensive
prediction regarding LNM for patients. During the model-training phase, the cross-entropy
loss function was used to measure the difference between the predicted value and the
actual label. It was defined as follows:

L = −
N

∑
i=1

yilog(pi) (5)

where N represents the number of samples, yi is the true label, and pi is the prediction
probability generated by the model for that sample. This loss function was commonly
employed in classification problems, as it directly measured the difference between the
model’s predicted probability distribution and the actual label distribution.

4.5. Federated-Learning Training

The methodological exposition and underscored federated-learning strategy was un-
derpinned by the federated averaging (FedAvg) [31] algorithm. This innovative approached
permitted each participating client, representing distinct medical institutions, to train the
model on their local dataset. Optimal data protection and confidentiality were ensured by
harnessing the various insights from multiple institutions.

During the training process, each client refined the model parameters based on their
local data and, subsequently, transmitted these parameters to a centralized server. This
server then undertook the crucial task of averaging the received parameters from all the
clients. The formula governing the federated averaging process is expressed as:

w =
1
k ∑

k=1
K
(nk

n

)
wk (6)

where w is the model parameter on the server, nk is the number of data in client k, n is the
total number of data from all clients, and wk is the model parameter uploaded by client k.

After the computation of the averaged parameters, the server updated its global model.
This iterative mechanism ensured the model’s continual evolution, incorporating insights
from every contributing institution. Through uniform dataset division, cross-validation
among clients was further facilitated, thereby enhancing the model’s accuracy.

This federated-learning approach, augmented by the FedAvg algorithm, offered a
twofold advantage. First, it allowed the model to leverage the expansive and varied data
pools of multiple hospitals. Second, it upheld the integrity of data privacy, guaranteeing
that raw data remained confined to its origin. Hence, the methodology not only amplified
the predictive accuracy for LNM, but also epitomized collaborative, privacy-centric research
in medical imaging (Figure 4).
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4.6. Evaluation Metrics

This research conducted a comparative analysis of the proposed federated-learning
model and traditional statistical methods for diagnosing LNM. The conventional statistical
analysis was performed using the Statistical Package for the Social Sciences (SPSS) software
version 23.0 (International Business Machines Corporation, Armonk, NY, USA), with
histopathological data as the primary diagnostic criteria. The SPSS was used to calculate
and present the sensitivity, specificity, positive predictive value (PPV), negative predictive
value (NPV), and accuracy of CT, MRI, and PET/CT by groups. In contrast, the federated-
learning model produced its own set of metrics, including sensitivity, specificity, and
accuracy, offering a fresh perspective on LNM prediction. To measure the performance
differences, all comparative p-values were computed using Pearson’s chi-squared test.
Furthermore, the areas under the curve (AUCs) for each group were compared employing
the DeLong and DeLong method. In all evaluations, statistical tests were two-sided, and a
p-value less than 0.05 indicated statistical significance.

This comparative approach emphasized the enhanced capabilities of integrating mul-
timodal data and advanced federated-learning techniques in providing a more comprehen-
sive and precise assessment of LNM risk, compared with traditional methods.

5. Results
5.1. Evaluating the Efficacy of Individual and Combined Imaging Modalities: CT, MRI,
and PET/CT

The participants were divided into seven groups, based on the imaging examinations
they underwent preoperatively: CT (439); MRI (440); PET/CT (393); CT and MRI (C-M,
336); CT and PET/CT (C-P, 308); MRI and PET/CT (M-P, 292); and CT, MRI, and PET/CT
(C-M-P, 230). The LNM assessment data, stratified according to the histopathology data of
each group, are shown in Table 4.

Table 4. Separate and combined use of computed tomography, magnetic resonance imaging, and
positron emission tomography-computed tomography for the assessment of lymph node metastasis.

Pathology
Total

Positive for LNM Negative for LNM

CT 439
Positive for LNM 31 27

Negative for LNM 64 317

MRI 440
Positive for LNM 28 24

Negative for LNM 50 338

PET/CT 393
Positive for LNM 45 45

Negative for LNM 33 270

CT + MRI 336
Positive for LNM 27 25

Negative for LNM 45 239

CT + PET/CT 308
Positive for LNM 42 49

Negative for LNM 29 188

MRI + PET/CT 292
Positive for LNM 33 43

Negative for LNM 27 189

CT + MRI + PET/CT 230
Positive for LNM 31 40

Negative for LNM 24 135
LNM, lymph node metastasis; CT, computed tomography; MRI, magnetic resonance imaging; PET/CT positron
emission tomography–computed tomography.
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This study embarked on an assessment to compare different imaging modalities in
detecting LNM. Specifically, CT results demonstrated a sensitivity of 32.63%, a specificity
of 92.15%, and an AUC of 0.624 (0.555–0.693). In comparison, MRI interpretations pre-
sented a slightly enhanced sensitivity at 35.9%, a specificity of 93.37%, and an AUC of
0.646 (0.571–0.721). Among these, PET/CT emerged as the most efficient, with a sensitivity
of 57.69%, a specificity of 85.71%, and an AUC of 0.717 (0.647–0.787). Notably, PET/CT’s
sensitivity and NPV surpassed those of CT and MRI, although the AUC comparisons
between them were not statistically significant (p = 0.0846).

In exploring the synergistic effects of combined modalities, there were significant
differences in sensitivities and specificities, particularly between the C-M and C-P, C-M
and M-P, and C-M and C-M-P groupings. Nonetheless, no prominent differences emerged
when evaluating other combined examination groups. Moreover, the diagnostic efficacy of
PET/CT was accentuated when it was compared to CT and C-P, as well as MRI and M-P,
with the AUC values not suggesting any pronounced dominance in LNM detection.

Detailed outcomes of these evaluations are comprehensively tabulated in Table 5 and
graphically represented in Figure 5.
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Figure 5. ROC curves for CT, PET/CT, MRI, C-M, C-P, M-P, C-M-P in lymph node assessment.
Comparisons of AUCs between the groups of separate examination showed that the AUC of
PET/CT was significantly superior to that of CT but there was no significant difference to MRI
(p = 0.0172, p = 0.0846, respectively) (a). There was no significant difference of AUC between
combined examination groups (p > 0.05) (b). AUC did not show more obvious superiority in
lymph node assessment when CT was compared with C-P and when MRI was compared with M-P,
respectively; (p > 0.05) (c,d).
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Table 5. Comparison of the diagnostic efficiency of the separate and combined use of computed to-
mography, magnetic resonance imaging, and positron emission tomography–computed tomography
for lymph node metastasis.

Group Sensitivity Specificity PPV NPV Accuracy AUC

Efficiency CT 32.63% 92.15% 53.45% 83.20% 79.27% 0.624 (0.555–0.693)

MRI 35.9% 93.37% 53.85% 87.11% 83.18% 0.646 (0.571–0.721)

PET/CT 57.69% 85.71% 50.0% 89.11% 80.15% 0.717 (0.647–0.787)

C-M 37.5% 90.53% 51.92% 84.15% 79.17% 0.640 (0.561–0.719)

C-P 59.15% 79.32% 46.15% 86.64% 74.68% 0.692 (0.618–0.767)

M-P 55.0% 81.47% 43.42% 87.1% 76.03% 0.682 (0.601–0.764)

C-M-P 56.36% 77.14% 43.06% 85.44% 72.17% 0.668 (0.582–0.753)

p value CT vs. MRI 0.652 0.532 0.967 0.127 0.138 0.5528

CT vs. PET/CT 0.001 * 0.008 * 0.682 0.028 * 0.752 0.0172 *

MRI vs. PET/CT 0.006 * 0.001 * 0.659 0.423 0.258 0.0846

C-M vs. C-P 0.01 * <0.001 * 0.507 0.438 0.176 0.2359

C-M vs. M-P 0.044 * 0.003 * 0.344 0.291 0.346 0.3595

C-M vs. C-M-P 0.034 * <0.001 * 0.365 0.834 0.055 0.5679

C-P vs. M-P 0.632 0.559 0.724 0.789 0.701 0.8318

C-P vs. C-M-P 0.753 0.595 0.752 0.634 0.515 0.6139

M-P vs. C-M-P 0.883 0.284 0.977 0.469 0.317 0.7719

CT vs. C-P 0.001 * <0.001 * 0.385 0.265 0.139 0.0942

PET/CT vs. C-P 0.856 0.048 * 0.605 0.391 0.084 0.5746

MRI vs. M-P 0.025 * <0.001 * 0.246 0.891 0.017 * 0.4212

*: p < 0.05. PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; CT,
computed tomography; MRI, magnetic resonance imaging; PET/CT positron emission tomography–computed
tomography. C-M: CT and MRI; C-P: CT and PET/CT; M-P: MRI and PET/CT; C-M-P: CT, MRI and PET/CT.

5.2. Multimodal Federated-Learning Framework Evaluation

In this study, a multimodal federated-learning framework was employed to assess
LNM in 567 samples, of which 226 were used for training, 115 for internal validation, and
115 for external validation. Multiple experiments were conducted on the internal test set
to evaluate the model’s performance under two different conditions: (1) without MRI
image data, achieving a sensitivity of approximately 92.30%, a specificity of approximately
92.15%, and an accuracy of approximately 92.17%; and (2) with both MRI images and
evaluation data, achieving a sensitivity of 94.12%, a specificity of 96.69%, and an accuracy
of approximately 95.16% (Figure 6).

The experimental results on the validation set were similar. Without MRI image data,
the model achieved a sensitivity of 92.31%, a specificity of 93.14%, and an accuracy of
93.04%. However, when combined with MRI imaging and evaluation data, the sensitivity
was approximately 92.31%, the specificity was about 98.04%, and the accuracy was around
96.5%, as depicted in Figure 7.

The external validation set employed data from ovarian cancer (OC) for verification,
taking into consideration both the radiologist’s assessment recommendations for lymph
node metastasis and OC’s MRI images. The experimental results on the external validation
set indicated that the performance of the model was further validated and confirmed.
Without MRI image data, the model achieved a sensitivity of 88.16%, a specificity of 91.65%,
an accuracy of 89.26%, and an AUC (ROC curve) of 0.83. However, when combined with
MRI imaging and evaluation data, the sensitivity was approximately 91.14%, the specificity
was about 92.16%, the accuracy was around 92.26%, and the AUC (ROC curve) was 0.89, as
depicted in Figure 8.
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Furthermore, to provide a more intuitive display of the model’s training process, the
study plotted the loss function against the number of training iterations, as illustrated
in Figure 9. Overall, as training progressed, the model’s loss value gradually decreased,
indicating that the model was converging, and its performance was continuously optimized.

These results indicated that by integrating multimodal-image and non-image data,
the federated-learning model performed exceptionally well, even without the presence
of image information, and further improved its predictive accuracy upon incorporating
MRI images and evaluation data. Similar sensitivity and specificity were observed in the
ex-ternal validation set, further confirming the robustness and reliability of the framework.



Cancers 2023, 15, 5281 16 of 20Cancers 2023, 15, x FOR PEER REVIEW 17 of 21 
 

 

  

(a) (b) 

  

(c) (d) 

 
 

(e) (f) 

Figure 9. (a) Training loss without MRI image data; (b) training loss with MRI image data; (c) vali-

dation loss without MRI image data; (d) validation loss with MRI image data; (e) external validation 

loss without MRI image data; (f) external validation loss with MRI image data. 

These results indicated that by integrating multimodal-image and non-image data, 

the federated-learning model performed exceptionally well, even without the presence of 

image information, and further improved its predictive accuracy upon incorporating MRI 

images and evaluation data. Similar sensitivity and specificity were observed in the ex-

ternal validation set, further confirming the robustness and reliability of the framework. 

  

Figure 9. (a) Training loss without MRI image data; (b) training loss with MRI image data;
(c) validation loss without MRI image data; (d) validation loss with MRI image data; (e) external
validation loss without MRI image data; (f) external validation loss with MRI image data.

6. Discussion

Gynecological malignant tumors, particularly CC and EC, are well-known for their
invasive metastatic properties. In this context, LNM has emerged as a vital prognostic
marker, due to its pivotal role in patient recurrence and overall survival rates. As such,
employing effective imaging techniques for LNM evaluation is paramount.

Existing imaging technologies present challenges in predicting LNM. While CT and
MRI are the most commonly used imaging modalities for lymph node assessment, their
diagnostic efficiency is relatively low. Compared to PET/CT, CT and MRI offer lower sensi-
tivity but higher specificity. Previous studies showed that the sensitivity of CT and MRI
ranges from 31% to 58% and 34% to 71%, respectively [14–18]. Furthermore, interpreting
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CT and MRI images to determine the occurrence of LNM requires seasoned radiologists. Al-
though PET/CT has demonstrated an exceptional diagnostic efficiency of 80.15%, detecting
metastatic lesions smaller than 5 mm remains a challenge [20].

Against this backdrop, this study introduced an assessment framework based on multi-
modal federated learning. The method innovatively integrated non-imaging clinical data
(radiologists’ evaluations of CT, MRI, and PET/CT) with MRI image-assessment results.
This fusion strategy, supported by federated learning, not only bolstered the predictive
capability for LNM, but also redefined the sharing and processing methods for multi-center
data. The approach sought to harmonize prediction standards across multiple centers,
potentially elevating diagnostic standards in local hospitals and mitigating diagnostic
discrepancies between medical centers. Clinically, this method can be instrumental in
guiding oncologists and surgeons in making informed therapeutic decisions based on a
more comprehensive and accurate assessment of the presence of LNM. By providing a
more holistic view of a patient’s condition, it ensures that treatment plans are tailored to
the individual’s specific needs, enhancing patient outcomes. In essence, it offers robust
support for standardizing and enhancing the precision of malignant gynecological tumor
evaluations, fostering more consistent and accurate therapeutic decision-making.

In the realm of LNM evaluation, the federated-learning model showcased marked
superiority over established imaging techniques. Even without the inclusion of MRI
data, the model delivered a sensitivity of 92.30%, a specificity of 92.15%, and an accuracy
of 92.17%. In contrast, CT reported a sensitivity and a specificity of 32.63% and 92.15%
respectively, and MRI revealed figures of 35.9% and 93.37%, respectively. Interestingly, even
when the federated-learning model was compared with PET/CT—which had a sensitivity
of 57.69% and a specificity of 85.71%—the model, upon integrating MRI data, exhibited
enhanced metrics: i.e., a sensitivity of 94.12%, a specificity of 96.69%, and an accuracy of
95.16%. The external validation set further reaffirmed the model’s robustness and reliability,
underlining its distinct advantage in LNM evaluation. The findings not only underscore
the model’s prowess in comparison to traditional approaches, but also position it as a
promising paradigm shift in advancing LNM assessments.

Previous scholars also provided valuable exploration and backing in this domain.
Lanhong et al. [32] attempted to consolidate imaging data to enhance LNM diagnostic
accuracy. Although they recognized the significance of multi-modal combinations, their
research still faced challenges in integrating non-imaging data and sharing data across
hospitals. The study of Silva et al. [33], despite enhancing the model’s generalizability
through federated learning for inter-hospital data sharing, remained limited to a single
imaging modality and did not integrate non-imaging data. Liu et al. [34] discussed the
limitations of single-modal machine learning methods in predicting LNM, emphasizing the
importance of multi-modal and multi-center data, and suggested future research directions.

As this study delved deeply into the complexities of predicting LNM in gynecological
malignant tumors, the endeavors of other researchers in similar or adjacent fields offer
valuable insights. A study focused on muscle-atrophy assessment in head and neck
cancer patients [35] showcased how advanced deep-learning techniques, specifically CNN
and LSTM, can be harnessed for precise medical-image analysis. The MLNet, a deep
learning network based on meta-heuristic algorithms [36], presented a fresh perspective
for automated CC diagnosis. By integrating various algorithms or models, more effective
and precise prediction methods might emerge.

Additionally, some researchers explored the value of transfer learning in automated
CC tumor segmentation [37], successfully applying it to the diffusion-weighted magnetic
resonance imaging of uterine malignant tumors. Liu et al. [34] presented a fresh perspec-
tive on machine learning in MRI-image diagnosis of prostate cancer. These innovative
approaches provide novel viewpoints on how to apply existing knowledge to new areas.

For the stratification of recurrence risk in locally advanced CC patients, some re-
searchers successfully employed multi-modal transformer networks, integrating different
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modalities of medical-image data, such as CT and MRI, offering more comprehensive and
accurate risk assessment methods [38].

Finally, regarding the prediction of LNM in CC patients, some researchers used
digital pathological features extracted from biopsy slides [30]. They successfully predicted
LNM based on the vision transformer (ViT) [30] and recursive neural network (RNN)
framework, and the model’s performance was validated through external testing and
prospective datasets. Compared to the method of this study, this approach offered a
contrast, showcasing the value of multi-modal data in different research contexts.

While this study achieved noteworthy advancements, several limitations warrant
attention. First, due to the limited sample sizes and the study’s restriction to a single center,
the model’s generalizability and statistical power might be compromised. Second, the
current research primarily relied on MRI for image assessment, somewhat restricting the
model’s versatility and adaptability and indicating a need to integrate diverse imaging
techniques in the future.

Regarding future endeavors, several clear directions have been settled, all building
on the foundation of our current work. A primary strategy is to increase sample quanti-
ties and varieties, including more imaging sequences, clinical data, laboratory data, and
gynecological examination records, with the aim of constructing a more comprehensive
and accurate LNM-prediction model. With the deepening advancement of AI in diagnostic
technology, our multi-modal federated-learning framework is poised to serve as a guide-
post in the field, directing researchers toward new research directions and innovative ideas.
Additionally, we plan to integrate advanced algorithms, such as the ViT, and combine
them with knowledge graphs and clinical expertise to further boost the model’s predictive
performance. Concurrently, considering the model’s broad applicability, we are exploring
the use of techniques such as transfer learning to predict LNM in other types of cancers.

As an ongoing research endeavor, more data types will be incorporated into the
multi-modal federated-learning model and it will be validated across various centers.

7. Conclusions

In the complex field of gynecological malignancies, precise early detection of LNM in
CC and EC patients is crucial. A novel multi-modal federated-learning framework was
employed to address this detection, integrating non-imaging clinical data with MRI images
and overcoming the limitations of traditional imaging techniques. Utilizing a sophisticated
neural network, the methodology seamlessly combined MRI and clinical data, enhancing
prediction accuracy and data confidentiality.

In conclusion, this research signifies more than progress in diagnosing gynecological
malignancies. It also highlights the transformative potential of uniting various data types
within a federated structure, guiding future research, with a focus on diagnostic accuracy
and patient welfare.
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